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PREFACE

This supplement consists of my lectures of a freshmen-level mathematics class
offered at Arkansas Tech University. The lectures are designed to accompany
the textbook ”Functions Modeling Change:A preperation for Calculus” by
Hughes-Hallett et al.
This book has been written in a way that can be read by students. That is,
the text represents a serious effort to produce exposition that is accessible to
a student at the freshmen or high school levels.
The lectures cover Chapters 1 - 5, 8, and 9 of the book followed by a discus-
sion of trigonometry.
These chapters are well suited for a 4-hour one semester course in Precalcu-
lus.

Marcel B. Finan
April 2003
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1 Functions and Function Notation

Functions play a crucial role in mathematics. A function describes how one
quantity depends on others. More precisely, when we say that a quantity y
is a function of a quantity x we mean a rule that assigns to every possible
value of x exactly one value of y. We call x the input and y the output. In
function notation we write

y = f(x)

Since y depends on x it makes sense to call x the independent variable
and y the dependent variable.
In applications of mathematics, functions are often representations of real
world phenomena. Thus, the functions in this case are referred to as math-
ematical models. If the set of input values is a finite set then the models
are known as discrete models. Otherwise, the models are known as con-
tinuous models. For example, if H represents the temperature after t hours
for a specific day, then H is a discrete model. If A is the area of a circle of
radius r then A is a continuous model.
There are four common ways in which functions are presented and used: By
words, by tables, by graphs, and by formulas.

Example 1.1
The sales tax on an item is 6%. So if p denotes the price of the item and C
the total cost of buying the item then if the item is sold at $ 1 then the cost
is 1 + (0.06)(1) = $1.06 or C(1) = $1.06. If the item is sold at $2 then the
cost of buying the item is 2 + (0.06)(2) = $2.12, or C(2) = $2.12, and so on.
Thus we have a relationship between the quantities C and p such that each
value of p determines exactly one value of C. In this case, we say that C is
a function of p. Describes this function using words, a table, a graph, and a
formula.

Solution.
•Words: To find the total cost, multiply the price of the item by 0.06 and
add the result to the price.
•Table: The chart below gives the total cost of buying an item at price p as
a function of p for 1 ≤ p ≤ 6.

p 1 2 3 4 5 6
C 1.06 2.12 3.18 4.24 5.30 6.36

6



•Graph: The graph of the function C is obtained by plotting the data in
the above table. See Figure 1.
•Formula: The formula that describes the relationship between C and p is
given by

C(p) = 1.06p.

Figure 1

Example 1.2
The income tax T owed in a certain state is a function of the taxable income
I, both measured in dollars. The formula is

T = 0.11I − 500.

(a) Express using functional notation the tax owed on a taxable income of $
13,000, and then calculate that value.
(b) Explain the meaning of T (15, 000) and calculate its value.

Solution.
(a) The functional notation is given by T (13, 000) and its value is

T (13, 000) = 0.11(13, 000)− 500 = $930.

(b) T (15, 000) is the tax owed on a taxable income of $15,000. Its value is

T (15, 000) = 0.11(15, 000)− 500 = $1, 150.
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Emphasis of the Four Representations
A formula has the advantage of being both compact and precise. However,
not much insight can be gained from a formula as from a table or a graph.
A graph provides an overall view of a function and thus makes it easy to
deduce important properties. Tables often clearly show trends that are not
easily discerned from formulas, and in many cases tables of values are much
easier to obtain than a formula.

Remark 1.1
To evaluate a function given by a graph, locate the point of interest on the
horizontal axis, move vertically to the graph, and then move horizontally to
the vertical axis. The function value is the location on the vertical axis.

Now, most of the functions that we will encounter in this course have for-
mulas. For example, the area A of a circle is a function of its radius r. In
function notation, we write A(r) = πr2. However, there are functions that
can not be represented by a formula. For example, the value of Dow Jones
Industrial Average at the close of each business day. In this case the value
depends on the date, but there is no known formula. Functions of this nature,
are mostly represented by either a graph or a table of numerical data.

Example 1.3
The table below shows the daily low temperature for a one-week period in
New York City during July.
(a) What was the low temperature on July 19?
(b) When was the low temperature 73◦F?
(c) Is the daily low temperature a function of the date?Explain.
(d) Can you express T as a formula?

D 17 18 19 20 21 22 23
T 73 77 69 73 75 75 70

Solution.
(a) The low temperature on July 19 was 69◦F.
(b) On July 17 and July 20 the low temperature was 73◦F.
(c) T is a function of D since each value of D determines exactly one value
of T.
(d) T can not be expressed by an exact formula.
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So far, we have introduced rules between two quantities that define func-
tions. Unfortunately, it is possible for two quantities to be related and yet
for neither quantity to be a function of the other.

Example 1.4
Let x and y be two quantities related by the equation

x2 + y2 = 4.

(a) Is x a function of y? Explain.
(b) Is y a function of x? Explain.

Solution.
(a) For y = 0 we have two values of x, namely, x = −2 and x = 2. So x is
not a function of y.
(b) For x = 0 we have two values of y, namely, y = −2 and y = 2. So y is
not a function of x.

Next, suppose that the graph of a relationship between two quantities x
and y is given. To say that y is a function of x means that for each value of
x there is exactly one value of y. Graphically, this means that each vertical
line must intersect the graph at most once. Hence, to determine if a graph
represents a function one uses the following test:

Vertical Line Test: A graph is a function if and only if every vertical
line crosses the graph at most once.

According to the vertical line test and the definition of a function, if a ver-
tical line cuts the graph more than once, the graph could not be the graph
of a function since we have multiple y values for the same x-value and this
violates the definition of a function.

Example 1.5
Which of the graphs (a), (b), (c) in Figure 2 represent y as a function of x?

9



Figure 2

Solution.
By the vertical line test, (b) represents a function whereas (a) and (c) fail to
represent functions since one can find a vertical line that intersects the graph
more than once.

Recommended Problems (pp. 6 - 9): 1, 3, 4, 5, 6, 7, 10, 12,
13, 14, 17, 20, 26, 28.
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2 The Rate of Change

Functions given by tables of values have their limitations in that nearly always
leave gaps. One way to fill these gaps is by using the average rate of
change. For example, Table 1 below gives the population of the United
States between the years 1950 - 1990.

d(year) 1950 1960 1970 1980 1990
N(in millions) 151.87 179.98 203.98 227.23 249.40

Table 1

This table does not give the population in 1972. One way to estimate
N(1972), is to find the average yearly rate of change of N from 1970 to
1980 given by

227.23− 203.98

10
= 2.325 million people per year.

Then,
N(1972) = N(1970) + 2(2.325) = 208.63 million.

Average rates of change can be calculated not only for functions given by
tables but also for functions given by formulas. The average rate of change
of a function y = f(x) from x = a to x = b is given by the difference
quotient

∆y

∆x
=

Change in function value

Change in x value
=

f(b)− f(a)

b− a
.

Geometrically, this quantity represents the slope of the secant line going
through the points (a, f(a)) and (b, f(b)) on the graph of f(x). See Figure 3.
The average rate of change of a function on an interval tells us how much
the function changes, on average, per unit change of x within that interval.
On some part of the interval, f may be changing rapidly, while on other
parts f may be changing slowly. The average rate of change evens out these
variations.
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Figure 3

Example 2.1
Find the average value of the function f(x) = x2 from x = 3 to x = 5.

Solution.
The average rate of change is

∆y

∆x
=

f(5)− f(3)

5− 3
=

25− 9

2
= 8.

Example 2.2 (Average Speed)
During a typical trip to school, your car will undergo a series of changes in its
speed. If you were to inspect the speedometer readings at regular intervals,
you would notice that it changes often. The speedometer of a car reveals
information about the instantaneous speed of your car; that is, it shows your
speed at a particular instant in time. The instantaneous speed of an object
is not to be confused with the average speed. Average speed is a measure of
the distance traveled in a given period of time. That is,

Average Speed =
Distance traveled

Time elapsed
.

If the trip to school takes 0.2 hours (i.e. 12 minutes) and the distance traveled
is 5 miles then what is the average speed of your car?

Solution.
The average velocity is given by
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Ave. Speed =
5 miles

0.2 hours
= 25miles/hour.

This says that on the average, your car was moving with a speed of 25 miles
per hour. During your trip, there may have been times that you were stopped
and other times that your speedometer was reading 50 miles per hour; yet
on the average you were moving with a speed of 25 miles per hour.

Average Rate of Change and Increasing/Decreasing Functions
Now, we would like to use the concept of the average rate of change to test
whether a function is increasing or decreasing on a specific interval. First,
we introduce the following definition: We say that a function is increasing
if its graph climbs as x moves from left to right. That is, the function values
increase as x increases. It is said to be decreasing if its graph falls as x
moves from left to right. This means that the function values decrease as x
increases.

As an application of the average rate of change, we can use such quantity
to decide whether a function is increasing or decreasing. If a function f is
increasing on an interval I then by taking any two points in the interval I,
say a < b, we see that f(a) < f(b) and in this case

f(b)− f(a)

b− a
> 0.

Going backward with this argument we see that if the average rate of change
is positive in an interval then the function is increasing in that interval.
Similarly, if the average rate of change is negative in an interval I then the
function is decreasing there.

Example 2.3
The table below gives values of a function w = f(t). Is this function increasing
or decreasing?

t 0 4 8 12 16 20 24
w 100 58 32 24 20 18 17

Solution.
The average of w over the interval [0, 4] is

w(4)− w(0)

4− 0
=

58− 100

4− 0
= −10.5
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The average rate of change of the remaining intervals are given in the chart
below

time interval [0,4] [4,8] [8,12] [12,16] [16, 20] [20,24]
Average -10.5 -6.5 -2 -1 -0.5 -0.25

Since the average rate of change is always negative on [0, 24] then the func-
tion is decreasing on that interval. Of Course, you can see from the table
that the function is decreasing since the output values are decreasing as x
increases. The purpose of this problem is to show you how the average rate
of change is used to determine whether a function is increasing or decreasing.

Some functions can be increasing on some intervals and decreasing on other
intervals. These intervals can often be identified from the graph.

Example 2.4
Determine the intervals where the function is increasing and decreasing.

Figure 4

Solution.
The function is increasing on (−∞,−1) ∪ (1,∞) and decreasing on the in-
terval (−1, 1).

Recommended Problems (pp. 14 - 16): 1, 2, 3, 4, 5, 8, 9, 10,
11, 13, 14, 15.
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3 Linear Functions

In the previous section we introduced the average rate of change of a function.
In general, the average rate of change of a function is different on different
intervals. For example, consider the function f(x) = x2. The average rate of
change of f(x) on the interval [0, 1] is

f(1)− f(0)

1− 0
= 1.

The average rate of change of f(x) on [1, 2] is

f(2)− f(1)

2− 1
= 3.

A linear function is a function with the property that the average rate of
change on any interval is the same. We say that y is changing at a constant
rate with respect to x. Thus, y changes by the some amount for every unit
change in x. Geometrically, the graph is a straight line ( and thus the term
linear).

Example 3.1
Suppose you pay $ 192 to rent a booth for selling necklaces at an art fair.
The necklaces sell for $ 32. Explain why the function that shows your net
income (revenue from sales minus rental fees) as a function of the number of
necklaces sold is a linear function.

Solution.
Let P (n) denote the net income from selling n necklaces. Each time a neck-
lace is sold, that is, each time n is increased by 1, the net income P is
increased by the same constant, $32. Thus the rate of change for P is always
the same, and hence P is a linear function.

Testing Data for Linearity
Next, we will consider the question of recognizing a linear function given by
a table.
Let f be a linear function given by a table. Then the rate of change is the
same for all pairs of points in the table. In particular, when the x values are
evenly spaced the change in y is constant.

15



Example 3.2
Which of the following tables could represent a linear function?

x f(x)
0 10
5 20
10 30
15 40

x g(x)
0 20
10 40
20 50
30 55

Solution.
Since equal increments in x yield equal increments in y then f(x) is a linear
function. On the contrary, since 40−20

10−0
6= 50−40

20−10
then g(x) is not linear.

It is possible to have a table of linear data in which neither the x-values
nor the y-values go up by equal amounts. However, the rate of change of any
pairs of points in the table is constant.

Example 3.3
The following table contains linear data, but some data points are missing.
Find the missing data points.

x 2 5 8
y 5 17 23 29

Solution.
Consider the points (2, 5), (5, a), (b, 17), (8, 23), and (c, 29). Since the data is
linear then we must have a−5

5−2
= 23−5

8−2
. That is, a−5

3
= 3. Cross multiplying

to obtain a − 5 = 9 or a = 14. It follows that when x in increased by 1, y
increases by 3. Hence, b = 6 and c = 10.

Now, suppose that f(x) is a linear function of x. Then f changes at a constant
rate m. That is, if we pick two points (0, f(0)) and (x, f(x)) then

m =
f(x)− f(0)

x− 0
.

That is, f(x) = mx + f(0). This is the function notation of the linear
function f(x). Another notation is the equation notation, y = mx + f(0).
We will denote the number f(0) by b. In this case, the linear function will be
written as f(x) = mx+b or y = mx+b. Since b = f(0) then the point (0, b) is
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the point where the line crosses the vertical line. We call it the y-intercept.
So the y-intercept is the output corresponding to the input x = 0, sometimes
known as the initial value of y.
If we pick any two points (x1, y1) and (x2, y2) on the graph of f(x) = mx + b
then we must have

m =
y2 − y1

x2 − x1

.

We call m the slope of the line.

Example 3.4
The value of a new computer equipment is $20,000 and the value drops at a
constant rate so that it is worth $ 0 after five years. Let V (t) be the value
of the computer equipment t years after the equipment is purchased.

(a) Find the slope m and the y-intercept b.
(b) Find a formula for V (t).

Solution.
(a) Since V (0) = 20, 000 and V (5) = 0 then the slope of V (t) is

m =
0− 20, 000

5− 0
= −4, 000

and the vertical intercept is V (0) = 20, 000.
(b) A formula of V (t) is V (t) = −4, 000t + 20, 000. In financial terms, the
function V (t) is known as the straight-line depreciation function.

Recommended Problems (pp. 23 - 5): 1, 3, 5, 7, 9, 11, 12, 13,
18, 20, 21, 28.

17



4 Formulas for Linear Functions

In this section we will discuss ways for finding the formulas for linear func-
tions. Recall that f is linear if and only if f(x) can be written in the form
f(x) = mx + b. So the problem of finding the formula of f is equivalent to
finding the slope m and the vertical intercept b.
Suppose that we know two points on the graph of f(x), say (x1, f(x1)) and
(x2, f(x2)). Since the slope m is just the average rate of change of f(x) on
the interval [x1, x2] then

m =
f(x2)− f(x1)

x2 − x1

.

To find b, we use one of the points in the formula of f(x); say we use the first
point. Then f(x1) = mx1 + b. Solving for b we find

b = f(x1)−mx1.

Example 4.1
Let’s find the formula of a linear function given by a table of data values.
The table below gives data for a linear function. Find the formula.

x 1.2 1.3 1.4 1.5
f(x) 0.736 0.614 0.492 0.37

Solution.
We use the first two points to find the value of m :

m =
f(1.3)− f(1.2)

1.3− 1.2
=

0.614− 0.736

1.3− 1.2
= −1.22.

To find b we can use the first point to obtain

0.736 = −1.22(1.2) + b.

Solving for b we find b = 2.2. Thus,

f(x) = −1.22x + 2.2

18



Example 4.2
Suppose that the graph of a linear function is given and two points on the
graph are known. For example, Figure 5 is the graph of a linear function
going through the points (100, 1) and (160, 6). Find the formula.

Figure 5

Solution.
The slope m is found as follows:

m =
6− 1

160− 100
= 0.083.

To find b we use the first point to obtain 1 = 0.083(100)+ b. Solving for b we
find b = −7.3. So the formula for the line is f(x) = −7.3 + 0.083x.

Example 4.3
Sometimes a linear function is given by a verbal description as in the following
problem: In a college meal plan you pay a membership fee; then all your
meals are at a fixed price per meal. If 30 meals cost $152.50 and 60 meals
cost $250 then find the formula for the cost C of a meal plan in terms of the
number of meals n.

Solution.
We find m first:

m =
250− 152.50

60− 30
= $3.25/meal.

To find b or the membership fee we use the point (30, 152.50) in the formula
C = mn + b to obtain 152.50 = 3.25(30) + b. Solving for b we find b = $55.
Thus, C = 3.25n + 55.
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So far we have represented a linear function by the expression y = mx + b.
This is known as the slope-intercept form of the equation of a line. Now,
if the slope m of a line is known and one point (x0, y0) is given then by taking
any point (x, y) on the line and using the definition of m we find

y − y0

x− x0

= m.

Cross multiply to obtain: y − y0 = m(x− x0). This is known as the point-
slope form of a line.

Example 4.4
Find the equation of the line passing through the point (100, 1) and with
slope m = 0.01.

Solution.
Using the above formula we have: y − 1 = 0.01(x− 100) or y = 0.01x.

Note that the form y = mx + b can be rewritten in the form

Ax + By + C = 0. (1)

where A = m,B = −1, and C = b. The form (1) is known as the standard
form of a linear function.

Example 4.5
Rewrite in standard form: 3x + 2y + 40 = x− y.

Solution.
Subtracting x− y from both sides to obtain 2x + 3y + 40 = 0.

Recommended Problems (pp. 30 - 3): 3, 5, 6, 10, 11, 12, 13,
14, 17, 19, 21, 22, 23, 26, 27, 30, 31, 32,34.
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5 Geometric Properties of Linear Functions

In this section we discuss four geometric related questions of linear functions.
The first question considers the significance of the parameters m and b in the
equation f(x) = mx + b.
We have seen that the graph of a linear function f(x) = mx + b is a straight
line. But a line can be horizontal, vertical, rising to the right or falling to
the right. The slope is the parameter that provides information about the
steepness of a straight line.

• If m = 0 then f(x) = b is a constant function whose graph is a hori-
zontal line at (0, b).
• For a vertical line, the slope is undefined since any two points on the line
have the same x-value and this leads to a division by zero in the formula for
the slope. The equation of a vertical line has the form x = a.
• Suppose that the line is neither horizontal nor vertical. If m > 0 then by
Section 3, f(x) is increasing. That is, the line is rising to the right.
• If m < 0 then f(x) is decreasing. That is, the line is falling to the right.
• The slope, m, tells us how fast the line is climbing or falling. The larger
the value of m the more the line rises and the smaller the value of m the
more the line falls.
The parameter b tells us where the line crosses the vertical axis.

Example 5.1
Arrange the slopes of the lines in the figure from largest to smallest.

Figure 6
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Solution.
According to Figure 6 we have

mG > mF > mD > mA > mE > mB > mC .

The second question of this section is the question of finding the point of
intersection of two lines. The point of intersection of two lines is basically
the solution to a system of two linear equations. This system can be solved
by the method of substitution which we describe in the next example.

Example 5.2
Find the point of intersection of the two lines y + x

2
= 3 and 2(x+y) = 1−y.

Solution.
Solving the first equation for y we obtain y = 3 − x

2
. Substituting this ex-

pression in the second equation to obtain

2
(
x +

(
3− x

2

))
= 1−

(
3− x

2

)
.

Thus,
2x + 6− x = −2 + x

2

x + 6 = −2 + x
2

2x + 12 = −4 + x
x = −16.

