2.4: Dividing Polynomials; Remainder and Factor Theorem

We can divide a polynomial by another polynomial using long division, in much the same way that we divide numbers.

(The procedure is outlined on p. 336.)

Ex: Divide using long division. State the quotient, \(q(x) \), and the remainder, \(r(x) \).

\[
(x^3 - 7x^2 + 6x + 5) \div (x - 1)
\]

\[
\begin{array}{c|ccccc}
\multicolumn{2}{c|}{} & x^2 & + 5 & & \\
\hline
x^3 & - 7x^2 & + 6x & + 5 & \\
\hline
& - x^2 & + 5 & & \\
\hline
& - x^4 & + 5x^2 & - 8x & + 1 & \\
\hline
& 5x^2 & - 8x & + 1 & \\
\hline
& & - 5x^2 & + 25 & & \\
\hline
& & & -8x & + 26 & < R
\end{array}
\]

\[
P(x) = D(x) \cdot Q(x) + R(x)
\]

\[
x - 8x + 1 = (x^2 - 5)(x^2 + 5) + -8x + 26
\]

\[
= x^4 - 25 - 8x + 26
\]
If the divisor is a linear factor, then we can use synthetic division to divide rather than long division. This procedure is outlined on p. 339.

Ex: Divide using synthetic division. State the quotient, \(q(x) \), and the remainder, \(r(x) \).

\[
\begin{align*}
(x^3 - 7x^2 + 6x + 5) \div (x - 1) \\
\end{align*}
\]

\[
\begin{array}{c|ccccc}
\hline
& 1 & -7 & 6 & 5 \\
\hline
-1 & 1 & -6 & 0 & 5 \\
\hline
\end{array}
\]

\[
\frac{x^4 - 3x + 1}{x + 4}
\]

\[-4 \bigg| \begin{array}{cccc}
1 & 0 & 0 & -3 \\
\end{array}
\]

\[
\begin{array}{cccc}
\hline
-4 & 16 & -64 & 256 \\
\hline
1 & -4 & 16 & -67 & 261 \\
\hline
\end{array}
\]

\[
\frac{x^3 - 4x^2 + 16x - 67}{x^2 - 6x}
\]

Quotient

\]

Remainder
The Division Algorithm: If \(f(x) \) and \(d(x) \) are polynomials, with \(d(x) \neq 0 \), and the degree of \(d(x) \) is less than or equal to the degree of \(f(x) \), then there exist unique polynomials \(q(x) \) and \(r(x) \) such that
\[
f(x) = d(x) \cdot q(x) + r(x).
\]
The remainder, \(r(x) \), equals 0 or it is of degree less than the degree of \(d(x) \). If \(r(x) = 0 \), we say that \(d(x) \) divides evenly into \(f(x) \) and that \(d(x) \) and \(q(x) \) are factors of \(f(x) \).

Ex: Divide \(7 - 11x - 3x^2 + 2x^3 \) by \(x - 3 \). State your result in the form
\[
f(x) = d(x) \cdot q(x) + r(x).
\]

\[
\begin{array}{c|cccc}
& 2 & -3 & -11 & 7 \\
\hline
3 & & & & \\
\end{array}
\]

\[
\begin{array}{c|cccc}
& 2 & -3 & -11 & 7 \\
\hline
& & 6 & 9 & -6 \\
3 & 6 & 27 & 81 & 108 \\
\hline
& 2 & 3 & -2 & 1 \\
\end{array}
\]

\[f(x) = (x-3)(2x^2 + 3x - 2) + 1\]

\[
2x^3 + 3x^2 - 2x - 6x^2 - 7x + 6 + 1 =
\]

\[
2x^3 - 3x^2 - 11x + 7
\]
The Remainder Theorem: If the polynomial $f(x)$ is divided by $x - c$, then the remainder is $f(c)$.

A consequence of the remainder theorem is that if $x - c$ divides evenly into $f(x)$, the remainder is 0. (i.e. c is a zero of the function.)

Ex: Use synthetic division and the remainder theorem to find the indicated function value.

$$f(x) = x^4 - 5x^3 + 5x^2 + 5x - 6; \quad f(2)$$

\[
\begin{array}{c|ccccc}
2 & 1 & -5 & 5 & 5 & -6 \\
 & 2 & -6 & -2 & 6 \\
\hline
1 & -3 & -1 & 3 & 0
\end{array}
\]

$f(2) = 0$
Solve the equation $2x^3 - 3x^2 - 29x + 60 = 0$, given that 3 is a zero of $f(x) = 2x^3 - 3x^2 - 29x + 60$.

\[
\begin{array}{c|cccc}
3 & 2 & -3 & -29 & 60 \\
& & 6 & 9 & -60 \\
\hline
2 & 3 & -20 & 0 \\
\end{array}
\]

$2x^2 + 3x - 20 = 0$

\[x = \frac{-3 \pm \sqrt{9 - 4(2)(-20)}}{2 \cdot 2} \]

\[= \frac{-3 \pm \sqrt{169}}{4} = \frac{-3 \pm 13}{4} \]

$3, \frac{5}{2}, -4$
Use the graph of $f(x) = x^3 + 4x^2 - 25x - 28$ below to determine a solution of $x^3 + 4x^2 - 25x - 28 = 0$. Use synthetic division to verify this solution. Then solve the polynomial equation algebraically.

\[
\begin{array}{c|cccc}
4 & 1 & 4 & -25 & -28 \\
 & 4 & 32 & 28 \\
\hline
1 & 8 & 7 & 0 \\
\end{array}
\]

$x^2 + 8x + 7 = 0$

$(x + 7)(x + 1) = 0$

$x = -7, x = -1$

\[
\begin{array}{c|cccc}
-1 & 1 & 8 & 7 \\
 & -1 & -7 \\
\hline
1 & 7 & 0 \\
\end{array}
\]

$x + 7 = 0$

$x = -7$