Objective 1: Using Vertical Shifts to Graph Functions

Sketch the graphs of \(f(x) = |x| \) and \(g(x) = |x| + 2 \).

Graph the following functions.

\[y = x^2 \]
\[y = x^2 + 3 \]
\[y = x^2 - 3 \]
Vertical Shifts of Functions

If c is a positive real number,

The graph of $y = f(x) + c$ is obtained by shifting the graph of $y = f(x)$ vertically upward c units.

The graph of $y = f(x) - c$ is obtained by shifting the graph of $y = f(x)$ vertically downward c units.

Discuss the graphs of the following functions.

\[
\begin{align*}
y &= \sqrt{x} & y &= \sqrt{x} + 2 & y &= \sqrt{x} - 5
\end{align*}
\]
OBJECTIVE 2 Using Horizontal Shifts to Graph Functions

Sketch the graphs of \(f(x) = x^2 \) and \(g(x) = (x + 2)^2 \).

Graph the following functions.

\[
\begin{align*}
y &= x^2 \\
y &= (x + 3)^2 \\
y &= (x - 3)^2
\end{align*}
\]
Horizontal Shifts of Functions

If c is a positive real number,

The graph of $y = f(x + c)$ is obtained by shifting the graph of $y = f(x)$ horizontally to the left c units.

The graph of $y = f(x - c)$ is obtained by shifting the graph of $y = f(x)$ horizontally to the right c units.

Discuss the graphs of the following functions.

- $y = |x|$
- $y = |x + 5|$
- $y = |x - 6|$
Use the graph of \(y = x^3 \) to sketch the graph of \(g(x) = (x - 1)^3 + 2 \).

Shifts right 1 unit up 2
OBJECTIVE 3 Using Reflections to Graph Functions

Given the graph of \(y = f(x) \), what does the graph of \(y = -f(x) \) look like?

Using a graphing utility with \(y_1 = x^2 \) and \(y_2 = -x^2 \), we can see that the graph of \(y_2 = -x^2 \) is the graph of \(y_1 = x^2 \) reflected about the \(x \)-axis.

Reflections of Functions about the \(x \)-Axis

The graph of \(y = -f(x) \) is obtained by reflecting the graph of \(y = f(x) \) about the \(x \)-axis.
Discuss the graphs of the following functions.

\[f(x) = -x^3 \quad f(x) = -\sqrt{x} \quad g(x) = -|x| \]
Functions can also be reflected about the y-axis. Given the graph of $y = f(x)$, the graph of $y = f(-x)$ will be the graph of $y = f(x)$ reflected about the y-axis. Using a graphing utility, we illustrate a y-axis reflection by letting $y_1 = \sqrt{x}$ and $y_2 = \sqrt{-x}$. You can see that the functions are mirror images of each other about the y-axis.

Reflections of Functions about the y-Axis

The graph of $y = f(-x)$ is obtained by reflecting the graph of $y = f(x)$ about the y-axis.
Use the graph of the basic function $y = \sqrt[3]{x}$ to sketch each graph.

a. $g(x) = -\sqrt[3]{x} - 2$

b. $h(x) = \sqrt[3]{1 - x}$.
OBJECTIVE 4 Using Vertical Stretches and Compressions to Graph Functions

Use the graph of \(f(x) = x^2 \) to sketch the graph of \(g(x) = 2x^2 \).

Use the graph of \(f(x) = x^2 \) to sketch the graph of \(g(x) = \frac{1}{2}x^2 \).
Vertical Stretches and Compressions of Functions

Suppose a is a positive real number:

The graph of $y = af(x)$ is obtained by multiplying each y-coordinate of $y = f(x)$ by a. If $a > 1$, the graph of $y = af(x)$ is a vertical stretch of the graph of $y = f(x)$. If $0 < a < 1$, the graph of $y = af(x)$ is a vertical compression of the graph of $y = f(x)$.

Discuss the graphs of the following functions.

\[
\begin{align*}
y &= \sqrt{x} \\
y &= 3\sqrt{x} \\
y &= \frac{1}{2}\sqrt{x}
\end{align*}
\]
Objective 5
Using Horizontal Stretches and Compressions to Graph Functions

The final transformation to discuss is a horizontal stretch or compression. A function, \(y = f(x) \), will be horizontally stretched or compressed when \(x \) is multiplied by a positive number, \(a \neq 1 \), to obtain the new function, \(y = f(\alpha x) \).

Horizontal Stretches and Compressions of Functions

If \(a \) is a positive real number,

- For \(a > 1 \), the graph of \(y = f(ax) \) is obtained by dividing each \(x \)-coordinate of \(y = f(x) \) by \(a \). The resultant graph is a horizontal compression.

- For \(0 < a < 1 \), the graph of \(y = f(ax) \) is obtained by dividing each \(x \)-coordinate of \(y = f(x) \) by \(a \). The resultant graph is a horizontal stretch.
Use the graph of $f(x) = \sqrt{x}$ to sketch the graphs of $g(x) = \sqrt{4x}$ and $h(x) = \frac{1}{\sqrt{4}x}$.
OBJECTIVE 6 Using Combinations of Transformations to Graph Functions

Use transformations to sketch the graph of \(f(x) = -2(x + 3)^2 - 1 \).
Use the graph of \(y = f(x) \) to sketch each of the following functions.

(a) \(y = -f(2x) \)
(b) \(y = 2f(x - 3) - 1 \)

(c) \(y = \frac{1}{2}f(2 - x) + 3 \)
Summary of Transformation Techniques

Given a function \(y = f(x) \) and a constant \(c > 0 \):

1. The graph of \(y = f(x) + c \) is obtained by shifting the graph of \(y = f(x) \) vertically upward \(c \) units.

2. The graph of \(y = f(x) - c \) is obtained by shifting the graph of \(y = f(x) \) vertically downward \(c \) units.

3. The graph of \(y = f(x + c) \) is obtained by shifting the graph of \(y = f(x) \) horizontally to the left \(c \) units.

4. The graph of \(y = f(x - c) \) is obtained by shifting the graph of \(y = f(x) \) horizontally to the right \(c \) units.

5. The graph of \(y = -f(x) \) is obtained by reflecting the graph of \(y = f(x) \) about the \(x \)-axis.

6. The graph of \(y = f(-x) \) is obtained by reflecting the graph of \(y = f(x) \) about the \(y \)-axis.

7. Suppose \(a \) is a positive real number. The graph of \(y = af(x) \) is obtained by multiplying each \(y \)-coordinate of \(y = f(x) \) by \(a \).
 - If \(a > 1 \), the graph of \(y = af(x) \) is a vertical stretch of the graph of \(y = f(x) \).
 - If \(0 < a < 1 \), the graph of \(y = af(x) \) is a vertical compression of the graph of \(y = f(x) \).

8. Suppose \(a \) is a positive real number. The graph of \(y = f(ax) \) is obtained by dividing each \(x \)-coordinate of \(y = f(x) \) by \(a \).
 - If \(a > 1 \), the graph of \(y = f(ax) \) is a horizontal compression of the graph of \(y = f(x) \).
 - If \(0 < a < 1 \), the graph of \(y = f(ax) \) is a horizontal stretch of the graph of \(y = f(x) \).