Using this value of x in the first equation to obtain y = 3− −16
2

= 11.

Our third question in this section is the question of determining when two
lines are parallel,i.e. they have no points in common. As we noted earlier in
this section, the slope of a line determines the direction in which it points.
Thus, if two lines have the same slope then the two lines are either parallel
(if they have different vertical intercepts) or coincident ( if they have same
y-intercept). Also, note that any two vertical lines are parallel even though
their slopes are undefined.

Example 5.3
Line l in Figure 7 is parallel to the line y = 2x + 1. Find the coordinates of
the point P.
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Figure 7

Solution.
Since the two lines are parallel then the slope of the line l is 2. Since the
vertical intercept of l is −2 then the equation of l is y = 2x − 2. The point
P is the x-intercept of the line l, i.e., P (x, 0). To find x, we set 2x − 2 = 0.
Solving for x we find x = 1. Thus, P (1, 0).

Example 5.4
Find the equation of the line l passing through the point (6, 5) and parallel
to the line y = 3− 2

3
x.

Solution.
The slope of l is m = −2

3
since the two lines are parallel. Thus, the equation

of l is y = −2
3
x + b. To find the value of b, we use the given point. Replacing

y by 5 and x by 6 to obtain, 5 = −2
3
(6) + b. Solving for b we find b = 9.

Hence, y = 9− 2
3
x.

The final question of this section is the question of determining when two
lines are perpendicular.
It is clear that if one line is horizontal and the second is vertical then the
two lines are perpendicular. So we assume that neither of the two lines is
horizontal or vertical. Hence, their slopes are defined and nonzero. Let’s
see how the slopes of lines that are perpendicular compare. Call the two
lines l1 and l2 and let A be the point where they intersect. From A take
a horizontal segment of length 1 and from the rightendpoint C of that seg-
ment construct a vertical line that intersect l1 at B and l2 at D. See Figure 8.

23



Figure 8

It follows from this construction that if m1 is the slope of l1 then

m1 =
|CB|
|CA|

= |CB|.

Similarly, the slope of l2 is

m2 = −|CD|
|CA|

= −|CD|.

Since ∆ABD is a right triangle at A then ∠DAC = 90◦−∠BAC. Similarly,
∠ABC = 90◦ − ∠BAC. Thus, ∠DAC = ∠ABC. A similar argument shows
that ∠CDA = ∠CAB. Hence, the triangles ∆ACB and ∆DCA are similar.
As a consequence of this similarity we can write

|CB|
|CA|

=
|CA|
|CD|

or

m1 = − 1

m2

.

Thus, if two lines are perpendicular, then the slope of one is the negative
reciprocal of the slope of the other.

Example 5.5
Find the equation of the line l2 in Figure 9.
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Figure 9

Solution.
The slope of l1 is m1 = −2

3
. Since the two lines are perpendicular then the

slope of l2 is m2 = 3
2
. The horizontal intercept of l2 is 0. Hence, the equation

of the line l2 is y = 3
2
x.

Recommended Problems (pp. 39 - 42): 1, 3, 4, 5, 6, 7, 9, 10,
11, 13, 15, 19, 21, 22, 23, 25, 26, 28.
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6 Linear Regression

In general, data obtained from real life events, do not match perfectly simple
functions. Very often, scientists, engineers, mathematicians and business
experts can model the data obtained from their studies, with simple linear
functions. Even if the function does not reproduce the data exactly, it is
possible to use this modeling for further analysis and predictions. This makes
the linear modeling extremely valuable.
Let’s try to fit a set of data points from a crankcase motor oil producing
company. They want to study the correlation between the number of minutes
of TV advertisement per day for their product, and the total number of oil
cases sold per month for each of the different advertising campaigns. The
information is given in the following table :

x:TV ads(min/day) 1 2 3 3.5 5.5 6.2
y:units sold(in millions) 1 2.5 3.7 4.2 7 8.7

Using TI-83 we obtain the scatter plot of this given data (See Figure 10.)
The steps of getting the graph are discussed later in this section.

Figure 10

Figure 11 below shows the plot and the optimum linear function that de-
scribes the data. That line is called the best fitting line and has been
derived with a very commonly used statistical technique called the method
of least squares. The line shown was chosen to minimize the sum of the
squares of the vertical distances between the data points and the line.
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Figure 11

The measure of how well this linear function fits the experimental points, is
called regression analysis.
Graphic calculators, such as the TI-83, have built in programs which allow
us to find the slope and the y intercept of the best fitting line to a set of data
points. That is, the equation of the best linear fit. The calculators also give
as a result of their procedure, a very important value called the correlation
coefficient. This value is in general represented by the letter r and it is a
measure of how well the best fitting line fits the data points. Its value varies
from - 1 to 1. The TI-83 prompts the correlation coefficient r as a result of
the linear regression. If it is negative, it is telling us that the line obtained
has negative slope. Positive values of r indicate a positive slope in the best
fitting line. If r is close to 0 then the data may be completely scattered, or
there may be a non-linear relationship between the variables.
The square value of the correlation coefficient r2 is generally used to deter-
mine if the best fitting line can be used as a model for the data. For that
reason, r2 is called the coefficient of determination. In most cases, a
function is accepted as the model of the data, if this coefficient of determina-
tion is greater than 0.5. A coefficient of determination tells us which percent
of the variation on the real data is explained by the best fitting line. An
r2 = 0.92 means that 92% of the variation on the data points is described by
the best fitting line. The closer the coefficient of determination is to 1 the
better the fit.
The following are the steps required to find the best linear fit using a TI-83
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graphing calculator.

1. Enter the data into two lists L1 and L2.

a. Push the STAT key and select the Edit option.
b. Up arrow to move to the Use the top of the list L1.
c. Clear the list by hitting CLEAR ENTER.
d. Type in the x values of the data. Type in the number and hit enter.
e. Move to the list L2, clear it and enter the y data in this list.

2. Graph the data as a scatterplot.

a. Hit 2nd STAT PLOT. (upper left)
b. Move to plot 1 and hit enter.
c. Turn the plot on by hitting enter on the ON option.
d. Move to the TYPE option and select the ”dot” graph type. Hit enter to
select it.
e. Move to the Xlist and enter in 2nd L1.
f. Move to the Ylist and enter in 2nd L2.
g. Move to Mark and select the small box option.
h. Hit ZOOM and select ZOOMSTAT.

3. Fit a line to the data.

a. Turn on the option to display the correlation coefficient, r. This is ac-
complished by hitting 2nd Catalog (lower left). Scroll down the list until you
find Diagnostic On, hit enter for this option and hit enter a second time to
activate this option. The correlation coefficient will be displayed when you
do the linear regression.
b. Hit STAT, CALC, and select option 8 LinREg.
c. Enter ”2nd 1, 2nd 2”, with a comma in between.
d. Press ENTER. The equation for a line through the data is shown. The
slope is ”b”, the intercept is ”a”, the correlation coefficient is ”r”, and the
coefficient of determination is ”r2”.

4. Graph the best fit line with the data.

a. Press Y=, then press VARS to open the Variables window.
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b. Arrow down to select 5: Statistics... then press ENTER.
c. Right arrow over to select EQ and press ENTER. This places the formula
for the regression equation into the Y= window.
d. Press GRAPH to graph the equation. Your window should now show the
graph of the regression equation as well as each of the data points.

Recommended Problems (pp. 45 - 47): 1, 3, 5, 7.
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7 Finding Input/Output of a Function

In this section we discuss ways for finding the input or the output of a func-
tion defined by a formula, table, or a graph.

Finding the Input and the Output Values from a Formula
By evaluating a function, we mean figuring out the output value correspond-
ing to a given input value. Thus, notation like f(10) = 4 means that the
function’s output, corresponding to the input 10, is equal to 4.
If the function is given by a formula, say of the form y = f(x), then to find
the output value corresponding to an input value a we replace the letter x
in the formula of f by the input a and then perform the necessary algebraic
operations to find the output value.

Example 7.1
Let g(x) = x2+1

5+x
. Evaluate the following expressions:

(a) g(2) (b) g(a) (c) g(a)− 2 (d) g(a)− g(2).

Solution.
(a) g(2) = 22+1

5+2
= 5

7

(b) g(a) = a2+1
5+a

(c) g(a)− 2 = a2+1
5+a

− 25+a
5+a

= a2−2a−9
5+a

(d) g(a)− g(2) = a2+1
5+a

− 5
7

= 7(a2+1)
7(5+a)

− 5
7

5+a
5+a

= 7a2−5a−18
7a+35

.

Now, finding the input value of a given output is equivalent to solving an
algebraic equation.

Example 7.2
Consider the function y = 1√

x−4
.

(a) Find an x-value that results in y = 2.
(b) Is there an x-value that results in y = −2? Explain.

Solution.
(a) Letting y = 2 to obtain 1√

x−4
= 2 or

√
x− 4 = 0.5. Squaring both sides

to obtain x− 4 = 0.25 and adding 4 to otbain x = 4.25.
(b) Since y = 1√

x−4
then the right-hand side is always positive so that y > 0.

The equation y = −2 has no solutions.
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Finding Output and Input Values from Tables
Next, suppose that a function is given by a table of numeric data. For ex-
ample, the table below shows the daily low temperature T for a one-week
period in New York City during July.

D 17 18 19 20 21 22 23
T 73 77 69 73 75 75 70

Then T (18) = 77◦F. This means, that the low temperature on July 18, was
77◦F.

Remark 7.1
Note that, from the above table one can find the value of an input value
given an output value listed in the table. For example, there are two values
of D such that T (D) = 75, namely, D = 21 and D = 22.

Finding Output and Input Values from Graphs
Finally, to evaluate the output(resp. input) value of a function from its graph,
we locate the input (resp. output) value on the horizontal (resp. vertical)
line and then we draw a line perpendicular to the x-axis (resp. y-axis) at the
input (resp. output) value. This line will cross the graph of the function at
a point whose y-value (resp. x-value) is the function’s output (resp. input)
value.

Example 7.3
(a) Using Figure 12, evaluate f(2.5).
(b) For what value of x, f(x) = 2?

Figure 12
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Solution.
(a) f(2.5) ≈ −1.5 (b) f(−2) = 2.

Recommended Problems (pp. 64 - 66): 5, 6, 9, 10, 11, 13, 16,
17, 18, 19, 20, 23, 25.
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8 Domain and Range of a Function

If we try to find the possible input values that can be used in the function
y =

√
x− 2 we see that we must restrict x to the interval [2,∞), that is

x ≥ 2. Similarly, the function y = 1
x2 takes only certain values for the out-

put, namely, y > 0. Thus, a function is often defined for certain values of x
and the dependent variable often takes certain values.
The above discussion leads to the following definitions: By the domain of a
function we mean all possible input values that yield an input value. Graph-
ically, the domain is part of the horizontal axis. The range of a function is
the collection of all possible output values. The range is part of the vertical
axis.
The domain and range of a function can be found either algebraically or
graphically.

Finding the Domain and the Range Algebraically
When finding the domain of a function, ask yourself what values can’t be
used. Your domain is everything else. There are simple basic rules to con-
sider:

• The domain of all polynomial functions, i.e. functions of the form f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x + a0, where n is nonnegative integer, is the Real

numbers R.
• Square root functions can not contain a negative underneath the radical.
Set the expression under the radical greater than or equal to zero and solve
for the variable. This will be your domain.
• Fractional functions, i.e. ratios of two functions, determine for which input
values the numerator and denominator are not defined and the domain is
everything else. For example, make sure not to divide by zero!

Example 8.1
Find, algebraically, the domain and the range of each of the following func-
tions. Write your answers in interval notation:

(a) y = πx2 (b) y = 1√
x−4

(c) y = 2 + 1
x
.

Solution.
(a) Since the function is a polynomial then its domain is the interval (−∞,∞).
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To find the range, solve the given equation for x in terms of y obtaining
x = ±

√
y
π
. Thus, x exists for y ≥ 0. So the range is the interval [0,∞).

(b) The domain of y = 1√
x−4

consists of all numbers x such that x− 4 > 0 or

x > 4. That is, the interval (4,∞). To find the range, we solve for x in terms
of y > 0 obtaining x = 4 + 1

y2 . x exists for all y > 0. Thus, the range is the

interval (0,∞).

(c) The domain of y = 2 + 1
x

is the interval (−∞, 0) ∪ (0,∞). To find
the range, write x in terms of y to obtain x = 1

y−2
. The values of y for

which this later formula is defined is the range of the given function, that is,
(−∞, 2) ∪ (2,∞).

Remark 8.1
Note that the domain of the function y = πx2 of the previous problem consists
of all real numbers. If this function is used to model a real-world situation,
that is, if the x stands for the radius of a circle and y is the corresponding
area then the domain of y in this case consists of all numbers x ≥ 0. In
general, for a word problem the domain is the set of all x values such that
the problem makes sense.

Finding the Domain and the Range Graphically
We often use a graphing calculator to find the domain and range of functions.
In general, the domain will be the set of all x values that has corresponding
points on the graph. We note that if there is an asymptote (shown as a
vertical line on the TI series) we do not include that x value in the domain.
To find the range, we seek the top and bottom of the graph. The range will
be all points from the top to the bottom (minus the breaks in the graph).

Example 8.2
Use a graphing calculator to find the domain and the range of each of the
following functions. Write your answers in interval notation:

(a) y = πx2 (b) y = 1√
x−4

(c) y = 2 + 1
x
.

Solution.
(a) The graph of y = πx2 is given in Figure 13.
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Figure 13

The domain is the set (−∞,∞) and the range is [0,∞).
(b) The graph of y = 1√

x−4
is given in Figure 14

Figure 14

The domain is the set (4,∞) and the range is (0,∞).
(c) The graph of y = 2 + 1

x
is given in Figure 15.

Figure 15

35



The domain is the set (−∞, 0) ∪ (0,∞) and the range is (−∞, 2) ∪ (2,∞).

Recommended Problems (pp. 70 - 1): 2, 4, 5, 8, 11, 13, 15, 20, 22,
27, 28, 32.
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9 Piecewise Defined Functions

Piecewise-defined functions are functions defined by different formulas
for different intervals of the independent variable.

Example 9.1 (The Absolute Value Function)
(a) Show that the function f(x) = |x| is a piecewise defined function.
(b) Graph f(x).

Solution.
(a) The absolute value function |x| is a piecewise defined function since

|x| =
{

x for x ≥ 0
−x for x < 0.

(b) The graph is given in Figure 16.

Figure 16

Example 9.2 (The Ceiling Function)
The Ceiling function f(x) = dxe is the piecewise defined function given by

dxe = smallest integer greater than x.

Sketch the graph of f(x) on the interval [−3, 3].

Solution.
The graph is given in Figure 17. An open circle represents a point which is
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not included.

Figure 17

Example 9.3 (The Floor Function)
The Floor function f(x) = bxc is the piecewise defined function given by

bxc = smallest integer less than or equal to x.

Sketch the graph of f(x) on the interval [−3, 3].

Solution.
The graph is given in Figure 18.

Figure 18
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Example 9.4
Sketch the graph of the piecewise defined function given by

f(x) =


x + 4 for x ≤ −2

2 for −2 < x < 2
4− x for x ≥ 2.

Solution.
The following table gives values of f(x).

x -3 -2 -1 0 1 2 3
f(x) 1 2 2 2 2 2 1

The graph of the function is given in Figure 19.

Figure 19

We conclude this section with the following real-world situation:

Example 9.5
The charge for a taxi ride is $1.50 for the first 1

5
of a mile, and $0.25 for each

additional 1
5

of a mile (rounded up to the nearest 1
5

mile).

(a) Sketch a graph of the cost function C as a function of the distance trav-
eled x, assuming that 0 ≤ x ≤ 1.
(b) Find a formula for C in terms of x on the interval [0, 1].
(c) What is the cost for a 4

5
−mile ride?

Solution.
(a) The graph is given in Figure 20.
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Figure 20

(b) A formula of C(x) is

C(x) =


1.50 if 0 ≤ x ≤ 1

5

1.75 if 1
5

< x ≤ 2
5

2.00 if 2
5

< x ≤ 3
5

2.25 if 3
5

< x ≤ 4
5

2.50 if 4
5

< x ≤ 1.

(c) The cost for a 4
5

ride is C(4
5
) = $2.25.

Recommended Problems (pp. 75 - 76): 1, 3, 4, 5, 7, 8, 11, 12,
14, 15.
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10 Inverse Functions: A First Look

We have seen that when every vertical line crosses a curve at most once then
the curve is the graph of a function f. We called this procedure the vertical
line test. Now, if every horizontal line crosses the graph at most once then
the function can be used to build a new function, called the inverse function
and is denoted by f−1, such that if f takes an input x to an output y then
f−1 takes y as its input and x as its output. That is

f(x) = y if and only if f−1(y) = x.

When a function has an inverse then we say that the function is invertible.

Remark 10.1
The test used to identify invertible functions which we discussed above is
referred to as the horizontal line test.

Example 10.1
Use a graphing calculator to decide whether or not the function is invertible,
that is, has an inverse function:
(a) f(x) = x3 + 7 (b) g(x) = |x|.

Solution.
(a) Using a graphing calculator, the graph of f(x) is given in Figure 21.

We see that every horizontal line crosses the graph once so the function
is invertible.
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(b) The graph of g(x) = |x| (See Figure 16, Section 9) shows that there are
horizontal lines that cross the graph twice so that g is not invertible.

Remark 10.2
It is important not to confuse between f−1(x) and (f(x))−1. The later is just
the reciprocal of f(x), that is, (f(x))−1 = 1

f(x)
whereas the former is how the

inverse function is represented.

Domain and Range of an Inverse Function
Figure 22 shows the relationship between f and f−1.

Figure 22

This figure shows that we get the inverse of a function by simply reversing
the direction of the arrows. That is, the outputs of f are the inputs of f−1

and the outputs of f−1 are the inputs of f. It follows that

Domain of f−1 = Range of f and Range of f−1 = Domain of f.

Example 10.2
Consider the function f(x) =

√
x− 4.

(a) Find the domain and the range of f(x).
(b) Use the horizontal line test to show that f(x) has an inverse.
(c) What are the domain and range of f−1?

Solution.
(a) The function f(x) is defined for all x ≥ 4. The range is the interval [0,∞).
(b) Graphing f(x) we see that f(x) satisfies the horizontal line test and so
f has an inverse. See Figure 23.
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(c) The domain of f−1 is the range of f, i.e. the interval [0,∞). The range
of f−1 is the domain of f , that is, the interval [4,∞).

Figure 23

Finding a Formula for the Inverse Function
How do you find the formula for f−1 from the formula of f? The procedure
consists of the following steps:

1. Replace f(x) with y.
2. Interchange the letters x and y.
3. Solve for y in terms of x.
4. Replace y with f−1(x).

Example 10.3
Find the formula for the inverse function of f(x) = x3 + 7.

Solution.
As seen in Example 10.1, f(x) is invertible. We find its inverse as follows:

1. Replace f(x) with y to obtain y = x3 + 7.
2. Interchange x and y to obtain x = y3 + 7.
3. Solve for y to obtain y3 = x− 7 or y = 3

√
x− 7.

4. Replace y with f−1(x) to obtain f−1(x) = 3
√

x− 7.

Remark 10.3
More discussion of inverse functions will be covered in Section 27.

