Solutions to Practice Problems

Exercise 8.8
(a) Show that if \(\{a_n\}_{n=1}^{\infty} \) is Cauchy then \(\{a_n^2\}_{n=1}^{\infty} \) is also Cauchy.
(b) Give an example of a Cauchy sequence \(\{a_n^2\}_{n=1}^{\infty} \) such that \(\{a_n\}_{n=1}^{\infty} \) is not Cauchy.

Solution.
(a) Since \(\{a_n\}_{n=1}^{\infty} \) is Cauchy, it is convergent. Since the product of two convergent sequences is convergent the sequence \(\{a_n^2\}_{n=1}^{\infty} \) is convergent and therefore is Cauchy.
(b) Let \(a_n = (-1)^n \) for all \(n \in \mathbb{N} \). The sequence \(\{a_n\}_{n=1}^{\infty} \) is not Cauchy since it is divergent. However, the sequence \(\{a_n^2\}_{n=1}^{\infty} = \{1, 1, \ldots\} \) converges to 1 so it is Cauchy ■

Exercise 8.9
Let \(\{a_n\}_{n=1}^{\infty} \) be a Cauchy sequence such that \(a_n \) is an integer for all \(n \in \mathbb{N} \). Show that there is a positive integer \(N \) such that \(a_n = C \) for all \(n \geq N \), where \(C \) is a constant.

Solution.
Let \(\epsilon = \frac{1}{2} \). Since \(\{a_n\}_{n=1}^{\infty} \) is Cauchy, there is a positive integer \(N \) such that if \(m, n \geq N \) we have \(|a_m - a_n| < \frac{1}{2} \). But \(a_m - a_n \) is an integer so we must have \(a_n = a_N \) for all \(n \geq N \) ■

Exercise 8.10
Let \(\{a_n\}_{n=1}^{\infty} \) be a sequence that satisfies
\[|a_{n+2} - a_{n+1}| < c^2|a_{n+1} - a_n| \]
for all \(n \in \mathbb{N} \), where \(0 < c < 1 \).
(a) Show that \(|a_{n+1} - a_n| < c^n|a_2 - a_1| \) for all \(n \geq 2 \).
(b) Show that \(\{a_n\}_{n=1}^{\infty} \) is a Cauchy sequence.

Solution.
(a) See Exercise 1.10.
(b) Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} c^n = 0$ we can find a positive integer N such that if $n \geq N$ then $|c|^n < (1 - c)\epsilon$. Thus, for $n > m \geq N$ we have

$$|a_n - a_m| \leq |a_{m+1} - a_m| + |a_{m+2} - a_{m+1}| + \cdots + |a_n - a_{n-1}|$$

$$< c^m |a_2 - a_1| + c^{m+1} |a_2 - a_1| + \cdots + c^{n-1} |a_2 - a_1|$$

$$< c^m (1 + c + c^2 + \cdots) |a_2 - a_1|$$

$$= \frac{c^m}{1 - c} |a_2 - a_1| < \epsilon$$

It follows that $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Exercise 8.11

What does it mean for a sequence $\{a_n\}_{n=1}^{\infty}$ to not be Cauchy?

Solution.

A sequence $\{a_n\}_{n=1}^{\infty}$ is not a Cauchy sequence if there is a real number $\epsilon > 0$ such that for all positive integers N there exist $n, m \in \mathbb{N}$ such that $n, m \geq N$ and $|a_n - a_m| \geq \epsilon$.

Exercise 8.12

Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two Cauchy sequences. Define $c_n = |a_n - b_n|$. Show that $\{c_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Solution.

Let $\epsilon > 0$ be given. There exist positive integers N_1 and N_2 such that if $n, m \geq N_1$, and $n, m \geq N_2$ we have $|a_n - a_m| < \frac{\epsilon}{2}$ and $|b_n - b_m| < \frac{\epsilon}{2}$. Let $N = N_1 + N_2$. If $n, m \geq N$ then $|c_n - c_m| = ||a_n - b_n| - |a_m - b_m|| \leq |(a_n - b_n) + (a_m - b_m)| \leq |a_n - a_m| + |b_n - b_m| < \epsilon$. Hence, $\{c_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Exercise 8.13

Explain why the sequence defined by $a_n = (-1)^n$ is not a Cauchy sequence.

Solution.

We know that every Cauchy sequence is convergent. We also know that the given sequence is divergent. Thus, it can not be Cauchy.

Exercise 8.14

Show that every subsequence of a Cauchy sequence is itself a Cauchy sequence.
Solution.
Let \(\{a_n\}_{n=1}^{\infty} \) be a Cauchy sequence. Let \(\{a_{n_k}\}_{k=1}^{\infty} \) be a subsequence of \(\{a_n\}_{n=1}^{\infty} \).
By Exercise 8.7, the sequence \(\{a_n\}_{n=1}^{\infty} \) is convergent and hence Cauchy.

Exercise 8.15
Prove that if a subsequence of a Cauchy sequence converges to \(L \), then the full sequence also converges to \(L \).

Solution.
Let \(\{a_n\}_{n=1}^{\infty} \) be a Cauchy sequence. Let \(\{a_{n_k}\}_{k=1}^{\infty} \) be a subsequence of \(\{a_n\}_{n=1}^{\infty} \) converging to \(L \). By Exercise ??, the sequence \(\{a_n\}_{n=1}^{\infty} \) is convergent say to a limit \(L' \). By Exercise ??, we must have \(L = L' \).

Exercise 8.16
Prove directly from the definition that the sequence
\[
a_n = \frac{n + 3}{2n + 1}, \quad n \in \mathbb{N}
\]
is a Cauchy sequence.

Solution.
Let \(\epsilon > 0 \) be given. Let \(N \) be a positive integer to be chosen. Suppose that \(n, m \geq N \). We have
\[
|a_n - a_m| = \left| \frac{n + 3}{2n + 1} - \frac{m + 3}{2m + 1} \right| = 3 \frac{|m - n|}{(2n + 1)(2m + 1)} \leq \frac{2m + 2n}{(2n + 1)(2m + 1)} = \frac{(2n + 1) + (2m + 1) - 2}{(2n + 1)(2m + 1)} \leq \frac{1}{2m + 1} + \frac{1}{2n + 1} - \frac{2}{(2n + 1)(2m + 1)} \leq \frac{2}{2N + 1}
\]
Choose \(N \) so that \(\frac{2}{2N + 1} < \epsilon \). That is \(N > \frac{2 - \epsilon}{2\epsilon} \). In this case,
\[
|a_n - a_m| < \epsilon
\]
for all \(n, m \geq N \). That is, \(\{\frac{n + 3}{2n + 1}\}_{n=1}^{\infty} \) is Cauchy.
Exercise 8.17
Consider a sequence defined recursively by $a_1 = 1$ and $a_{n+1} = a_n + (-1)^n n^3$ for all $n \in \mathbb{N}$. Show that such a sequence is not a Cauchy sequence. Does this sequence converge?

Solution.
We will show that there is an $\epsilon > 0$ such that for all $N \in \mathbb{N}$ there exist m and n such that $m, n \geq N$ but $|a_m - a_n| \geq \epsilon$. Note that $|a_{n+1} - a_n| = n^3 \geq 1$. Let $\epsilon = 1$. Let $N \in \mathbb{N}$. Choose $m = N + 1$ and $n = N$. In this case, $|a_m - a_n| = N^3 \geq 1 = \epsilon$. Hence, the given sequence is not a Cauchy sequence. Since every convergent sequence must be Cauchy, the given sequence is divergent.