Solutions to Practice Problems

Exercise 18.7
Assume a_0, a_1, \cdots, a_n are real numbers such that

$$\frac{a_n}{n+1} + \frac{a_{n-1}}{n} + \cdots + \frac{a_1}{2} + a_0 = 0$$

Show that the polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

has at least one root in $(0, 1)$.

Solution.
Let

$$F(x) = \frac{a_n}{n+1} x^{n+1} + \frac{a_{n-1}}{n} x^n + \cdots + \frac{a_1}{2} x^2 + a_0 x.$$

Note that F is continuous in $[0, 1]$ and differentiable in $(0, 1)$ with derivative $F'(x) = f(x)$. Moreover, $F(0) = F(1) = 0$. By Rolle’s theorem, there is a $c \in (0, 1)$ such that $F'(c) = 0$. Hence, $f(c) = 0$.

Exercise 18.8
(a) Show that the function $f(x) = x^3 - 4x^2 - 3x + 1$ has a root in $[0, 2]$.
(b) Use Rolle’s theorem to show that there is exactly one root in $[0, 2]$.

Solution.
(a) We have $f(0) = 1 > 0$ and $f(2) = -13 < 0$ so that by IVT there is a root in $[0, 2]$.
(b) Suppose that x_1 and x_2 are two roots of f in $[0, 2]$. Then by Rolle’s theorem we must have $c \in (0, 2)$ such that $f'(c) = 0$. But the solutions to $f'(x) = 0 = 3x^2 - 8x - 3$ are $x = 3$ and $x = -\frac{1}{3}$ where neither is in $[0, 2]$. Hence, f has exactly one solution in $[0, 2]$.

Exercise 18.9
Let $f, g : \mathbb{R} \to \mathbb{R}$ be differentiable, and let $a, b \in \mathbb{R}$ be such that $a < b$. Show that there is a $c \in (a, b)$ such that

$$f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)].$$

Hint: Apply Rolle’s theorem to the function $h(x) = f(x)[g(b) - g(a)] - g(x)[f(b) - f(a)]$.

1
Solution.
Let \(h : [a, b] \to \mathbb{R} \) be the function defined by
\[
h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x).
\]
Then \(h \) is continuous on \([a, b]\) and differentiable in \(a < x < b \) with derivative
\[
h'(x) = [f(b) - f(a)]g'(x) - [g(b) - g(a)]f'(x).
\]
Moreover
\[
h(a) = h(b) = f(b)g(a) - g(b)f(a).
\]
By Rolle’s theorem there is a \(a < c < b \) such that \(h'(c) = 0 \). That is
\[
[f(b) - f(a)]g'(c) - [g(b) - g(a)]f'(c) = 0
\]
or
\[
[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c) \quad \blacksquare
\]

Exercise 18.10
Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is twice differentiable with \(f''(x) \neq 0 \) for all \(x \in \mathbb{R} \). Show that for any real number \(L \) the equation \(f(x) = L \) can have at most two solutions.

Solution.
Suppose the contrary. Let \(x_1 < x_2 < x_3 \) be solutions to the equation \(f(x) = L \). Then by Rolle’s theorem applied to \([x_1, x_2]\) and \([x_2, x_3]\) we can find real numbers \(x_1 < x_4 < x_2 \) and \(x_2 < x_5 < x_3 \) such that \(f'(x_4) = f'(x_5) = 0 \). Since \(f' \) is continuous in \([x_4, x_5]\) and \(f' \) is differentiable in \((x_4, x_5)\), we can apply Rolle’s theorem to \(f' \) on the interval \([x_4, x_5]\) to obtain a number \(x_4 < x_6 < x_5 \) such that \(f''(x_6) = 0 \). But this contradicts the fact that \(f''(x) \neq 0 \) for all \(x \in \mathbb{R} \). Thus, the equation \(f(x) = L \) has at most two solutions \(\blacksquare \)

Exercise 18.11
Let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable function. Let \(a, b, k \in \mathbb{R} \) be such that \(a < b \) and \(f''(a) < k < f'(b) \). Define the function \(g : \mathbb{R} \to \mathbb{R} \) by \(g(x) = kx - f(x) \).
(a) Show that \(g \) has a local maximum in \((a, b)\).
(b) Show that there is a \(c \in (a, b) \) such that \(f'(c) = k \).

Solution.
(a) Since \(f \) is differentiable so is \(g(x) \). Since \(g \) is continuous in \([a, b]\), \(g \) has a maximum at some point \(c \in [a, b] \). Since \(g'(a) = k - f'(a) > 0 \) and \(g'(b) = k - f'(b) < 0 \) we must have \(c \in (a, b) \).
(b) Since \(g \) has a maximum at \(x = c \), we can write \(g'(c) = 0 \). But this implies that \(f'(c) = k \) \(\blacksquare \)