Recommended Problems (pp. 79 - 80): 1, 2, 3, 4, 6, 7, 11, 13, 14,
15, 17, 22, 23.
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11 Rate of Change and Concavity

We have seen that when the rate of change of a function is constant then its
graph is a straight line. However, not all graphs are straight lines; they may
bend up or down as shown in the following two examples.

Example 11.1
Consider the following two graphs in Figure 24.

Figure 24

(a) What do the graphs above have in common?
(b) How are they different? Specifically, look at the rate of change of each.

Solution.
(a) Both graphs represent increasing functions.
(b) The rate of change of f(x) is more and more positive so the graph bends
up whereas the rate of change of g(x) is less and less positive and so it bends
down.

The following example deals with version of the previous example for de-
creasing functions.

Example 11.2
Consider the following two graphs given in Figure 25.
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Figure 25

(a) What do the graphs above have in common?
(b) How are they different? Specifically, look at the rate of change of each.

Solution.
(a) Both functions are decreasing.
(b) The rate of change of f(x) is more and more negative so the graph bends
down, whereas the rate of change of g(x) is less and less negative so the graph
bends up.

Conclusions:
• When the rate of change of a function is increasing then the function is
concave up. That is, the graph bends upward.
• When the rate of change of a function is decreasing then the function is
concave down. That is, the graph bends downward.

The following example discusses the concavity of a function given by a table.

Example 11.3
Given below is the table for the function H(x). Calculate the rate of change
for successive pairs of points. Decide whether you expect the graph of H(x)
to concave up or concave down?

x 12 15 18 21
H(x) 21.40 21.53 21.75 22.02

Solution.

H(15)−H(12)
15−12

= 21.53−21.40
3

≈ 0.043
H(18)−H(15)

18−15
= 21.75−21.53

3
≈ 0.073

H(21)−H(18)
21−18

= 22.02−21.75
3

≈ 0.09
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Since the rate of change of H(x) is increasing then the function is concave
up.

Remark 11.1
Since the graph of a linear function is a straight line, that is its rate of change
is constant, then it is neither concave up nor concave down.

Recommended Problems (pp. 83 -4): 1, 3, 5, 6, 7, 9, 10, 11, 13,
15, 17.
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12 Quadratic Functions: Zeros and Concav-

ity

You recall that a linear function is a function that involves a first power of
x. A function of the form

f(x) = ax2 + bx + c, a 6= 0

is called a quadratic function. The word ”quadratus” is the latin word for
a square.
Quadratic functions are useful in many applications in mathematics when a
linear function is not sufficient. For example, the motion of an object thrown
either upward or downward is modeled by a quadratic function.
The graph of a quadratic function is known as a parabola and has a dis-
tinctive shape that occurs in nature. Geometrical discussion of quadratic
functions will be covered in Section 25.

Finding the Zeros of a Quadratic Function
In many applications one is interested in finding the zeros or the x-intercepts
of a quadratic function. This means we wish to find all possible values of x
for which

ax2 + bx + c = 0.

For example, if v(t) = t2 − 4t + 4 is the velocity of an object in meters per
second then one may be interested in finding the time when the object is not
moving.
Finding the zeros of a quadratic function can be accomplished in two ways:

•By Factoring:
To factor ax2 + bx + c

1. find two integers that have a product equal to ac and a sum equal to
b,
2. replace bx by two terms using the two new integers as coefficients,
3. then factor the resulting four-term polynomial by grouping. Thus, ob-
taining a(x− r)(x−s) = 0. But we know that if the product of two numbers
is zero uv = 0 then either u = 0 or v = 0. Thus, eiher x = r or x = s.

Example 12.1
Find the zeros of f(x) = x2 − 2x− 8.

47



Solution.
We need two numbers whose product is −8 and sum is −2. Such two integers
are −4 and 2. Thus,

x2 − 2x− 8 = x2 + 2x− 4x− 8
= x(x + 2)− 4(x + 2)
= (x + 2)(x− 4) = 0.

Thus, either x = −2 or x = 4.

Example 12.2
Find the zeros of f(x) = 2x2 + 9x + 4.

Solution. We need two integers whose product is ac = 8 and sum equals to
b = 9. Such two integers are 1 and 8. Thus,

2x2 + 9x + 4 = 2x2 + x + 8x + 4
= x(2x + 1) + 4(2x + 1)
= (2x + 1)(x + 4)

Hence, the zeros are x = −1
2

and x = −4.

• By Using the Quadratic Formula:
Many quadratic functions are not easily factored. For example, the function
f(x) = 3x2− 7x− 7. However, the zeros can be found by using the quadratic
formula which we derive next:

ax2 + bx + c = 0 (subtract c from both sides)
ax2 + bx = −c (multiply both sides by 4a)

4a2x2 + 4abx = −4ac (add b2 to both sides)
4a2x2 + 4abx + b2 = b2 − 4ac

(2ax + b)2 = b2 − 4ac

2ax + b = ±
√

b2 − 4ac

x = −b±
√

b2−4ac
2a

provided that b2 − 4ac ≥ 0. This last formula is known as the quadratic
formula. Note that if b2 − 4ac < 0 then the equation ax2 + bx + c = 0 has
no solutions. That is, the graph of f(x) = ax2 + bx + c does not cross the
x-axis.
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Example 12.3
Find the zeros of f(x) = 3x2 − 7x− 7.

Solution.
Letting a = 3, b = −7 and c = −7 in the quadratic formula we have

x =
7±

√
133

6
.

Example 12.4
Find the zeros of the function f(x) = 6x2 − 2x + 5.

Solution.
Letting a = 6, b = −2, and c = 5 in the quadratic formula we obtain

x =
2±

√
−2

12

But
√
−20 is not a real number. Hence, the function has no zeros. Its graph

does not cross the x-axis.

Concavity of Quadratic Functions
Graphs of quadratic functions are called parabolas. They are either always
concave up (when a > 0) or always concave down (when a < 0).

Example 12.5
Determine the concavity of f(x) = −x2 +4 from x = −1 to x = 5 using rates
of change over intervals of length 2. Graph f(x).

Solution.
Calculating the rates of change we find

f(1)−f(−1)
1−(−1)

= 0
f(3)−f(1)

3−1
= −4

f(5)−f(3)
5−3

= −8

Since the rates of change are getting more and more negative then the graph
is concave down from x = −1 to x = 5. See Figure 26.
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Figure 26

Recommended Problems (pp. 88 - 9): 1, 2, 3, 5, 7, 9, 11, 12, 14,
15, 16, 18.
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13 Exponential Growth and Decay

Exponential functions appear in many applications such as population growth,
radioactive decay, and interest on bank loans.
Recall that linear functions are functions that change at a constant rate. For
example, if f(x) = mx + b then f(x + 1) = m(x + 1) + b = f(x) + m. So
when x increases by 1, the y value increases by m. In contrast, an exponential
function with base a is one that changes by constant multiples of a. That is,
f(x + 1) = af(x). Writing a = 1 + r we obtain f(x + 1) = f(x) + rf(x).
Thus, an exponential function is a function that changes at a constant per-
cent rate.
Exponential functions are used to model increasing quantities such as pop-
ulation growth problems.

Example 13.1
Suppose that you are observing the behavior of cell duplication in a lab. In
one experiment, you started with one cell and the cells doubled every minute.
That is, the population cell is increasing at the constant rate of 100%. Write
an equation to determine the number (population) of cells after one hour.

Solution.
Table 2 below shows the number of cells for the first 5 minutes. Let P (t) be
the number of cells after t minutes.

t 0 1 2 3 4 5
P(t) 1 2 4 8 16 32

Table 2

At time 0, i.e t=0, the number of cells is 1 or 20 = 1. After 1 minute, when
t = 1, there are two cells or 21 = 2. After 2 minutes, when t = 2, there are 4
cells or 22 = 4.
Therefore, one formula to estimate the number of cells (size of population)
after t minutes is the equation (model)

f(t) = 2t.
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It follows that f(t) is an increasing function. Computing the rates of change
to obtain

f(1)−f(0)
1−0

= 1
f(2)−f(1)

2−1
= 2

f(3)−f(2)
3−2

= 4
f(4)−f(3)

4−3
= 8

f(5)−f(4)
5−4

= 16.

Thus, the graph of f(t) is concave up. See Figure 27.

Figure 27

Now, to determine the number of cells after one hour we convert to minutes
to obtain t = 60 minutes so that f(60) = 260 = 1.15× 1018 cells.

Exponential functions can also model decreasing quantities known as decay
models.

Example 13.2
If you start a biology experiment with 5,000,000 cells and 45% of the cells
are dying every minute, how long will it take to have less than 50,000 cells?

Solution.
Let P (t) be the number of cells after t minutes. Then P (t + 1) = P (t) −
45%P (t) or P (t + 1) = 0.55P (t). By constructing a table of data we find
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t P(t)
0 5,000,000
1 2,750,000
2 1,512,500
3 831,875
4 457,531.25
5 251,642.19
6 138,403.20
7 76,121.76
8 41,866.97

So it takes 8 minutes for the population to reduce to less than 50,000 cells.
A formula of P (t) is P (t) = 5, 000, 000(0.55)t. The graph of P (t) is given in
Figure 28.

Figure 28

From the previous two examples, we see that an exponential function has the
general form

P (t) = b · at, a > 0 a 6= 1.

Since b = P (0) then we call b the initial value. We call a the base of P (t).
If a > 1, then P (t) shows exponential growth with growth factor a. The
graph of P will be similar in shape to that in Figure 27.
If 0 < a < 1, then P shows exponential decay with decay factor a. The
graph of P will be similar in shape to that in Figure 28.
Since P (t + 1) = aP (t) then P (t + 1) = P (t) + rP (t) where r = a − 1. We
call r the percent growth rate.
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Remark 13.1
Why a is restricted to a > 0 and a 6= 1? Since t is allowed to have any value
then a negative a will create meaningless expressions such as

√
a (if t = 1

2
).

Also, for a = 1 the function P (t) = b is called a constant function and its
graph is a horizontal line.

Example 13.3
Suppose you are offered a job at a starting salary of $40,000 per year. To
strengthen the offer, the company promises annual raises of 6% per year for
the first 10 years. Let P (t) be your salary after t years. Find a formula for
P (t) and then compute your projected salary after 4 years from now.

Solution.
A formula for P (t) is P (t) = 40, 000(1.06)t. After four years, the projected
salary is P (3) = 40, 000(1.06)4 ≈ $50, 499.08.

Example 13.4
The amount in milligrams of a drug in the body t hours after taking a pill is
given by A(t) = 25(0.85)t.

(a) What is the initial dose given?
(b) What percent of the drug leaves the body each hour?
(c) What is the amount of drug left after 10 hours?

Solution.
(a) Initial dose given is A(0) = 25 mg.
(b) r = a − 1 = 0.85 − 1 = −.15 so that 15% of the drug leaves the body
each hour.
(c) A(10) = 25(0.85)10 ≈ 4.92 mg.

Recommended Problems (pp. 108 - 110): 1, 5, 7, 9, 11, 13, 15,
17, 19, 23, 25.
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14 Exponential Functions Versus Linear Func-

tions

The first question in this section is the question of recognizing whether a
function given by a table of values is exponential or linear. We know that for
a linear function, equal increments in x correspond to equal increments in y.
For an exponential function let us first assume that we have a formula for
the function, say f(x) = bax. Then f(x+n)

f(x)
= an. Thus, if equal increments in

x results in constant ratios then the function is exponential.

Example 14.1
Decide if the function is linear or exponential?Find a formula for each case.

x f(x)
0 12.5
1 13.75
2 15.125
3 16.638
4 18.301

x g(x)
0 0
1 2
2 4
3 6
4 8

Solution.
Since 13.75

12.5
≈ 15.125

13.75
≈ 16.638

15.125
≈ 18.301

16.638
≈ 1.1 then f(x) is an exponential func-

tion and f(x) = 12.5(1.1)x.
On the other hand, equal increments in x correspond to equal increments in
the g-values so that g(x) is linear, say g(x) = mx + b. Since g(0) = 0 then
b = 0. Also, 2 = g(1) = m so that g(x) = 2x.

The next question of this section is the question of finding a formula for
an exponential function. The next example shows how to find exponential
functions using two data points.

Example 14.2
Let f(x) be a function given by Table 3. Show that f is an exponential
function and then find its formula.

x 20 25 30 35 40 45
f(x) 1000 1200 1440 1728 2073.6 2488.32

Table 3
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Solution.
Since 1200

1000
= 1440

1200
= 1728

1440
= 2073.6

1728
= 2488.32

2073.6
= 1.2 then f(x) is an exponential

function, say, f(x) = bax. Using the first two points in the table we see

ba25

ba20
= 1.2

or a5 = 1.2. Hence, a = (1.2)
1
5 ≈ 1.03714. Since f(20) = 1000 then

b(1.03714)20 = 1000. Solving for b we find b = 1000
1.0371420 ≈ 482.228.

The next example illustrates how to find the formula of an exponential func-
tion given two points on its graph.

Example 14.3
Find a formula for the exponential function whose graph is given in Figure 30.

Figure 30

Solution.
Write f(x) = bax. Since f(−1) = 2.5 then ba−1 = 2.5. Similarly, ba = 1.6.
Taking the ratio we find ba

ba−1 = 1.6
2.5

. Thus, a2 = .64 or a = 0.8. From ba = 1.6
we find that b = 1.6

0.8
= 2 so that f(x) = 2(0.8)x.

Later on in the course we will try to solve exponential equations, that is,
equations involving exponential functions. Usually, the process requires the
use of the so-called logarithm function which we will discuss in Section 18.
For the time being, we will exhibit a graphical method for solving an expo-
nential equation.
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Example 14.4
Estimate to two decimal places the solutions to the exponential equation

x + 2 = 2x.

Solution.
Let f(x) = 2 + x and g(x) = 2x. The solutions to the given equation are the
x-values of the points of intersection of the graphs of f(x) and g(x). Using a
graphing calculator we see that the two graphs intersect at two points one in
the first quadrant and one in the second quadrant. Using the INTERSECT
key we find x = 2 and x ≈ −1.69. See Figure 31.

Figure 31

Remark 14.1
Note that from the previous example, in the long run, an increasing expo-
nential function always outrun an increasing linear function.

Recommended Problems (pp. 115 - 8): 1, 3, 6, 7, 12, 14, 15, 19,
21, 22, 24, 28, 29, 31, 32, 38.
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15 The Effect of the Parameters a and b

Recall that an exponential function with base a and initial value b is a func-
tion of the form f(x) = b · ax. In this section, we assume that b > 0. Since
b = f(0) then (0, b) is the vertical intercept of f(x). In this section we con-
sider graphs of exponential functions.

Let’s see the effect of the parameter b on the graph of f(x) = bax.

Example 15.1
Graph, on the same axes, the exponential functions f1(x) = 2 ·(1.1)x, f2(x) =
(1.1)x, and f3(x) = 0.75(1.1)x.

Solution.
The three functions as shown in Figure 32.

Figure 32

Note that these functions have the same growth factor but different b and
therefore different vertical intercepts.

We know that the slope of a linear function measures the steepness of the
graph. Similarly, the parameter a measures the steepness of the graph of an
exponential function. First, we consider the effect of the growth factor on
the graph.

Example 15.2
Graph, on the same axes, the exponential functions f1(x) = 4x, f2(x) = 3x,
and f3(x) = 2x.
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Solution.
Using a graphing calculator we find

Figure 33

It follows that the greater the value of a, the more rapidly the graph rises.
That is, the growth factor a affects the steepness of an exponential function.
Also note that as x decreases, the function values approach the x-axis. Sym-
bolically, as x → −∞, y → 0.

Next, we study the effect of the decay factor on the graph.

Example 15.3
Graph, on the same axes, the exponential functions f1(x) = 2−x =

(
1
2

)x
, f2(x) =

3−x, and f3(x) = 4−x.

Solution.
Using a graphing calculator we find
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Figure 34

It follows that the smaller the value of a, the more rapidly the graph falls.
Also as x increases, the function values approach the x-axis. Symbolically,
as x →∞, y → 0.

• General Observations
(i) For a > 1, as x decreases, the function values get closer and closer to 0.
Symbolically, as x → −∞, y → 0. For 0 < a < 1, as x increases, the function
values gets closer and closer to the x-axis. That is, as x → ∞, y → 0. We
call the x-axis, a horizontal asymptote.
(ii) The domain of an exponential function consists of the set of all real num-
bers whereas the range consists of the set of all positive real numbers.
(iii) The graph of f(x) = bax with b > 0 is always concave up.

Recommended Problems (pp. 122 - 4):1, 2, 3, 4, 5, 7, 9, 10, 11, 12,
13, 14, 17, 19, 21, 25, 27, 29, 31, 35, 37.

60



16 Continuous Growth Rate and the Number

e

In this section we discuss the applications of exponential functions to bank-
ing and finance.

Compound Interest
The term compound interest refers to a procedure for computing interest
whereby the interest for a specified interest period is added to the original
principal. The resulting sum becomes a new principal for the next interest
period. The interest earned in the earlier interest periods earn interest in the
future interest periods.
Suppose that you deposit P dollars into a saving account that pays annual
interest r and the bank agrees to pay the interest at the end of each time
period( usually expressed as a fraction of a year). If the number of periods
in a year is n then we say that the interest is compounded n times per year
(e.g.,’yearly’=1, ’quarterly’=4, ’monthly’=12, etc.). Thus, at the end of the
first period the balance will be

B = P +
r

n
P = P

(
1 +

r

n

)
.

At the end of the second period the balance is given by

B = P
(
1 +

r

n

)
+

r

n
P

(
1 +

r

n

)
= P

(
1 +

r

n

)2

.

Continuing in this fashion, we find that the balance at the end of the first
year, i.e. after n periods, is

B = P
(
1 +

r

n

)n

.

If the investment extends to another year than the balance would be given
by

P
(
1 +

r

n

)2n

.

For an investment of t years then balance is given by

B = P
(
1 +

r

n

)nt

.

Since
(
1 + r

n

)nt
=

[(
1 + r

n

)n]t
then the function B can be written in the form

B(t) = Pat where a =
(
1 + r

n

)n
. That is, B is an exponential function.
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Remark 16.1
Interest given by banks are known as nominal rate (e.g. ”in name only”).
When interest is compounded more frequently than once a year, the account
effectively earns more than the nominal rate. Thus, we distinguish between
nominal rate and effective rate. The effective annual rate tells how much
interest the investment actually earns. The quantity (1 + r

n
)n − 1 is known

as the effective interest rate.

Example 16.1
Translating a value to the future is referred to as compounding. What will
be the maturity value of an investment of $15, 000 invested for four years at
9.5% compounded semi-annually?

Solution.
Using the formula for compound interest with P = $15, 000, t = 4, n = 2,
and r = .095 we obtain

B = 15, 000

(
1 +

0.095

2

)8

≈ $21, 743.20

Example 16.2
Translating a value to the present is referred to as discounting. We call
(1 + r

n
)−nt the discount factor. What principal invested today will amount

to $8, 000 in 4 years if it is invested at 8% compounded quarterly?

Solution.
The present value is found using the formula

P = B
(
1 +

r

n

)−nt

= 8, 000

(
1 +

0.08

4

)−16

≈ $5, 827.57

Example 16.3
What is the effective rate of interest corresponding to a nominal interest rate
of 5% compounded quarterly?

Solution.

effective rate =

(
1 +

0.05

4

)4

− 1 ≈ 0.051 = 5.1%
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Continuous Compound Interest
When the compound formula is used over smaller time periods the interest
becomes slightly larger and larger. That is, frequent compounding earns a
higher effective rate, though the increase is small.
This suggests compounding more and more, or equivalently, finding the value
of B in the long run. In Calculus, it can be shown that the expression(
1 + r

n

)n
approaches er as n →∞, where e (named after Euler) is a number

whose value is e = 2.71828 · · · . The balance formula reduces to B = Pert.
This formula is known as the continuous compound formula. In this
case, the annual effective interest rate is found using the formula er − 1.

Example 16.4
Find the effective rate if $1000 is deposited at 5% annual interest rate com-
pounded continuously.

Solution.
The effective interest rate is e0.05 − 1 ≈ 0.05127 = 5.127%

Example 16.5
Which is better: An account that pays 8% annual interest rate compounded
quarterly or an account that pays 7.95% compounded continuously?

Solution.
The effective rate corresponding to the first option is(

1 +
0.08

4

)4

− 1 ≈ 8.24%

That of the second option

e0.0795 − 1 ≈ 8.27%

Thus, we see that 7.95% compounded continuously is better than 8% com-
pounded quarterly.

Continuous Growth Rate
When writing y = bet then we say that y is an exponential function with
base e. Look at your calculator and locate the key ln. (This is called the
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natural logarithm function which will be discussed in the next section) Pick
any positive number of your choice, say c, and compute eln c. What do you
notice? For any positive number c, you notice that eln c = c. Thus, any posi-
tive number a can be written in the form a = ek where k = ln a.

Now, suppose that Q(t) = bat. Then by the above paragraph we can write
a = ek. Thus,

Q(t) = b(ek)t = bekt.

Note that if k > 0 then ek > 1 so that Q(t) represents an exponential growth
and if k < 0 then ek < 1 so that Q(t) is an exponential decay.
We call the constant k the continuous growth rate.

Example 16.6
If f(t) = 3(1.072)t is rewritten as f(t) = 3ekt, find k.

Solution.
By comparison of the two functions we find ek = 1.072. Solving this equation
graphically (e.g. using a calculator) we find k ≈ 0.695.

Example 16.7
A population increases from its initial level of 7.3 million at the continuous
rate of 2.2% per year. Find a formula for the population P (t) as a function
of the year t. When does the population reach 10 million?

Solution.
We are given the initial value 7.3 million and the continuous growth rate
k = 0.022. Therefore, P (t) = 7.3e0.022t. Next,we want to find the time when
P (t) = 10. That is , 7.3e0.022t = 10. Divide both sides by 7.3 to obtain
e0.022t ≈ 1.37. Solving this equation graphically to obtain t ≈ 14.3.

Next, in order to convert from Q(t) = bekt to Q(t) = bat we let a = ek.
For example, to convert the formula Q(t) = 7e0.3t to the form Q(t) = bat we
let b = 7 and a = e0.3 ≈ 1.35. Thus, Q(t) = 7(1.35)t.

Example 16.8
Find the annual percent rate and the continuous percent growth rate of
Q(t) = 200(0.886)t.
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Solution.
The annual percent of decrease is r = a−1 = 0.886−1 = −0.114 = −11.4%.
To find the continuous percent growth rate we let ek = 0.886 and solve for k
graphically to obtain k ≈ −0.121 = −12.1%.

Recommended Problems (pp. 130 - 1): 1, 2, 3, 6, 9, 11, 13, 14, 15,
17, 18, 20, 23, 25, 26, 29, 33, 34.
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17 Logarithms and Their Properties

We have already seen how to solve an equation of the form ax = b graphi-
cally. That is, using a calculator we graph the horizontal line y = b and the
exponential function y = ax and then find the point of intersection.
In this section we discuss an algebraic way to solve equations of the form
ax = b where a and b are positive constants. For this, we introduce two
functions that are found in today’s calculators, namely, the functions log x
and ln x.

If x > 0 then we define log x to be a number y that satisfies the equality
10y = x. For example, log 100 = 2 since 102 = 100. Similarly, log 0.01 = −2
since 10−2 = 0.01. We call log x the common logarithm of x. Thus,

y = log x if and only if 10y = x.

Similarly, we have

y = ln x if and only if ey = x.

We call ln x the natural logarithm of x.

Example 17.1
(a) Rewrite log 30 = 1.477 using exponents instead of logarithms.
(b) Rewrite 100.8 = 6.3096 using logarithms instead of exponents.

Solution.
(a) log 30 = 1.477 is equivalent to 101.477 = 30.
(b) 100.8 = 6.3096 is equivalent to log 6.3096 = 0.8.

Example 17.2
Without a calculator evaluate the following expressions:

(a) log 1 (b) log 100 (c) log ( 1√
10

) (d) 10log 100 (e) 10log (0.01)

Solution.
(a) log 1 = 0 since 100 = 1.
(b) log 100 = log 1 = 0 by (a).

(c) log ( 1√
10

) = log 10−
1
2 = −1

2
.
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(d) 10log 100 = 102 = 100.
(e) 10log (0.01) = 10−2 = 0.01.

Properties of Logarithms

(i) Since 10x = 10x we can write

log 10x = x

(ii) Since log x = log x then
10log x = x

(iii) log 1 = 0 since 100 = 1.
(iv) log 10 = 1 since 101 = 10.
(v) Suppose that m = log a and n = log b. Then a = 10m and b = 10n. Thus,
a · b = 10m · 10n = 10m+n. Rewriting this using logs instead of exponents, we
see that

log (a · b) = m + n = log a + log b.

(vi) If, in (v), instead of multiplying we divide, that is a
b

= 10m

10n = 10m−n

then using logs again we find

log
(a

b

)
= log a− log b.

(vii) It follows from (vi) that if a = b then log a − log b = log 1 = 0 that is
log a = log b.
(viii) Now, if n = log b then b = 10n. Taking both sides to the power k
we find bk = (10n)k = 10nk. Using logs instead of exponents we see that
log bk = nk = k log b that is

log bk = k log b.

Example 17.3
Solve the equation: 4(1.171)x = 7(1.088)x.

Solution.
Rewriting the equation into the form

(
1.171
1.088

)x
= 7

4
and then using properties

(vii) and (viii) to obtain

x log

(
1.171

1.088

)
= log

7

4
.
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Thus,

x =
log 7

4

log
(

1.171
1.088

) .

Example 17.4
Solve the equation log (2x + 1) + 3 = 0.

Solution.
Subtract 3 from both sides to obtain log (2x + 1) = −3. Switch to exponential
form to get 2x+1 = 10−3 = 0.001. Subtract 1 and then divide by 2 to obtain
x = −0.4995.

Remark 17.1
• All of the above arguments are valid for the function ln x for which we
replace the number 10 by the number e = 2.718 · · · . That is, ln (a · b) =
ln a + ln b, ln a

b
= ln a− ln b etc.

• Keep in mind the following:
log (a + b) 6= log a + log b. For example, log 2 6= log 1 + log 1 = 0.
log (a− b) 6= log a − log b. For example, log (2− 1) = log 1 = 0 whereas
log 2− log 1 = log 2 6= 0.
log (ab) 6= log a · log b. For example, log 1 = log (2 · 1

2
) = 0 whereas log 2 ·

log 1
2

= − log2 2 6= 0.

log
(

a
b

)
6= log a

log b
. For example, letting a = b = 2 we find that log a

b
= log 1 = 0

whereas log a
log b

= 1.

log
(

1
a

)
6= 1

log a
. For example, log 1

1
2

= log 2 whereas 1
log 1

2

= − 1
log 2

.

Recommended Problems (pp. 149 - 151): 1, 2, 3, 7, 8, 12, 14, 15,
16, 17, 23, 24, 25, 26, 29, 32, 33, 34, 35, 37, 38, 39, 44, 47.
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18 Logarithmic and Exponential Equations

We have seen how to solve an equation such as 200(0.886)x = 25 using the
cross-graphs method,i.e. by means of a calculator. Equations that involve
exponential functions are referred to as exponential equations. Equations
involving logarithmic functions are called logarithmic equations. The pur-
pose of this section is to study ways for solving these equations.
In order to solve an exponential equation, we use algebra to reduce the equa-
tion into the form ax = b where a and b > 0 are constants and x is the
unknown variable. Taking the common logarithm of both sides and using
the property log (ax) = x log a we find x = log b

log a
.

Example 18.1
Solve the equation 200(0.886)x = 25 algebraically.

Solution.
Dividing both sides by 200 to obtain (0.886)x = 0.125. Take the log of both

sides to obtain x log (0.886) = log 0.125. Thus, x = log (0.125)
log (0.886)

≈ 17.18.

Example 18.2
Solve the equation 50, 000(1.035)x = 250, 000(1.016)x.

Solution.
Divide both sides by 50, 000(1.016)x to obtain(

1.035

1.016

)x

= 5.

Take log of both sides to obtain

x log

(
1.035

1.016

)
= log 5.

Divide both sides by the coefficient of x to obtain

x =
log 5

log
(

1.035
1.016

) ≈ 86.9

Doubling Time
In some exponential models one is interested in finding the time for an expo-
nential growing quantity to double. We call this time the doubling time.
To find it, we start with the equation b · at = 2b or at = 2. Solving for t we
find t = log 2

log a
.
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Example 18.3
Find the doubling time of a population growing according to P = P0e

0.2t.

Solution.
Setting the equation P0e

0.2t = 2P0 and dividing both sides by P0 to obtain
e0.2t = 2. Take ln of both sides to obtain 0.2t = ln 2. Thus, t = ln 2

0.2
≈ 3.47.

Half-Life
On the other hand, if a quantity is decaying exponentially then the time
required for the initial quantity to reduce into half is called the half-life. To
find it, we start with the equation bat = b

2
and we divide both sides by b

to obtain at = 0.5. Take the log of both sides to obtain t log a = log (0.5).

Solving for t we find t = log (0.5)
log a

.

Example 18.4
The half-life of Iodine-123 is about 13 hours. You begin with 50 grams of
this substance. What is a formula for the amount of Iodine-123 remaining
after t hours?

Solution.
Since the problem involves exponential decay then if Q(t) is the quantity re-
maining after t hours then Q(t) = 50at with 0 < a < 1. But Q(13) = 25. That

is, 50a13 = 25 or a13 = 0.5. Thus a = (0.5)
1
13 ≈ 0.95 and Q(t) = 50(0.95)t.

Can all exponential equations be solved using logarithms?
The answer is no. For example, the only way to solve the equation x+2 = 2x

is by graphical methods which give the solutions x ≈ −1.69 and x = 2.

Example 18.5
Solve the equation 2(1.02)t = 4 + 0.5t.

Solution.
Using a calculator, we graph the functions y = 2(1.02)t and y = 4 + 0.5t as
shown in Figure 35.
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Figure 35

Using the key INTERSECTION one finds t ≈ 199.381

We end this section by describing a method for solving logarithmic equa-
tions. The method consists of rewriting the equation into the form log x = a
or ln x = a and then find the exponential form to obtain x = 10a or x = ea.
Also, you must check these values in the original equation for extraneous
solutions.

Example 18.6
Solve the equation: log (x− 2)− log (x + 2) = log (x− 1).

Solution.
Using the property of the logarithm of a quotient we can rewrite the given
equation into the form log

(
x−2
x+2

)
= log (x− 1). Thus, x−2

x+2
= x − 1. Cross

multiply and then foil to obtain (x + 2)(x − 1) = x − 2 or x2 = 0. Solving
we find x = 0. However, this is not a solution because it yields logarithms of
negative numbers when plugged into the original equation.

Example 18.7
Solve the equation: ln (x− 2) + ln (2x− 3) = 2 ln x.

Solution.
Using the property ln (ab) = ln a + ln b we can rewrite the given equation
into the form ln (x− 2)(2x− 3) = ln x2. Thus,(x − 2)(2x − 3) = x2 or
x2−7x+6 = 0. Factoring to obtain (x−1)(x−6) = 0. Solving we find x = 1
or x = 6. The value x = 1 must be discarded since it yields a logarithm of a
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negative number.

Recommended Problems (pp. 157 - 9): 1, 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 25, 27, 29, 31, 35, 36, 38, 44, 47, 48.
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19 Logarithmic Functions and Their Graphs

In this section we will graph logarithmic functions and determine a number
of their general features.
We have seen that the notation y = log x is equivalent to 10y = x. Since 10
raised to any power is always positive then the domain of the function log x
consists of all positive numbers. That is, log x cannot be used with negative
numbers.
Now, let us sketch the graph of this function by first constructing the follow-
ing chart:

x log x Average Rate of Change
0 undefined -
0.001 -3 -
0.01 -2 111.11
0.1 -1 11.11
1 0 1.11
10 1 0.11
100 2 0.011
1000 3 0.0011

From the chart we see that the graph is always increasing. Since the average
rate of change is decreasing then the graph is always concave down. Now
plotting these points and connecting them with a smooth curve to obtain

Figure 36
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From the graph we observe the following properties:
(a) The range of log x consists of all real numbers.
(b) The graph never crosses the y-axis since a positive number raised to any
power is always positive.
(c) The graph crosses the x-axis at x = 1.
(d) As x gets closer and closer to 0 from the right the function log x decreases
without bound. That is, as x → 0+, x → −∞. We call the y-axis a vertical
asymptote. In general, if a function increases or decreases without bound
as x gets closer to a number a then we say that the line x = a is a vertical
asymptote.

Next, let’s graph the function y = 10x by using the above process:

x 10x Average Rate of Change
-3 0.001 -
-2 0.01 0.009
-1 0.1 0.09
0 1 0.9
1 10 9
2 100 90
3 1000 900

Note that this chart can be obtained from the chart of log x discussed above
by interchanging the variables x and y. This means, that the graph of y = 10x

is a reflection of the graph of y = log x about the line y = x as seen in Figure
37.

Figure 37
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Example 19.1
Sketch the graphs of the functions y = ln x and y = ex on the same axes.

Solution.
The functions y = ln x and y = ex are inverses of each like the functions
y = log x and y = 10x. So their graphs are reflections of one another across
the line y = x as shown in Figure 38.

Figure 38

Logarithms are useful in measuring quantities such as acidity (pH) and sound
(decibles).

Chemical Acidity
The acidity pH in a liquid is defined by the formula pH = − log [H+], where
[H+] is the hydrogen ion concentration in moles per liter.

Example 19.2
What is the pH of distilled water which has a concentration [H+] = 10−7

moles per liter?

Solution.
We have

pH = − log [H+] = − log 10−7 = 7.

Example 19.3
Ammonia has a pH of 10. What is its Hydrogen ion concentration?
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Solution.
Since −log[H+] = 10 then [H+] = 10−10 moles per liter.

Decibels
The decibel scale was designed to reflect human perception of how sound
changes and studies indicate that it is related to the logarithm of the change
in intensity. Noise levels are measured in units called decibels. To measure
a sound in decibels, we compare the sound’s intensity I to the intensity of
a standard benchmark sound I0 which is defined to be 10−16 watts/cm2 and
is roughly the lowest intensity audible to humans. The comparison between
a given sound intensity I and the benchmark sound intensity I0 is given by
the following expression:

noise level in decibels = 10 · log

(
I

I0

)
.

The expression I
I0

gives the relative intensity of sound compared to the bench-
mark I0.

Example 19.4
The level of typical conversation is 50 decibels. What is the intensity of this
sound?

Solution.
According to our formula above, if I is the intensity of conversation, then 10 ·
log

(
I
I0

)
= 50 or I

I0
= 105. Thus, I = 105I0 = 105·10−16 = 10−11 watts/cm2.

Recommended Problems (pp. 165 - 6): 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 13, 15, 18, 21, 23, 25, 26, 28, 29, 30, 32, 33.
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20 Logarithmic Scales - Fitting Exponential

Functions to Data

What’s the difference between Linear and Logarithmic scale? A linear scale
is a scale where equal distances on the vertical axis represent the same net
change. For example, a drop from 10,000 to 9,000 is represented in the same
way as a drop from 100,000 to 99,000. The logarithmic scale is a scale
where equal distances on the vertical axis represent the same percentage
change. For example, a change from 100 to 200 is presented in the same way
as a change from 1,000 to 2,000.
Logarithmic scales give the logarithm of a quantity instead of the quantity
itself. This is often done if the range of the underlying quantity can take a
spectrum of numbers that vary from the very small to the very large; the
logarithm reduces this to a more manageable range.
How do we plot data on a logarithmic scale? Logarithmic scale is marked
with increasing powers of 10. Notice that these numbers are evenly spaced
according to their logarithms and not according to their actual distances.
Thus, to represent 58 millions on a logarithmic scale we find log 58 ≈ 1.763
and plot the point 101.763.

Example 20.1
In Chemistry, the acidity of a liquid is expressed using pH which is defined
by the formula

pH = − log [H+]

where[H+] is the hydrogen ion concentration. The greater the hydrogen ion
concentration, the more acidic the solution. Seawater has a hydrogen ion
concentration of 1.1 · 10−8 moles per liter and a solution of lemon juice has
a pH of about 2.3. Represent the hydrogen ion concentration of both the
seawater and the lemon juice solution on a logaritmic scale.

Solution.
For the seawater we have [H+] = 1.1 · 10−8 whereas for the lemon juice solu-
tion we have [H+] = 10−2.3. See Figure 39.
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Figure 39

Best Exponential Fitting to Data
The process of fitting an exponential function N(t) = aekt to a set of data
of the form (t, N) consists of three steps. The first step consists of reducing
the equation to the form

y = b + kt

where y = ln N and b = ln a. This is simply done by taking the natural
logarithm of N.
The second step consists of creating a table of points of the form (t, y). Using
a scatter plot you will notice that plotting the data in this way tends to
linearize the graph- that is, make it look more like a line so it makes sense
to find the linear regression on the variables t and y (See Section 6).
The third step consists of transforming the linear regression equation back
into the original variables:

N(t) = ebekt.

Example 20.2
Find the exponential equation that fits the following set of data.

x 30 85 122 157 255 312
y 70 120 145 175 250 300

Solution.
We first construct the following table

x 30 85 122 157 255 312
ln y 4.248 4.787 4.977 5.165 5.521 5.704

Using linear regression as discussed in Section 6, we find ln y = 4.295 +
0.0048x. Solving for y we find

y = e4.295+0.0048x = e4.295e0.0048x ≈ 73.3e0.0048x.

Recommended Problems (pp. 173 - 6): 1, 2, 4, 7, 8, 9, 18, 19.
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21 Vertical and Horizontal Shifts

Given the graph of a function, by shifting this graph vertically or horizontally
one gets the graph of a new function. In this section we want to find the
formula for this new function using the formula of the original function.

Vertical Shift
We start with an example of a vertical shift.

Example 21.1
Let f(x) = x2.
(a) Use a calculator to graph the function g(x) = x2 +1. How does the graph
of g(x) compare to the graph of f(x)?
(b) Use a calculator to graph the function h(x) = x2−1. How does the graph
of h(x) compare to the graph of f(x)?

Solution.
(a) In Figure 40 we have included the graph of g(x) = x2 + 1 = f(x) + 1.
This shows that if (x, f(x)) is a point on the graph of f(x) then (x, f(x)+1)
is a point on the graph of g(x). Thus, the graph of g(x) is obtained from the
old one by moving it up 1 unit.

Figure 40

(b) Figure 41 shows the graph of both f(x) and h(x). Note that h(x) =
f(x)−1 and the graph of h(x) is obtained from the graph of f(x) by moving
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it 1 unit down.

Figure 41

In general, if c > 0, the graph of f(x) + c is obtained by shifting the graph
of f(x) upward a distance of c units. The graph of f(x) − c is obtained by
shifting the graph of f(x) downward a distance of c units.

Horizontal Shift
This discussion parallels the one earlier in this section. Follow the same
general directions.

Example 21.2
Let f(x) = x2.
(a) Use a calculator to graph the function g(x) = (x + 1)2 = f(x + 1). How
does the graph of g(x) compare to the graph of f(x)?
(b) Use a calculator to graph the function h(x) = (x− 1)2 = f(x− 1). How
does the graph of h(x) compare to the graph of f(x)?

Solution.
(a) In Figure 42 we have included the graph of g(x) = (x + 1)2. We see that
the new graph is obtained from the old one by shifting to the left 1 unit.
This is as expected since the value of x2 is the same as the value of (x + 1)2

at the point 1 unit to the left.
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Figure 42

(b) Similar to (a), we see in Figure 43 that we get the graph of h(x) by
moving the graph of f(x) to the right 1 unit.

Figure 43

In general, if c > 0, the graph of f(x + c) is obtained by shifting the graph
of f(x) to the left a distance of c units. The graph of f(x− c) is obtained by
shifting the graph of f(x) to the right a distance of c units.

Remark 21.1
Be careful when translating graph horizontally. In determing the direction of
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horizontal shifts we look for the value of x that would cause the expression
between parentheses equal to 0. For example, the graph of f(x) = (x − 5)2

would be shifted 5 units to the right since +5 would cause the quantity x−5
to equal 0. On the other hand, the graph of f(x) = (x+5)2 would be shifted
5 units to the left since −5 would cause the expression x + 5 to equal 0.

Example 21.3
Suppose S(d) gives the height of high tide in Seattle on a specific day, d,
of the year. Use shifts of the function S(d) to find formulas of each of the
following functions:

(a) T (d), the height of high tide in Tacoma on day d, given that high tide in
Tacoma is always one foot higher than high tide in Seattle.
(b) P (d), the height of high tide in Portland on day d, given that high tide
in Portland is the same height as the previous day’s hight in Seattle.

Solution.
(a) T (d) = S(d) + 1.
(b) P (d) = S(d− 1).

Combinations of Vertical and Horizontal Shifts
One can use a combination of both horizontal and vertical shifts to create
new functions as shown in the next example.

Example 21.4
Let f(x) = x2. Let g(x) be the function obtained by shifting the graph of
f(x) two units to the right and then up three units. Find a formula for g(x)
and then draw its graph.

Solution.
The formula of g(x) is g(x) = f(x − 2) + 3 = (x − 2)2 + 3 = x2 − 4x + 7.
The graph of g(x) consists of a horizontal shift of x2 of two units to the right
followed by a vertical shift of three units upward. See Figure 44.
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Figure 44

Recommended Problems (pp. 188 - 90): 1, 3, 4, 5, 6, 9, 10, 17, 18,
19, 27, 29, 33, 39.
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22 Reflections and Symmetry

In the previous section we have seen that adding/subtracting a number to the
input of a function results in a horizontal shift of the graph of the function
while adding/subtracting a number to the output results in a vertical shift.
In this section, we want to study the effect of multiplying the input/output
of a function by -1. That is, what are the relationships between f(x), f(−x),
and −f(x)?

Reflection About the x-Axis
For a given function f(x), the points (x, f(x)) and (x,−f(x)) are on opposite
sides of the x-axis. So the graph of the new function −f(x) is the reflection
of the graph of f(x) about the x-axis.

Example 22.1
Graph the functions f(x) = 2x and −f(x) = −2x on the same axes.

Solution.
The graph of both f(x) = 2x and −f(x) are shown in Figure 45.

Figure 45

Reflection About the y-Axis
We know that the points x and −x are on opposite sides of the x-axis. So
the graph of the new function f(−x) is the reflection of the graph of f(x)
about the y-axis.
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Example 22.2
Graph the functions f(x) = x3 and f(−x) = −x3 on the same axes.

Solution.
The graph of both f(x) and f(−x) are shown in Figure 46.

Figure 46

Symmetry About the y-Axis
When constructing the graph of f(−x) sometimes you will find that this new
graph is the same as the graph of the original function. That is, the reflection
of the graph of f(x) about the y-axis is the same as the graph of f(x),e.g.,
f(−x) = f(x). In this case, we say that the graph of f(x) is symmetric
about the y-axis. We call such a function an even function.

Example 22.3
(a) Using a graphing calculator show that the function f(x) = (x − x3)2 is
even.
(b) Now show that f(x) is even algebraically.

Solution.
(a) The graph of f(x) is symmetric about the y-axis so that f(x) is even.
See Figure 47.
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Figure 47

(b) Since f(−x) = (−x− (−x)3)2 = (−x+x3)2 = [−(x−x3)]2 = (x−x3)2 =
f(x) then f(x) is even.

Symmetry About the Origin
Now, if the images f(x) and f(−x) are of opposite signs i.e, f(−x) = −f(x),
then the graph of f(x) is symmetric about the origin. In this case, we say
that f(x) is odd. Alternatively, since f(x) = −f(−x), if the graph of a
function is reflected first across the y-axis and then across the x-axis and you
get the graph of f(x) again then the function is odd.

Example 22.4
(a) Using a graphing calculator show that the function f(x) = 1+x2

x−x3 is odd.
(b) Now show that f(x) is odd algebraically.

Solution.
(a) The graph of f(x) is symmetric about the origin so that f(x) is odd. See
Figure 48.
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Figure 48

(b) Since f(−x) = 1+(−x)2

(−x)−(−x)3
= 1+x2

−x+x3 = 1+x2

−(x−x3)
= −f(x) then f(x) is odd.

A function can be either even, odd, or neither.

Example 22.5
(a) Show that the function f(x) = x2 is even but not odd.
(b) Show that the function f(x) = x3 is odd but not even.
(c) Show that the function f(x) = x + x2 is neither odd nor even.
(d) Is there a function that is both even and odd? Explain.

Solution.
(a) Since f(−x) = f(x) and f(−x) 6= −f(x) then f(x) is even but not odd.
(b) Since f(−x) = −f(x) and f(−x) 6= f(x) then f(x) is odd but not even.
(c) Since f(−x) = −x + x2 6= ±f(x) then f(x) is neither even nor odd.
(d) We are looking for a function such that f(−x) = f(x) and f(−x) =
−f(x). This implies that f(x) = −f(x) or 2f(x) = 0. Dividing by 2 to ob-
tain f(x) = 0. This function is both even and odd.

Combinations of Shifts and Reflections
Finally, we can obtain more complex functions by combining the horizontal
and vertical shifts of the previous section with the horizontal and vertical
reflections of this section.

Example 22.6
Let f(x) = 2x.
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(a) Suppose that g(x) is the function obtained from f(x) by first reflecting
about the y-axis, then translating down three units. Write a formula for
g(x).
(b) Suppose that h(x) is the function obtained from f(x) by first translating
up two units and then reflecting about the x-axis. Write a formula for h(x).

Solution.
(a) g(x) = f(−x)− 3 = 2−x − 3.
(b) h(x) = −(f(x) + 2) = −2x − 2.

Recommended Problems (pp. 197 - 8): 2, 5, 7, 9, 15, 19, 21,
27, 28, 30, 32, 36, 39.
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23 Vertical Stretches and Compressions

We have seen that for a positive k, the graph of f(x)+ k is a vertical shift of
the graph of f(x) upward and the graph of f(x)−k is a vertical shift down. In
this section we want to study the effect of multiplying a function by a constant
k. This will result by either a vertical stretch or vertical compression.
A vertical stretching is the stretching of the graph away from the x-axis.
A vertical compression is the squeezing of the graph towards the x-axis.

Example 23.1
(a) Complete the following tables

x y = x2

-3
-2
-1
0
1
2
3

x y = 2x2

-3
-2
-1
0
1
2
3

x y = 3x2

-3
-2
-1
0
1
2
3

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?

Solution.
(a)

x y = x2

-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9

x y = 2x2

-3 18
-2 8
-1 2
0 0
1 2
2 8
3 18

x y = 3x2

-3 27
-2 12
-1 3
0 0
1 3
2 12
3 27

(b) Figure 49 shows that the graphs of 2f(x) and 3f(x) are vertical stretches
of the graph of f(x) by a factor of 2 and 3 respectively.
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Figure 49

Example 23.2
(a) Complete the following tables

x y = x2

-3
-2
-1
0
1
2
3

x y = 1
2
x2

-3
-2
-1
0
1
2
3

x y = 1
3
x2

-3
-2
-1
0
1
2
3

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?

Solution.
(a)
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x y = x2

-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9

x y = 1
2
x2

-3 4.5
-2 2
-1 0.5
0 0
1 0.5
2 2
3 4.5

x y = 1
3
x2

-3 3
-2 4

3

-1 1
3

0 0
1 1

3

2 4
3

3 3

(b) Figure 50 shows that the graphs of 1
2
f(x) and 1

3
f(x) are vertical com-

pressions of the graph of f(x) by a factor of 1
2

and 1
3

respectively.

Figure 50

Summary
It follows that if a function f(x) is given, then the graph of kf(x) is a
vertical stretch of the graph of f(x) by a factor of k for k > 1, and a vertical
compression for 0 < k < 1.
What about k < 0? If |k| > 1 then the graph of kf(x) is a vertical stretch
of the graph of f(x) followed by a reflection about the x-axis. If 0 < |k| < 1
then the graph of kf(x) is a vertical compression of the graph of f(x) by a
factor of k followed by a reflection about the x-axis.

Example 23.3
(a) Use a graphing calculator to graph the functions f(x) = x2,−2f(x), and
−3f(x) on the same axes.
(b) Use a graphing calculator to graph the functions f(x) = x2,−1

2
f(x), and

-1
3
f(x) on the same axes.
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Solution.
(a) Figure 51 shows that the graphs of −2f(x) and −3f(x) are vertical
stretches followed by reflections about the x-axis of the graph of f(x)

Figure 51

(b) Figure 52 shows that the graphs of −1
2
f(x) and −1

3
f(x) are vertical com-

pressions of the graph of f(x).

Figure 52

Remark 23.1
As you can see from the above examples of this section, stretching or com-
pressing a function vertically does not change the intervals on which the
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function increases or decreases. However, the average rate of change of a
function is altered by a vertical stretch or compression factor. To illustrate,
let’s look at Example 23.1. Both functions f(x) and 2f(x) are decreasing on
the interval [−3,−2]. However,

Ave. rate of change of 2f(x) on [−3,−2] = 2(Ave. rate of change of f(x)).

The above is true for any function. That is, if g(x) = kf(x) then

Average rate of change of g(x) = k(Average rate of change of f(x)).

Example 23.4
The average rate of change of f(x) on the interval [2, 3] is 6. What is the
average rate change of 2f(x) on the same interval?

Solution.
By the above remark we have that the average rate of change of 2f(x) on
[2, 3] is twice the average rate of change of f(x) on [−3,−2] which gives 12
as an answer.

Combinations of Shifts
Any transformations of vertical, horizontal shifts, reflections, vertical stretches
or compressions can be combined to generate new functions. In this case,
always work from inside the parentheses outward.

Example 23.5
How do you obtain the graph of g(x) = −1

2
f(x + 3) − 1 from the graph of

f(x)?

Solution.
The graph of g(x) is obtained by first shifting the graph of f(x) to the left
by 3 units then the resulting graph is compressed vertically by a factor of 1

2

followed by a reflection about the x-axis and finally moving the graph down
by 1 unit.

Recommended Problems (pp. 204 - 7): 1, 5, 7, 8, 9, 11, 12, 15, 17,
19, 20, 22, 23, 24, 26.
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24 Horizontal Stretches and Compressions

A vertical stretch or compression results from multiplying the outside of a
function by a constant k. In this section we will see that multiplying the
inside of a function by a constant k results in either a horizontal stretch or
compression.
A horizontal stretching is the stretching of the graph away from the y-
axis. A horizontal compression is the squeezing of the graph towards the
y-axis.
We consider first the effect of multiplying the input by k > 1.

Example 24.1
(a) Complete the following tables

x -3 -2 -1 0 1 2 3
y = x2

y = (2x)2

y = (3x)2

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?

Solution.
(a)

x -3 -2 -1 0 1 2 3
y = x2 9 4 1 0 1 4 9
y = (2x)2 36 16 4 0 4 16 36
y = (3x)2 81 36 9 0 9 36 81

(b) Figure 53 shows that the graphs of f(2x) = (2x)2 = 4x2 and f(3x) =
(3x)2 = 9x2 are horizontal compressions of the graph of f(x) by a factor of
1
2

and 1
3

respecitvely.
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Figure 53

Next, we consider the effect of multiplying the input by 0 < k < 1.

Example 24.2
(a) Complete the following tables

x -3 -2 -1 0 1 2 3
y = x2

y = (1
2
x)2

y = (1
3
x)2

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?

Solution.
(a)

x -3 -2 -1 0 1 2 3
y = x2 9 4 1 0 1 4 9
y = (1

2
x)2 9

4
1 1

4
0 1

4
1 9

4

y = (1
3
x)2 1 4

9
1
9

0 1
9

4
9

1

(b) Figure 54 shows that the graphs of f(x
2
) and f(x

3
) are horizontal stretches

of the graph of f(x) by a factor of 2 and 3 respectively.
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Figure 54

Summary
It follows from the above two examples that if a function f(x) is given, then
the graph of f(kx) is a horizontal stretch of the graph of f(x) by a factor of
1
k

for 0 < k < 1, and a horizontal compression for k > 1.
What about k < 0? If |k| > 1 then the graph of f(kx) is a horizontal
compression of the graph of f(x) followed by a reflection about the y-axis.
If 0 < |k| < 1 then the graph of f(kx) is a horizontal stretch of the graph of
f(x) by a factor of 1

k
followed by a reflection about the y-axis.

Example 24.3
(a) Use a graphing calculator to graph the functions f(x) = x3, f(−2x), and
f(−3x) on the same axes.
(b) Use a graphing calculator to graph the functions f(x) = x3, f(−x

2
), and

f(−x
3
) on the same axes.

Solution.
(a) Figure 55 shows that the graphs of f(−2x) and f(−3x) are vertical
stretches followed by reflections about the y-axis of the graph of f(x)
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Figure 55

(b) Figure 56 shows that the graphs of f(−x
2
) f(−x

3
) are horizontal stretches

of the graph of f(x).

Figure 56

Recommended Problems (pp. 211 - 3): 2, 4, 5, 8, 9, 10, 11, 14, 18,
19, 20, 22.
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25 Graphs of Quadratic Functions

We have already encountered the quadratic functions in Section 12. For the
sake of completness, we recall that a function of the form f(x) = ax2 + bx+c
with a 6= 0 is called a quadratic function. Its graph is called a parabola.
The graph opens upward for a > 0 and opens downward for a < 0. For a > 0
the graph has a lowest point and for a < 0 it has a heighest point. Either
point is called the vertex.

The Vertex Form of a Quadratic Function
Using the method of completing the square we can rewrite the standard form
of a quadratic function into the form

f(x) = a(x− h)2 + k (2)

where h = − b
2a

and k = f(− b
2a

) = 4ac−b2

4a2 . To see this:

f(x) = ax2 + bx + c
= a

(
x2 + b

a
x + c

a

)
= a

(
x2 + b

a
x +

(
b
2a

)2 −
(

b
2a

)2
+ c

a

)
= a

(
x2 + b

a
x +

(
b
2a

)2
)

+ 4ac−b2

4a2

= a
(
x + b

2a

)2
+ 4ac−b2

4a2

= a(x− h)2 + k

Form ( 2) is known as the vertex form for a quadratic function. The point
(h, k) is the vertex of the parabola.
It follows from the vertex form that the graph of a quadratic function is
obtained from the graph of y = x2 by shifting horizontally h units, stretching
or compressing vertically by a factor of a ( and reflecting about the x-axis
if a < 0), and shifting vertically |k| units. Thus, if a > 0 then the parabola
opens up and the vertex in this case is the minimum point whereas for a < 0
the parabola opens down and the vertex is the maximum point. Also, note
that a parabola is symmetric about the line through the vertex. That is, the
line x = − b

2a
. This line is called the axis of symmetry.

Example 25.1
Find the vertex of the parabola f(x) = −4x2 − 12x − 8 by first finding the
vertex form.
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Solution.
Using the method of completing the square we find

f(x) = −4x2 − 12x + 8
= −4(x2 + 3x) + 8
= −4(x2 + 3x + 9

4
− 9

4
) + 8

= −4(x2 + 3x + 9
4
)− 9 + 8

= −4(x + 3
2
)2 − 1

Thus, the vertex is the point (−3
2
,−1).

Next, we discuss some techniques for finding the formula for a quadratic
function.

Example 25.2
Find the formula for a quadratic function with vertex (−3, 2) and passing
through the point (0, 5).

Solution.
Using the vertex form, we have h = −3 and k = 2. It remains to find a.
Since the graph crosses the point (0, 5) then 5 = a(0 + 3)2 + 2. Solving for a
we find a = 1

3
. Thus, f(x) = 1

3
(x + 3)2 + 2 = 1

3
x2 + 2x + 5.

Example 25.3
Find the formula for a quadratic function with vertical intercept (0, 6) and
x-intercepts (1, 0) and (3, 0).

Solution.
Since x = 1 and x = 3 are the x-intercepts then f(x) = a(x− 1)(x− 3). But
f(0) = 6 so that 6 = 3a or a = 2. Thus, f(x) = 2(x−1)(x−3) = 2x2−8x+6.

We end this section by an application problem.

Example 25.4
A rancher has 1200 meters of fence to enclose a rectangular corral with an-
other fence dividing it in the middle as shown in Figure 57.

99



Figure 57

What is the largest area that can be enclosed by the given fence?

Solution.
The two rectangles each have area xy, so we have

A = 2xy

Next, we rewrite A in terms of x. Since 3y +4x = 1200, then solving for y we
find y = 400 − 4

3
x. Substitute this expression for y in the formula for total

area A to obtain

A = 2x(400− 4

3
x) = 800x− 8

3
x2.

This is a parabola that opens down so that its vertex yields the maximum
area. But in this case, x = − b

2a
= − 800

− 16
3

= 150 meters.

Now that we know the value of x corresponding to the largest area, we can
find the value of y by going back to the equation relating x and y:

y = 400− 4

3
(150) = 200.

Recommended Problems (pp. 219 - 221): 3, 5, 7, 9, 11, 14, 15, 16,
17, 20, 21, 25, 28.
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26 Composition and Decomposition of Func-

tions

In this section we will discuss a procedure for building new functions from
old ones known as the composition of functions.
We start with an example of a real-life situation where composite functions
are applied.

Example 26.1
You have two money machines, both of which increase any money inserted
into them. The first machine doubles your money. The second adds five
dollars. The money that comes out is described by f(x) = 2x in the first
case, and g(x) = x + 5 in the second case, where x is the number of dollars
inserted. The machines can be hooked up so that the money coming out of
one machine goes into the other. Find formulas for each of the two possible
composition machines.

Solution.
Suppose first that x dollars enters the first machine. Then the amount of
money that comes out is f(x) = 2x. This amount enters the second machine.
The final amount coming out is given by g(f(x)) = f(x) + 5 = 2x + 5.
Now, if x dollars enters the second machine first, then the amount that comes
out is g(x) = x + 5. If this amount enters the second machine then the final
amount coming out is f(g(x)) = 2(x + 5) = 2x + 10. The function f(g(x)) is
called the composition of f with g.

In general, suppose we are given two functions f and g such that the range
of g is contained in the domain of f so that the output of g can be used as
input for f. We define a new function, called the composition of f with g,
by the formula

(f ◦ g)(x) = f(g(x)).
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Using a Venn diagram (See Figure 58) we have

Figure 58

Composition of Functions Defined by Tables

Example 26.2
Complete the following table

x 0 1 2 3 4 5
f(x) 1 0 5 2 3 4
g(x) 5 2 3 1 4 8
f(g(x))

Solution.

x 0 1 2 3 4 5
f(x) 1 0 5 2 3 4
g(x) 5 2 3 1 4 8
f(g(x)) 4 5 2 0 3 undefined

Composition of Functions Defined by Formulas

Example 26.3
Suppose that f(x) = 2x + 1 and g(x) = x2 − 3.

102



(a) Find f ◦ g and g ◦ f.
(b) Calculate (f ◦ g)(5) and (g ◦ f)(−3).
(c) Are f ◦ g and g ◦ f equal?

Solution.
(a) (f ◦ g)(x) = f(g(x)) = f(x2 − 3) = 2(x2 − 3) + 1 = 2x2 − 5. Similarly,
(g ◦ f)(x) = g(f(x)) = g(2x + 1) = (2x + 1)2 − 3 = 4x2 + 4x− 2.
(b) (f ◦ g)(5) = 2(5)2 − 5 = 45 and (g ◦ f)(−3) = 4(−3)2 + 4(−3)− 2 = 22.
(c) f ◦ g 6= g ◦ f.

With only one function you can build new functions using composition of
the function with itself. Also, there is no limit on the number of functions
that can be composed.

Example 26.4
Suppose that f(x) = 2x + 1 and g(x) = x2 − 3.

(a) Find (f ◦ f)(x).
(b) Find [f ◦ (f ◦ g)](x).

Solution.
(a) (f ◦ f)(x) = f(f(x)) = f(2x + 1) = 2(2x + 1) + 1 = 4x + 3.
(b) [f ◦(f ◦g)](x) = f(f(g(x))) = f(f(x2−3)) = f(2x2−5) = 2(2x2−5)+1 =
4x2 − 9.

Composition of Functions Defined by Graphs

Example 26.5
In this example, the functions f(x) and g(x) are the functions shown by the
graphs given in Figure 59. Draw a graph showing the composite function
f(g(x)).
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Figure 59

Solution.
We will use the point by point plotting technique to find points on the graph
of f(g(x)). Recall that the domain of f(g(x)) is the domain of g(x).

x 0 1 4 9
g(x) 0 1 2 3
f(g(x)) 1 0 -3 -8

Note that the rate of change of f(g(x)) is always equal to -1. Thus the graph
of f(g(x)) is a straight line with slope equals to -1. See Figure 60.

Figure 60
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Decomposition of Functions
If a formula for (f ◦ g)(x) is given then the process of finding the formulas
for f and g is called decomposition.

Example 26.6
Decompose (f ◦ g)(x) =

√
1− 4x2.

Solution.
One possible answer is f(x) =

√
x and g(x) = 1 − 4x2. Another possible

answer is f(x) =
√

1− x2 and g(x) = 2x. Thus, decomposition of functions
in not unique.

Difference Quotient
Difference quotients are what they say they are. They involve a difference
and a quotient. Geometrically, a difference quotient is the slope of a secant
line between two points on a curve. The formula for the difference quotient
is:

f(x + h)− f(x)

h
.

Example 26.7
Find the difference quotient of the function f(x) = x2.

Solution.
Since f(x + h) = (x + h)2 = x2 + 2hx + h2 then

f(x+h)−f(x)
h

= (x2+2hx+h2)−x2

h

= 2hx+h2

h
= h(2x+h)

h

= 2x + h.

Recommended Problems (pp. 347 - 9): 1, 4, 6, 8, 12, 14, 17, 21,
22, 23, 25, 27, 28, 29, 37, 38, 41, 45, 47, 49, 51, 55, 57.
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27 Inverse Functions

Inverse functions were introduced in Section 10. As a first application of this
concept, we defined the logarithm function to be the inverse function of the
exponential function.
For the sake of completness we recall the definition of inverse function. We
say that a function f is invertible if and only if every value in the range of
f determines exactly one value in the domain of f. We denote the inverse of
f by f−1. Thus, this new function f−1 takes every output of f to exactly one
input of f. Symbolically,

f(x) = y if and only if f−1(y) = x.

Example 27.1
Find the inverse function of (a) f(x) = log x (b) g(x) = ex.

Solution.
(a) f−1(x) = 10x (b) g−1(x) = ln x.

Compositions of f and its Inverse
Suppose that f is an invertible function. Then the expressions y = f(x) and
x = f−1(y) are equivalent. So if x is in the domain of f then

f−1(f(x)) = f−1(y) = x

and for y in the domain of f−1 we have

f(f−1(y)) = f(x) = y

It follows that for two functions f and g to be inverses of each other we must
have f(g(x)) = x for all x in the domain of g and g(f(x)) = x for x in the
domain of f.

Example 27.2
Check that the pair of functions f(x) = x

4
− 3

2
and g(x) = 4(x+ 3

2
) are inverses

of each other.

Solution.
The domain and range of both functions consist of the set of all real numbers.
Thus, for any real number x we have

f(g(x)) = f(4(x +
3

2
)) = f(4x + 6) =

4x + 6

4
− 3

2
= x.
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and

g(f(x)) = g(
x

4
− 3

2
) = 4(

x

4
− 3

2
+

3

2
) = x.

So f and g are inverses of each other.

Inverse functions are very useful in solving equations.

Example 27.3
Solve the equation 10x = 3.

Solution.
Let f(x) = 10x. Then f−1(x) = log x. We have seen earlier that the given
equation is solved by taking the log of both sides to obtain x = log 3. To see
the reason behind that, note that the equation log 10x = log 3 is written in
terms of f and f−1 as f−1(f(x)) = log 3. But from the discussion above we
know that f−1(f(x)) = x. Thus, x = log 3.

Finding a Formula for f−1

Recall the procedure, discussed in Section 10, for finding the formula for the
inverse function when the original function is defined by an equation:

1. Replace f(x) with y.
2. Interchange the letters x and y.
3. Solve for y in terms of x.
4. Replace y with f−1(x).

Example 27.4
Use a graphing calculator to show that the function f(x) = x3 + 7 has an
inverse. Find the formula for the inverse function.

Solution.
By the vertical line test (See Section 10) f(x) is invertible. We find its inverse
as follows:

1. Replace f(x) with y to obtain y = x3 + 7.
2. Interchange x and y to obtain x = y3 + 7.
3. Solve for y to obtain y3 = x− 7 or y = 3

√
x− 7.

4. Replace y with f−1(x) to obtain f−1(x) = 3
√

x− 7.
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Evaluating an Inverse Function Graphically
Sometimes it is difficult to find a formula for the inverse function. In this
case, a graphical method is used to evaluate the inverse of a function at a
given point. To be more precise, let f(x) = x3 +x+ 1. Using a graphing cal-
culator, one can easily check that the graph satisfies the horizontal line test
and consequently f(x) is invertible. Finding a formula of f−1(x) is difficult.
So if we want for example to evaluate f−1(4) then we write x = f−1(4), i.e.,
f(x) = 4 or

x3 + x + 1 = 4.

That is,
x3 + x− 3 = 0.

Now, using a graphing calculator and the INTERSCTION key one looks for
the x-intercepts of the function h(x) = x3 + x − 3 which is found to be
x ≈ 1.213. Thus, f−1(4) ≈ 1.213.

Example 27.5
Show that f(x) = 2x is invertible and find its inverse. Graph on the same
axes both f(x) and f−1(x). What is the relationship between the graphs?

Solution.
The graph of f(x) is given in Figure 61.

Figure 61

Thus, the horizontal test applies and the function is invertible.
To find a formula for the inverse function, we follow the four steps discussed
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above:

1. Replace f(x) with y to obtain y = 2x.
2. Interchange x and y to obtain x = 2y.
3. Solve for y by taking log of both sides to obtain y = log x

log 2
.

4. Replace y with f−1(x) to obtain f−1(x) = log x
log 2

.

Graphing both f(x) and f−1(x) on the same axes we find

Figure 62

So the graphs are reflections of one another across the line y = x as shown
in Figure 62.

Domain and Range of an Inverse Function
Using a Venn diagram the relationship between f and f−1 is shown in Figure
63.
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Figure 63

This shows that the outputs of f are the inputs of f−1 and the outputs of
f−1 are the inputs of f. It follows that

Domain of f−1 = Range of f and Range of f−1 = Domain of f.

Restricting the Domain
Sometimes a function that fails the horizontal line test, i.e. not invertible,
can be made invertible by restricting its domain. To be more specific, the
function f(x) = x2 defined on the set of all real numbers is not invertible
since we can find a horizontal line that crosses the graph twice. However, by
redefining this function on the interval [0,∞) then the new function satisfies
the horizontal line test and is therefore invertible.(See Figure 64)

Figure 64

Using the 4-step process discussed above, the inverse function is given by the
formula f−1(x) =

√
x, x ≥ 0.

Recommended Problems (pp. 359 - 60): 1, 3, 5, 7, 10, 11, 13,
17, 21, 29, 31, 32, 33, 34, 38, 43, 45.
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28 Combining Functions

In this section we are going to construct new functions from old ones using
the operations of addition, subtraction, multiplication, and division.
Let f(x) and g(x) be two given functions. Then for all x in the common
domain of these two functions we define new functions as follows:

• Sum: (f + g)(x) = f(x) + g(x).
• Difference: (f − g)(x) = f(x)− g(x).
• Product: (f · g)(x) = f(x) · g(x).

• Division:
(

f
g

)
(x) = f(x)

g(x)
provided that g(x) 6= 0.

Old Functions Defined by Formulas
In the following example we see how to construct the four functions discussed
above when the individual functions are defined by formulas.

Example 28.1
Let f(x) = x + 1 and g(x) =

√
x + 3. Find the common domain and then

find a formula for each of the functions f + g, f − g, f · g, f
g
.

Solution.
The domain of f(x) consists of all real numbers whereas the domain of g(x)
consists of all numbers x ≥ 3. Thus, the common domain is the interval
[−3,∞). For any x in this domain we have

(f + g)(x) = x + 1 +
√

x + 3
(f − g)(x) = x + 1−

√
x + 3

(f · g)(x) = x
√

x + 3 +
√

x + 3(
f
g

)
(x) = x+1√

x+3
provided x > −3.

Old Functions Defined by Tables
In the next example, we see how to evaluate the four functions when the
individual functions are given in numerical forms.

Example 28.2
Suppose the functions f and g are given in numerical forms. Complete the
following table:
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x -1 -1 0 1 1 3
f(x) 8 2 7 -1 -5 -3
g(x) -1 -5 -11 7 8 9
(f + g)(x)
(f − g)(x)
(f · g)(x)

(f
g
)(x)

Solution.

x -1 -1 0 1 1 3
f(x) 8 2 7 -1 -5 -3
g(x) -1 -5 -11 7 8 9
(f + g)(x) 7 -3 -4 6 3 6
(f − g)(x) 9 7 18 -8 -13 -12
(f · g)(x) -8 -10 -77 -7 -40 -27

(f
g
)(x) -8 -2

5
- 7
11

-1
7

-5
8

-1
3

Old Functions are Defined Graphically

Example 28.3
Using the graphs of the functions f and g given in Figure 65, find if possible

(a) (f + g)(−1) (b) (f − g)(1) (c) (f · g)(2) (d)
(

f
g

)
(0).

Figure 65
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Solution.
(a) Since f(−1) = 3 and g(−1) = −2 then (f + g)(−1) = 3− 2 = 1.
(b) Since f(1) = 3 and g(1) = −1 then (f − g)(1) = 3− 1 = 2.
(c) Since f(2) = 2 and g(2) = −1 then (f · g)(2) = −2.

(d) Since f(0) = 3 and g(0) = 0 then
(

f
g

)
(0) is undefined.

• Graphing by Addition of Ordinates
Given two functions f and g, the sum of the functions is the function h(x) =
f(x) + g(x). The graph of h can be obtained by graphing f and g seperately
and then geometrically adding the y-coordinates of each function for a given
value of x. This method is commonly used in trigonometry.

Example 28.4
Let f(x) = x2 + 1 and g(x) = −2x + 3. Graph the functions f, g, and f − g.

Solution.
The graphs of f(x)(in red) and g(x)(in blue) are given in Figure 66.

Figure 66

Finding the points of intersection of the graphs of f(x) and g(x) by solving
the equation x2 + 1 = −2x + 3 or x2 + 2x − 2 = 0 we find α = −1 −

√
2

113



and β = −1 +
√

2. As x approaches α from the left, the vertical distances
between the graphs of f and g are getting less and less positive and becomes
zero at x = α. After that the distances become more and more negative (in
magnitude) til reaching a value x0 where −2 < x0 < 0. For x0 < x < β the
vertical disctances become less and less negative (in magnitude). The vertical
distance is zero at x = β. For x > β the vertical distances are more and more
positive. Figure 67 shows the graphs of f(x), g(x) and f(x)−g(x) (in black.)

Figure 67

Example 28.5
Let f(x) = x2 + 1 and g(x) = −2x + 3. Graph the functions f, g, and f + g.

Solution.
First we construct the following table.

x -4 -3 -2 -1 0 1 2 3 4
f(x) 17 10 5 2 1 2 5 10 17
g(x) 11 9 7 5 3 1 -1 -3 -5
f+g 28 19 12 7 4 3 4 7 12
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The graphs of f, g, and f + g (in black) are given in Figure 68.

Figure 68

Recommended Problems (pp. 367 - 9): 1, 3, 5, 7, 9, 11, 15, 16, 17,
18, 19, 20.
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29 Power Functions

A function f(x) is a power function of x if there is a nonzero constant k
such that

f(x) = kxn

The number n is called the power of x. If n > 0, then we say that f(x)
is proportional to the nth power of x. If n < 0 then f(x) is said to be
inversely proportional to the nth power of x. We call k the constant
of proportionality and for most applications we interested only in positive
values of k.

Example 29.1
(a) The strength, S, of a beam is proportional to the square of its thickness,
h. Write a formula for S in terms of h.
(b) The gravitational force, F, between two bodies is inversely proportional
to the square of the distance d between them. Write a formula for F in terms
of d.

Solution.
(a) S = kh2, where k > 0. (b) F = k

d2 , k > 0.

Remark 29.1
Recall that an exponential function has the form f(x) = bax, where the base
a is fixed ans the exponent x varies. For a power function these properties
are reversed- the base varies and the exponent remains constant.

Domains of Power Functions
If n is a non-negative integer then the domain of f(x) = kxn consists of all
real numbers. If n is a negative integer then the domain of f consists of all
nonzero real numbers.
If n = r

s
, where r and s have no common factors, then the domain of f(x) is

all real numbers for s odd and n > 0 (all non zero real numbers for s odd and
n < 0.) If s is even and n > 0 then the domain consists of all non-negative
real numbers( all positive real numbers if n < 0.)

The Effect of n on the Graph of xn

We assume that k = 1 and we will compare the graphs of f(x) = xn for
various values of n. We will use graphing calculator to illustrate how power
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functions work and the role of n.
When n = 0 then the graph is a horizontal line at (0, 1). When n = 1 then
the graph is a straight line through the origin with slope equals to 1. See
Figure 69.

Figure 69

The graphs of all power functions with n = 2, 4, 6, · · · have the same charac-
teristic ∪ − shape and they satisfy the following properties:

1. Pass through the points (0, 0), (1, 1), and (−1, 1).
2. Decrease for negative values of x and increase for positive values of x.
3. Are symmetric about the y-axis because the functions are even.
4. Are concave up.
5. The graph of y = x4 is flatter near the origin and steeper away from the
origin than the graph of y = x2. See Figure 70.
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Figure 70

The graphs of power functions with n = 1, 3, 5, · · · resemble the side view of
a chair and satisfy the following properties:

1. Pass through (0, 0) and (1, 1) and (−1,−1).
2. Increase on every interval.
3. Are symmetric about the origin because the functions are odd.
4. Are concave down for negative values of x and concave up for positive
values of x.
5. The graph of y = x5 is flatter near the origin and steeper far from the
origin than the graph of y = x3. See Figure 71.
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Figure 71

Graphs of y = xn with n = −1,−3, · · · .
1. Passes through (1, 1) and (−1,−1) and does not have a y-intercept.
2. Is decreasing everywhere that it is defined.
3. Is symmetric about the origin because the function is odd.
4. Is concave down for negative values of x and concave up for positive values
of x.
5. Has the x-axis as a horizontal asymptote and they y-axis as a vertical
asymptote.
6. For −1 < x < 1, the graph of y = 1

x
approaches the y-axis more rapidly

then the graph of y = 1
x3 . For x < −1 or x > 1 the graph of y = 1

x3 approach
the x-axis more rapidly then the graph of y = 1

x
. See Figure 72.
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Figure 72

Graphs of y = xn with n = −2,−4, · · ·
1. Passes through (1, 1) and (−1, 1) and does not have a y- or x-intercept.
2. Is increasing for negative values of x and decreasing for positive values of
x.
3. Is symmetric about the y-axis because the function is even.
4. Is concave up everywhere that it is defined.
5. Has the x-axis as a horizontal asymptote and the y-axis as vertical asymp-
tote.
6. For −1 < x < 1, the graph of y = 1

x2 approaches the y-axis more rapidly
then the graph of y = 1

x4 . For x < −1 or x > 1 the graph of y = 1
x4 approach

the x-axis more rapidly then the graph of y = 1
x2 . See Figure 73.
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Figure 73

Graphs of y = x
1
r where r = 2, 4, · · · has the following properties:

1. Domain consists of all non-negative real numbers.
2. Pass through (0, 0) and (1, 1).
3. Are increasing for x > 0.
4. Are concave down for x > 0.
5. The graph of y = x

1
4 is steeper near the origin and flatter away from the

origin then the graph of y = x
1
2 See Figure 74.

Figure 74
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Graphs of y = x
1
r where r = 3, 5, · · · has the following properties:

1. Domain consists for all real numbers.
2. Pass through (0, 0), (1, 1) and (−1,−1).
3. Are increasing.
4. Are concave down for x > 0 and concave up for x < 0.
5. The graph of y = x

1
5 is steeper near the origin and flatter away from the

origin then the graph of y = x
1
3 . See Figure 75.

Figure 75

Finding the Formula of a Power Function
Finding the formula of a power function means finding the constants n and
k. This can be done if two points on the graph are given.

Example 29.2
The area A of a circle is directly proportional to a power of the radius r.
When r = 1 then A = π and when A = π3 then r = π. Express A as a
function of r.

Solution.
We have that A(r) = krn. Since A(1) = π then π = k. Since A(π) = π3 then
π3 = π(π)n. That is, πn = π2 or n = 2. Hence, A(r) = πr2.

Recommended Problems (pp. 381 - 3): 1, 2, 5, 7, 8, 9, 11, 13,
15, 17, 19, 21, 27, 29.
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30 Polynomial Functions

In addition to linear, exponential, logarithmic, quadratic, and power func-
tions, many other types of functions occur in mathematics and its applica-
tions. In this section, we will study polynomial functions.
Polynomial functions are among the simplest, most important, and most
commonly used mathematical functions. These functions consist of one or
more terms of variables with whole number exponents. (Whole numbers are
positive integers and zero.) All such functions in one variable (usually x) can
be written in form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0, an 6= 0

where an, an−1, · · · , a1, a0 are all real numbers, called the coefficients of f(x).
The number n is a non-negative integer. It is called the degree of the
polynomial. A polynomial of degree zero is just a constant function. A
polynomial of degree one is a linear function, of degree two a quadratic
function, etc. The number an is called the leading coefficient and a0 is
called the constant term.
Note that the terms in a polynomial are written in descending order of the
exponents. Polynomials are defined for all values of x.

Example 30.1
Find the leading coefficient, the constant term and the degreee of the poly-
nomial f(x) = 4x5 − x3 + 3x2 + x + 1.

Solution.
The given polynomial is of degree 5, leading coefficient 4, and constant term
1.

A polynomial function will never involve terms where the variable occurs
in a denominator, underneath a radical, as an input of either an exponential,
logarithmic, or trigonometric function.

Example 30.2
Determine whether the function is a polynomial function or not:

(a) f(x) = 3x4 − 4x2 + 5x− 10
(b) g(x) = x3 − ex + 3
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(c) h(x) = x2 − 3x + 1
x

+ 4
(d) i(x) = x2 −

√
x− 5

(e) j(x) = x3 − 3x2 + 2x− 5 ln x− 3.
(f) k(x) = x− sin x.

Solution.
(a) f(x) is a polynomial function of degree 4.
(b) g(x) is not a ploynomial because one of the terms is an exponential func-
tion.
(c) h(x) is not a polynomial because x is in the denominator of a fraction.
(d) i(x) is not a polynomial because it contains a radical sign.
(e) j(x) is not a polynomial because one of the terms is a logarithm of x.
(f) k(x) is not a polynomial function because it involves a trigonometric
function.

Long-Run Behavior of a Polynomial Function
If f(x) and g(x) are two functions such that f(x)− g(x) ≈ 0 as x increases
without bound then we say that f(x) resembles g(x) in the long run. For
example, if n is any positive integer then 1

xn ≈ 0 in the long run.
Now, if f(x) = anx

n + an−1x
n + · · ·+ a1x + a0 then

f(x) = xn
(
an +

an−1

x
+

an−2

x2
+ · · ·+ a1

xn−1
+

a0

xn

)
Since 1

xk ≈ 0 in the long run, for each 1 ≤ k ≤ n then

f(x) ≈ anx
n

in the long run.

Example 30.3
The polynomial function f(x) = 1− 2x4 + x3 resembles the function g(x) =
−2x4 in the long run.

Zeros of a Polynomial Function
If f is a polynomial function in one variable, then the following statements
are equivalent:

• x = a is a zero or root of the function f.
• x = a is a solution of the equation f(x) = 0.
• (a, 0) is an x-intercept of the graph of f. That is, the point where the graph
crosses the x-axis.
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Example 30.4
Find the x-intercepts of the polynomial f(x) = x3 − x2 − 6x.

Solution.
Factoring the given function to obtain

f(x) = x(x2 − x− 6)
= x(x− 3)(x + 2)

Thus, the x-intercepts are the zeros of the equation

x(x− 3)(x + 2) = 0

That is, x = 0, x = 3, or x = −2.

Graphs of a Polynomial Function
Polynomials are continuous and smooth everywhere:

• A continuous function means that it can be drawn without picking up
your pencil. There are no jumps or holes in the graph of a polynomial func-
tion.
• A smooth curve means that there are no sharp turns (like an absolute
value) in the graph of the function.
• The y-intercept of the polynomial is the constant term a0.

The shape of a polynomial depends on the degree and leading coefficient:

• If the leading coefficient, an, of a polynomial is positive, then the right
hand side of the graph will rise towards +∞.
• If the leading coefficient, an, of a polynomial is negative, then the right
hand side of the graph will fall towards −∞.
• If the degree, n, of a polynomial is even, the left hand side will do the same
as the right hand side.
• If the degree, n, of a polynomial is odd, the left hand side will do the
opposite of the right hand side.

Example 30.5
According to the graphs given below, indicate the sign of an and the parity
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of n for each curve.

Figure 76

Solution.
(a) an < 0 and n is odd.
(b) an > 0 and n is odd.
(c) an > 0 and n is even.
(d) an < 0 and n is even.

Recommended Problems (pp. 388 - 9): 1, 2, 4, 5, 6, 9, 11, 15,
17, 19, 20.
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31 The Short-Run Behavior of Polynomials

We have seen in the previous section that the two functions f(x) = x3 +
3x2 + 3x + 1 and g(x) = x3− x2− 6x resemble the function h(x) = x3 at the
long-term behavior. See Figure 77.

Figure 77

Although f and g have similar long-run behavior, they are not identical
functions. This can be seen by studying the short-run (or local) behavior
of these functions.
The short-run behavior of the graph of a function concerns graphical feature
of the graph such as its intercepts or the number of bumps on the graph. For
example, the function f(x) has an x-intercept at x = −1 and y-intercept at
y = 1 and no bumps. On the other hand, the function g(x) has x-intercepts
at x = −2, 0, 3, y-intercept at y = 0, and two bumps.
As you have noticed, the zeros (or roots) of a polynomial function is one of the
important part of the short-run behavior. To find the zeros of a polynomial
function, we can write it in factored form and then use the zero product rule
which states that if a · b = 0 then either a = 0 or b = 0. To illustrate, let us
find the zeros of the function g(x) = x3 − x2 − 6x.
Factoring, we find

g(x) = x(x2 − x− 6) = x(x− 3)(x + 2).

Setting g(x) = 0 and solving we find x = 0, x = −2, and x = 3. The number
of zeros determines the number of bumps that a graph has since between any
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two consecutive zeros, there is a bump because the graph changes direction.
Thus, as we see from the graph of g(x) that g(x) has two bumps.
Now, the function f(x) has only one zero at x = −1. We call x = −1 a zero
of multiplicity three.
It is easy to see that when a polynomial function has a zero of even multiplic-
ity than the graph does not cross the x-axis at that point; on the contrary,
if the zero is of odd multiplicity than the graph crosses the x-axis.

Example 31.1
Sketch the graph of f(x) = (x + 1)3 and g(x) = (x + 1)2.

Solution.
The graphs of f(x) and g(x) are shown in Figure 78.

Figure 78

Finding a Formula for a Polynomial from its Graph

Example 31.2
Find a formula of the function whose graph is given Figure 79.
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Figure 79

Solution.
From the graph we see that f(x) has the form

f(x) = k(x + 1)(x− 3)2.

Since f(0) = −3 then k(0 + 1)(0− 3)2 = −3 or k = −1
3
. Thus,

f(x) = −1

3
(x + 1)(x− 3)2.

Recommended Problems (pp. 394 - 5): 1, 3, 5, 7, 9, 10, 11, 13, 19,
21, 27, 29, 31, 35, 37, 39.
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32 Rational Functions

A rational function is a function that is the ratio of two polynomial func-
tions f(x)

g(x)
. The domain consists of all numbers such that g(x) 6= 0.

Example 32.1
Find the domain of the function f(x) = x−2

x2−x−6
.

Solution.
The domain consists of all numbers x such that x2− x− 6 6= 0. But this last
quadratic expression is 0 when x = −2 or x = 3. Thus, the domain is the set
(−∞,−2) ∪ (−2, 3) ∪ (3,∞).

The Long-Run Behavior of Rational Functions
Given a rational function

f(x) =
amxm + am−1x

m−1 + · · ·+ a1x + a0

bnxn + bn−1xn−1 + · · ·+ b1x + b0

.

We know that the top polynomial resembles amxm and the bottom poly-
nomial resembles bnx

n in the long run. It follows that, in the long run,
f(x) ≈ amxm

bnxn .

Example 32.2
Discuss the long run behavior of each of the following functions:

(a) f(x) = 3x2+2x−4
2x2−x+1

.

(b) f(x) = 2x+3
x3−2x2+4

.

(c) f(x) = 2x2−3x−1
x−2

.

Solution.
(a) f(x) = 3x2+2x−4

2x2−x+1
≈ 3x2

2x2 = 3
2
.

(b) f(x) = 2x+3
x3−2x2+4

≈ 2x
x3 = 2

x2 .

(c) f(x) = 2x2−3x−1
x−2

≈ 2x2

x
= 2x.

Horizontal Asymptote
Contrary to polynomial functions, it is possible for a rational function to
level at x →∞ or x → −∞. That is, f(x) approaches a value b as x →∞ or
x → −∞. We call y = b a horizontal asymptote. The graph of a rational
function may cross its horizontal asymptote.

130



Example 32.3
Find the horizontal asymptote, if it exists, for each of the following functions:

(a) f(x) = 3x2+2x−4
2x2−x+1

.

(b) f(x) = 2x+3
x3−2x2+4

.

(c) f(x) = 2x2−3x−1
x−2

.

Solution.
(a) As x → ±∞, we have

f(x) = 3x2+2x−4
2x2−x+1

= x2

x2 ·
3+ 2

x
− 4

x2

2− 1
x
+ 1

x2
→ 3

2

so the line y = 3
2

is the horizontal asymptote.
(b) As x → ±∞, we have

f(x) = 2x+3
x3−2x2+4

= x
x3 ·

2+ 3
x

1− 2
x
+ 4

x3
→ 0

so the x-axis is the horizontal asymptote.
(c) As x → ±∞, we have

f(x) = 2x2−3x−1
x−2

= x2

x
· 2− 3

x
− 1

x2

1− 2
x

→∞

so the function has no horizontal asymptote.

Oblique Asymptote
If ((mx + b) − f(x)) → 0 as x → ±∞ then we call the line y = mx + b
an oblique asymptote. This happens when the degree of the numerator is
greater than the degree of the denominator. The oblique asymptote is just
the quotient of the division of the top polynimal by the bottom polynomial
as shown in the next example.

Example 32.4
Find the oblique asymptote of the function f(x) = 2x2−3x−1

x−2
.
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Solution.
Using long division of polynomials we can write

f(x) = 2x + 1 +
1

x− 2

Thus, f(x)−(2x+1) = 1
x−2

→ 0 as x → ±∞. Thus, y = 2x+1 is the oblique
asymptote.

Recommended Problems (pp. 400 - 1): 1, 3, 5, 9, 11, 12, 13,
16.
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33 The Short-Run Behavior of Rational Func-

tions

In this section we study the local behavior of rational functions which in-
cludes the zeros and the vertical asymptotes.

The Zeros of a Rational Function
The zeros of a rational function or its x-intercepts. They are those numbers
that make the numerator zero and the denominator nonzero.

Example 33.1
Find the zeros of each of the following functions:

(a) f(x) = x2+x−2
x−3

(b) g(x) = x2+x−2
x−1

.

Solution.
(a) Factoring the numerator we find x2 + x− 2 = (x− 1)(x + 2). Thus, the
zeros of the numerator are 1 and −2. Since the denominator is different from
zeros at these values then the zeros of f(x) are 1 and -2.
(b) The zeros of the numerator are 1 and -2. Since 1 is also a zero of the
denominator then g(x) has -2 as the only zero.

Vertical Asymptote
When the graph of a function either grows without bounds or decay without
bounds as x → a then we say that x = a is a vertical asymptote. For
rational functions, the vertical asymptotes are the zeros of the denominator.
Thus, if x = a is a vertical asymptote then as x approaches a from either
sides the function becomes either positively large or negatively large. The
graph of a function never crosses its vertical asymptotes.

Example 33.2
Find the vertical asymptotes of the function f(x) = 2x−11

x2+2x−8

Solution.
Factoring x2 + 2x − 8 = 0 we find (x − 2)(x + 4) = 0. Thus, the vertical
asymptotes are the lines x = 2 and x = −4.

Graphing Rational Functions
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To graph a rational function h(x) = f(x)
g(x)

:

1. Find the domain of h(x) and therefore sketch the vertical asymptotes
of h(x).
2. Sketch the horizontal or the oblique asymptote if they exist.
3. Find the x− intercepts of h(x) by solving the equation f(x) = 0.
4. Find the y-intercept: h(0)
5. Draw the graph

Example 33.3
Sketch the graph of the function f(x) = x(4−x)

x2−6x+5

Solution.

1. Domain = (−∞, 1) ∪ (1, 5) ∪ (5,∞). The vertical asymptotes are x = 1
and x = 5.
2. As x → ±∞, f(x) ≈ −1 so the line y = 1 is the horizontal asymptote.
3. The x-intercepts are at x = 0 and x = 4.
4. The y-intercept is y = 0.
5. The graph is given in Figure 80.
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Figure 80

Finding a Formula for a Rational Function from its Graph

Example 33.4
Find a possible formula for the rational function, f(x), given in Figure 81.

Figure 81

Solution.
The vertical asymptote is at x = −2 and the horizontal asymptote is at
y = 0. Also, f(x) has a zero at x = −1. Thus, a possible formula for f(x) is

f(x) = k
x + 1

(x + 2)2
.

We fins the value of k by using the y-intercept. Since f(0) = 1
2

then k
4

= 1
2

or k = 2. Hence,

f(x) =
2(x + 1)

(x + 2)2
.

• When Numerator and Denominator Have Common Zeros
We have seen in Example 33.1, that the function g(x) = x2+x−2

x−1
has a com-

mon zero a4 x = 1. You might wonder What the graph looks like. For x 6= 1,
the function reduces to g(x) = x + 2. Thus, the graph of g(x) is a straight
line with a hole at x = 1 as shown in Figure 82.
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Figure 82

Recommended Problems (pp. 406 - 10): 1, 3, 4, 5, 7, 10, 13, 16,
23, 25, 27, 29, 31, 35, 37, 39, 45, 46.
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34 Angles and Arcs

In this section you will learn (1) to identify and classify angles, (2) to mea-
sure angles in both degrees and radians, (3) to convert between the units,
(4) to find the measures of arcs spanned by angles, (5) to find the area of a
circular sector, and (6) to measure linear and angular speeds, given a situa-
tion representing a circular motion.

Angles appear in a lot of applications. Let’s mention one situation where
angles can be very useful. Suppose that you are standing at a point 100 feet
away of the Washington monument and you would like to approximate the
height of the monument. Assuming that your height is negligeable compared
to the height of the monument so that you can be identified by a point on the
horizontal line. If you know the amount of opening between the line of sight,
i.e. the line connecting you to the top of the monument, and the horizontal
line then by applying a specific trigonometric function to that opening you
will be able to estimate the height of the monument. The ”opening” between
the line of sight and the horizontal line gives an example of an angle.
An angle is determined by rotating a ray ( or a half-line) from one position,
called the initial side, to a terminal position, called the terminal side, as
shown in Figure 83 below. The point V is called the vertex of the angle.

Figure 83

If the initial side is the positive x-axis then we say that the angle is in
standard position. See Figure 84.
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Figure 84

Angles that are obtained by a counterclockwise rotation of the initial side
are considered positive and those that are obtained clockwise are negative
angles. See Figure 85.

Figure 85

Most of the time, we will use Greek lowercase letters such as α (alpha), β
(beta), γ (gamma) , etc. to denote angles. If α is an angle obtained by

rotating an initial ray
−→
OA to a terminal ray

−−→
OB then we sometimes denote

that by writing α = ∠AOB.

Angle Measure
The measure of an angle is determined by the amount of rotation from the
initial side to the terminal side, this is how much the angle ”opens”. There
are two commonly used measures of angles: degrees and radians

• Degree Measure:
If we rotate counterclockwise a ray about a fixed vertex and then return back
to its initial position then we say that we have a one complete revolution.
The angle in this case is said to have measure of 360 degrees, in symbol 360◦.
Thus, 1◦ is 1

360
th of a revolution. See Figure 86)
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Figure 86

Example 34.1
Draw each of the following angles in standard positions: (a) 225◦ (b) −90◦

(c) 180◦.

Solution.
The specified angles are drawn in Figure 87 below

Figure 87

Remark 34.1
A protractor can be used to measure angles given in degrees or to draw an
angle given in degree measure.

• Radian Measure:
A more natural method of measuring angles used in calculus and other
branches of mathematics is the radian measure. The amount an angle opens
is measured along the arc of the unit circle with its center at the vertex of
the angle.( An angle whose vertex is the center of a circle is called a central
angle.) One radian, abbreviated rad, is defined to be the measure of a
central angle that intercepts an arc s of length one unit. See Figure 87.
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Figure 87

Since one complete revolution measured in radians is 2π radians and mea-
sured in degrees is 360◦ then we have the following conversion formulas:

1◦ =
π

180
rad ≈ 0.01745 rad and 1 rad = (

180

π
)◦ ≈ 57.296◦.

Example 34.2
Complete the following chart.

degree 30◦ 45◦ 60◦ 90◦ 180◦ 270◦

radian

Solution.

degree 30◦ 45◦ 60◦ 90◦ 180◦ 270◦

radian π
6

π
4

π
3

π
2

π 3π
2

By the conversion formulas, we have, for example 30◦ = 30(1◦) = 30
(

π
180

)
=

π
6
. In a similar way we convert the remaining angles.

Example 34.3
Convert each angle in degrees to radians: (a) 150◦ (b) −45◦.

Solution.
(a) 150◦ = 150(1◦) = 150( π

180
) = 5π

6
rad.

(b) −45◦ = −45(1◦) = −45( π
180

) = −π
4
rad.

Example 34.4
Convert each angle in radians to degrees: (a) −3π

4
(b) 7π

3
.

Solution.
(a) −3π

4
= −3π

4
(1 rad) = −3π

4
(180

π
)◦ = −135◦.

(b) 7π
3

= 7π
3

(180
π

)◦ = 420◦

Remark 34.2
When no unit of an angle is given then the angle is assumed to be measured
in radians.
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Classification of Angles
Some types of angles have special names:(See Figure 88)

1. A 90◦ angle is called a right angle.
2. A 180◦ angle is called a straight angle.
3. An angle between 0◦ and 90◦ is called an acute angle.
4. An angle between 90◦ and 180◦ is called an obtuse angle.
5. Two acute angles are complementary if their sum is 90◦.
6. Two positive angles are supplementary if their sum is 180◦.
7. Angles in standard positions with terminal sides that lie on a coordinate
axis are called quadrantal angles. Thus, the angles 0◦,±90◦,±180◦, etc are
quadrantal angles.

Figure 88

Remark 34.3
Non quadrantal angles are classified according to the quadrant that contains
the terminal side. For example, when we say that an angle is in Quadrant
III then by that we mean that the terminal side of the angle lies in the third
quadrant.

Two angles in standard positions with the same terminal side are called
coterminal.(See Figure 89) We can find an angle that is coterminal to a
given angle by adding or subtracting one revolution. Thus, a given angle has
many coterminal angles. For instance, α = 36◦ is coterminal to all of the
following angles: 396◦, 756◦,−324◦,−684◦
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Figure 89

Example 34.5
Find a coterminal angle for the following angles, given in standard positions:
(a) 530◦ (b) −400◦.

Solution.
(a) A positive angle coterminal with 530◦ is obtained by adding a multi-
ple of 360◦. For example, 530◦ + 360◦ = 890◦. A negative angle cotermi-
nal with 530◦ is obtained by subtracting a multiple of 360◦. For example,
530◦ − 720◦ = −190◦.
(b) A positive angle is −400◦ + 720◦ = 320◦ and a negative angle is −400◦ +
360◦ = −40◦.

Length of a Circular Arc
A circular arc swept out by a central angle is the portion of the circle which is
opposite an interior angle. We discuss below a relationship between a central
angle θ, measured in radians, and the length of the arc s that it intercepts.

Theorem 34.1
For a circle of radius r, a central angle of θ radians subtends an arc whose
length s is given by the formula:

s = rθ

Proof.
Suppose that r > 1. (A similar argument holds for 0 < r < 1.) Draw the unit
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circle with the same center C (See Figure 90).

Figure 90

By definition of radian measure, the length of the arc determined by θ on the
unit circle is also θ. From elementary geometry, we know that the ratio of the
measures of the arc lengths are the same as the ratio of the corresponding
radii. That is,

r

1
=

s

θ
.

Now the formula follows by cross-multiplying.

The above formula allows us to define the radian measure using a circle
of any radius r. (See Figure 91).

Figure 91

Example 34.6
Find the length of the arc of a circle of radius 2 meters subtended by a central
angle of measure 0.25 radians.
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Solution.
We are given that r = 2 m and θ = 0.25 rad. By the previous theorem we
have:

s = rθ = 2(0.25) = 0.5 m

Example 34.7
Suppose that a central angle of measure 30◦ is subtended by an arc of length
π
2

feet. Find the radius r of the circle.

Solution.
Substituting in the formula s = rθ we find π

2
= r π

6
. Solving for r to obtain

r = 3feet.
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Review Problems

Exercise 34.1
Draw the following angles in standard position.
(a) 30◦ (b) 45◦ (c) −270◦

Exercise 34.2
Convert each angle in degrees to radians.
(a) 165◦ (b) −270◦ (c) 585◦.

Exercise 34.3
Convert each angle in radians to degrees.
(a) 9π

2
(b) 2 rad (c) −2π

3
.

Exercise 34.4
Find the number of radians in 3

8
revolution.

Exercise 34.5
Classify each angle by quadrant, and state the measure of the positive angle
with measure less than 360◦ that is coterminal with the given angle:
(a) 765◦ (b) −975◦ (c) 2456◦.

Exercise 34.6
Find two positive angles and two negative angles that are coterminal with the
given angles.

(a) 13π
6

(b) 3π
4

(c) −2π
3

(d) −45◦ (e) 135◦.

Exercise 34.7
The measures of two angles in standard positions are given. Determine
whether the angles are coterminal.

(a) 70◦, 340◦

(b) 5π
6

, 17π
6

(c) 155◦, 875◦.

Exercise 34.8
Find an angle between 0◦ and 360◦ that is coterminal with the given angle.

(a) 733◦ (b) −100◦ (c) 1270◦ (d) −800◦
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Exercise 34.9
Find an angle between 0 and 2π radians that is coterminal with the given
angle.

(a) 17π
6

(b) −7π
3

(c) 10 (d) 51π
2

Exercise 34.10
Determine the complement and the supplement of each angle:
(a) 87◦ (b) 56◦33′15′′ (c) 4π

3
.

Exercise 34.11
Determine the length of an arc of a circle of radius 4 centimeters that sub-
tends a central angle of measure 2.3 radians.

Exercise 34.12
Suppose that a central angle of a circle of radius 12 meters subtends an arc
of length 14 meters. Find the radian measure of the angle.

Exercise 34.13
Find the length of an arc that subtends a central angle of 45◦ in a circle of
radius 10 m.

Exercise 34.14
A central angle θ in a circle of radius 5 m is subtended by an arc of length 6
m. Find the measure of θ in degrees and in radians.
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35 Circular Functions

In this section, you will (1) study the trigonometric functions of real num-
bers, (2) their properties, and (3) some of the identities that they satisfy.

Consider the unit circle, i.e. the circle with center at the point O(0, 0)
and radius 1. Such a circle has the equation x2 + y2 = 1. Let t be any real
number. Start at the point A(1,0) on the unit circle and move on the circle
• counter-clockwise, if t > 0, a distance of t units, arriving at some point
P (a, b) on the circle;
• clockwise, if t < 0, a distance of t units, arriving at some point P (a, b) on
the circle.
We define the wrapping function W of t to be the point P (a, b). In func-
tion notation, we write W (t) = P (a, b). See Figure 92.
For the number t, we define the following circular functions:

sin t = b cos t = a tan t = b
a

csc t = 1
b

sec t = 1
a

cot t = a
b

where a 6= 0 and b 6= 0. If a = 0 then the functions sec t and tan t are
undefined. If b = 0 then the functions csct and cot t are undefined.

Figure 92

Thus, for any real number t, W (t) = (cos t, sin t).

Remark 35.1
It follows from the above discussion that the value of a trigonometric function
of a real number t is its value at the angle t radians.
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Properties of the Trigonometric Functions of Real Numbers
First, recall that a function f(t) is even if and only if f(−t) = f(t). In this
case, the graph of f is symmetric about the y-axis. A function f is said to be
odd if and only if f(−t) = −f(t). The graph of an odd function is symmetric
about the origin.

Theorem 35.1
The functions sin t, csc t, tan t and cot t are odd functions. The functions cos t
and sec t are even. That is,

sin (−t) = − sin t tan (−t) = − tan t
csc (−t) = − csc t cot (−t) = − cot t
cos (−t) = cos t sec (−t) = sec t

Proof.
Let P (a, b) be the point on the unit circle such that the arc

_
AP has length t.

Then the arc
_
AP ′, where P ′(a,−b), has length t and subtends a central angle

−t. See Figure 93. It follows that

sin (−t) = −b = − sin t tan (−t) = −b
a

= − tan t
csc (−t) = −1

b
= − csc t cot (−t) = −a

b
= − cot t

cos (−t) = a = cos t sec (−t) = 1
a

= sec t.

Figure 93

Example 35.1
Is the function f(t) = t− cos t even, odd, or neither?
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Solution.
Since f(−t) = −t − cos (−t) = −t − cos t 6= ±f(t) then f(t) is neither even
nor odd.

We say that a function f is periodic of period p if and only if p is the
smallest positive number such that f(t + p) = f(t). Graphically, this means
that if the graph of f is shifted horizontally by p units, the new graph is
identical to the original.

Theorem 35.2
(a) The functions sin t, cos t, sec t, and csc t are periodic functions of period
2π. That is, for any real number t in the domain of these functions

sin (t + 2π) = sin t cos (t + 2π) = cos t
csc (t + 2π) = csc t sec (t + 2π) = sec t.

(b) The functions tan t and cot t are periodic of period π. That is, for any
real number t in the domain of these functions

tan (t + π) = tan t and cot (t + π) = cot t.

Proof.
(a) Since the circumference of the unit circle is 2π then W (t + 2π) = W (t).
That is (cos (t + 2π), sin (t + 2π)) = (cos t, sin t). This implies the following

sin (t + 2π) = sin t and cos (t + 2π) = cos t.

Also,
sec (t + 2π) = 1

cos (t+2π)
= 1

cos t
= sec t

csc (t + 2π) = 1
sin (t+2π)

= 1
sin t

= csc t

We show that 2π is the smallest positive number such that the above equal-
ities hold. We prove the result for the sine function. Let 0 < c < 2π
be such that sin (x + c) = sin x for all real numbers x. In particular if
x = 0 then sin c = 0 and consequently c = kπ for some positive inte-
ger k. Thus, 0 < kπ < 2π and this implies k = 1. Now if x = π

2
then

sin (π
2

+ π) = sin π
2

= 1. But sin (π
2

+ π) = −1, a contradiction. It follows
that 2π is the smallest positive number such that sin (x + 2π) = sin x. This
shows that sin x is periodic of period 2π. A similar proof holds for the cosine
function. Since sec t = 1

cos t
and csc t = 1

sin t
then these functions are of period
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2π.
(b) We have that W (t) = P (a, b) and W (t + π) = P (−a,−b). Thus,

tan (t + π) = −b
−a

= b
a

= tan t

cot (t + π) = 1
tan (t+π)

= 1
tan t

= cot t.

Now, if 0 < c < π is such that tan (c + x) = tan x for all real numbers
x then in particular, for x = 0 we have tan c = 0 and this implies that
c = kπ for some positive integer k. Thus, 0 < kπ < π i.e. 0 < k < 1
which is a contradiction. It follows that π is the smallest positive integer
such that tan (x + π) = tan x. Hence, the tangent function is of period π.
Since cot x = 1

tan x
then the cotangent function is also of period π.

Theorem 35.3
The domain of sin t and cos t consists of all real numbers whereas the range
consists of the interval [−1, 1].

Proof.
For any real number t we can find a point P (a, b) on the unit circle such
that W (t) = P (a, b). That is, cos t = a and sin t = b. Hence, the domain of
sin t and cos t consists of all real numbers. Since P is on the unit circle then
−1 ≤ a ≤ 1 and −1 ≤ b ≤ 1. That is, −1 ≤ cos t ≤ 1,−1 ≤ sin t ≤ 1. So the
range consists of the closed interval [−1, 1].

Theorem 35.4
(a) The domain of tan t and sec t consists of all real numbers except the
numbers (2n + 1)π

2
, where n is an integer.

(b) The range of tan t consists of all real numbers.
(c) The range of sec t is (−∞,−1] ∪ [1,∞).

Proof.
(a) Since tan t = b

a
and sec t = 1

a
then the domain consists of those real

numbers where a 6= 0. But a = 0 at P (0, 1) and P (0,−1). i.e. t is an odd
multiple of π

2
. That is, the domain of the secant function and the tangent

function consists of all real numbers different from (2n + 1)π
2

where n is an
integer.
(b) We next determine the range of the tangent function. Let t be any real
number. Let P (a, b) be the point on the unit circle that corresponds to an
angle θ such that tan θ = b

a
= t. This implies that b = at. Since a2 + b2 = 1
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then a2(1+ t2) = 1. Thus, a = ± 1√
1+t2

and b = ± t√
1+t2

. What we have shown
here is that, given any real number t there is an angle θ such that tan θ = t.
This proves that the range of the tangent function is the interval (−∞,∞),
i.e. the set of all real numbers.
(c) If t 6= (2n + 1)π

2
, i.e. a 6= 0, then | sec t| = 1

|a| ≥ 1 (since |a| ≤ 1) and
this is equivalent to sec t ≤ −1 or sec t ≥ 1. Thus, the range of the secant
function is the interval (−∞,−1] ∪ [1,∞).

Theorem 35.5
(a) The domain of cot t and csc t consists of all real numbers except the
numbers nπ, where n is an integer.
(b) The range of cot t consists of all real numbers.
(c) The range of csc t is the interval (−∞,−1] ∪ [1,∞).

Proof.
(a) Since cot t = a

b
and csc t = 1

b
then the domain consists of those real

numbers where b 6= 0. But b = 0 at P (1, 0) and P (−1, 0). i.e. t is a multiple
of π. That is, the domain of the cosecant function and the cotangent function
consists of all real numbers different from nπ where n is an integer.
(b) Similar argument to part (b) of the previous theorem.
(c) If t 6= nπ, then b 6= 0 and therefore csc t = 1

|b| ≥ 1. This is equivalent to
csc t ≤ −1 or csc t ≥ 1. Thus, the range of the cosecant function is the set
(−∞,−1] ∪ [1,∞).

Example 35.2
Find the domain of the function f(x) = tan (2x− π

4
).

Solution.
The tangent function is defined for all real numbers such that 2x− π

4
6= nπ.

That is, x 6= (4n + 1)π
8
, where n is an integer.

Example 35.3
Find the domain of the function f(x) = csc x

2
.

Solution.
The function f(x) is defined for all x such that x

2
6= nπ. That is, x 6= 2nπ,

where n is an integer.

Some Fundamental Trigonometric Identities
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By an identity we mean an equality of the form f(x) = g(x) which is valid
for any real number x in the common domain of f and g.
Now, if P (a, b) is the point on the unit circle such that W (t) = P (a, b) then
the trigonometric functions are defined by:

cos t = a sin t = b tan t = b
a

sec t = 1
a

csc t = 1
b

cot t = a
b
.

From these definitions, we have the following reciprocal identities:

csc t = 1
sin t

; sec t = 1
cos t

; cot t = 1
tan t

.

Also, we have the following quotient identities:

tan t = sin t
cos t

; cot t = cos t
sin t

Example 35.4
Given sin θ = 2

√
2

3
and cos θ = −1

3
. Find the exact values of the four remaining

trigonometric functions.

Solution.

sec θ = −3 ; csc θ = 3
√

2
4

tan θ = −2
√

2 ; cot θ = −
√

2
4

Since a2 +b2 = 1 then we can derive the following Pythagorean identities:

cos2 t + sin2 t = 1 (3)

Dividing both sides of (3) by cos2 t to obtain

1 + tan2 t = sec2 t (4)

Finally, dividing both sides of (3) by sin2 t we obtain

1 + cot2 t = csc2 t (5)

Example 35.5
Given cos θ = −1

3
and π

2
< θ < π. Find the remaining trigonometric func-

tions.
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Solution.
Using the identity cos2 θ + sin2 θ = 1 to obtain

sin2 θ +
1

9
= 1.

Solving for sin θ and using the fact that sin θ > 0 in Quadrant II we find
sin θ = 2

√
2

3
. It follows that sec θ = −3, csc θ = 3

√
2

4
, tan θ = −2

√
2, and

cot θ = −
√

2
4

.
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Review Problems

Exercise 35.1
Find W (t) for each t : (a) t = 7π

6
(b) t = −7π

4
(c) t = 11π

6
.

Exercise 35.2
Find the exact value of each function:

(a) tan (11π
6

).
(b) csc (−π

3
).

(c) sec (−7π
6

).

Exercise 35.3
Find each value.

(a) cos 2π
3

(b) tan
(
−π

3

)
(c) sin 19π

4
.

Exercise 35.4
Use the even-odd property of the trigonometric functions to determine each
value.

(a) sin
(
−π

6

)
(b) cos

(
−π

4

)
.

Exercise 35.5
Determine whether the function defined by each equation is even, odd, or
neither:

(a) f(x) = sin x + cos x.
(b) g(x) = tan x + sin x.
(c) h(x) = sin x

x
.

Exercise 35.6
Let P (a, b) be the point on the unit circle and terminal side of a central angle
θ. Find the six trigonometric functions of the angle θ + π.

Exercise 35.7
Let P (a, b) be the point on the unit circle and terminal side of a central angle
θ. Find the six trigonometric functions of the angle π − θ.
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Exercise 35.8
Let (x1, y1) and (x2, y2) be points on the unit circle corresponding to the angles
t = θ and t = π

2
− θ respectively. Identify the symmetry of the points (x1, y1)

and (x2, y2) and then find the six trigonometric functions of the angle π
2
− θ.

Exercise 35.9
Find the positive angle between the positive x-axis and the line y =

√
3x + 2.

Exercise 35.10
Let P (a, b) be the point on the unit circle and the terminal side of an angle
θ. Calculate sin2 θ + cos2 θ.

Exercise 35.11
Find the domain of the function f(x) = tan (3x− π

4
).

Exercise 35.12
Find the domain of the function f(x) = sec x

2
.

Exercise 35.13
Show that for any ineteger n we have

tan (x + nπ) = tan x
cot (x + nπ) = cot x

Exercise 35.14
Show that for any integer n we have

cos (x + 2nπ) = cos x
sec (x + 2nπ) = sec x
sin (x + 2nπ) = sin x
csc (x + 2nπ) = csc x

Exercise 35.15
Establish the identity:

(sin θ cos φ)2 + (sin θ sin φ)2 + cos2 θ = 1.

Exercise 35.16
Use the trigonometric identities to write each expression in terms of a single
trigonometric function or a constant.
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(a) tan t cos t.
(b) csc t

cot t
.

(c) 1−cos2 t
tan2 t

.
(d) 1

1−sin t
+ 1

1+sin t
.

(e) sin2 t(1 + cot2 t).

Exercise 35.17
Write sin t in terms of cos t, 0 < t < π

2
.

Exercise 35.18
Factor each expression:

(a) cos2 t− sin2 t.
(b) 2 sin2 t− sin t− 1.
(c) cos4 t− sin4 t.

Exercise 35.19
A function f is periodic with a period of 3. If f(2) = −1, determine f(14).
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The graph of a function gives us a better idea of its behavior. In this and the
next two sections we are going to graph the six trigonometric functions as
well as transformations of these functions. These functions can be graphed
on a rectangular coordinate system by plotting the points whose coordinates
belong to the function.

36 Graphs of the Sine and Cosine Functions

In this section, you will learn how to graph the two functions y = sin x and
y = cos x. The graphing mechanism consists of plotting points whose coordi-
nates belong to the function and then connecting these points with a smooth
curve, i.e. a curve with no holes, jumps, or sharp corners.

Recall from the previous section that the domain of the sine and cosine
functions is the set of all real numbers. Moreover, the range is the closed in-
terval [−1, 1] and each function is periodic of period 2π. Thus, we will sketch
the graph of each function on the interval [0, 2π] (i.e one cycle) and then
repeats it indefinitely to the right and to the left over intervals of lengths 2π
of the form [2nπ, (2n + 2)π] where n is an integer.

Graph of y = sin x
We begin by constructing the following table

x 0 π
6

π
2

5π
6

π 7π
6

3π
2

11π
6

2π
sin x 0 1

2
1 1

2
0 -1

2
-1 -1

2
0

Plotting the points listed in the above table and connecting them with a
smooth curve we obtain the graph of one period (also known as one cycle)
of the sine function as shown in Figure 94.
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Figure 94

Now to obtain the graph of y = sin x we repeat the above cycle in each
direction as shown in Figure 95.

Figure 95

Graph of y = cos x
We proceed as we did with the sine function by constructing the table below.

x 0 π
3

π
2

2π
3

π 4π
3

3π
2

5π
3

2π
cos x 1 1

2
0 −1

2
-1 -1

2
0 1

2
1
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A one cycle of the graph is shown in Figure 96.

Figure 96

A complete graph of y = cos x is given in Figure 97.

Figure 97

Amplitude and period of y = a sin (bx), y = a cos (bx), b > 0

We now consider graphs of functions that are transformations of the sine
and cosine functions.

• The parameter a: This is outside the function and so deals with the
output (i.e. the y values). Since −1 ≤ sin (bx) ≤ 1 and −1 ≤ cos (bx) ≤ 1
then −a ≤ a sin (bx) ≤ a and −a ≤ a cos (bx) ≤ a. So, the range of the
function y = a sin (bx) or the function y = a cos (bx) is the closed interval
[−a, a]. The number |a| is called the amplitude. Graphically, this number
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describes how tall the graph is. The amplitude is half the distance from the
top of the curve to the bottom of the curve. If b = 1, the amplitude |a|
indicates a vertical stretch of the basic sine or cosine curve if a > 1, and a
vertical compression if 0 < a < 1. If a < 0 then a reflection about the x-axis
is required.
Figure 98 shows the graph of y = 2 sin x and the graph of y = 3 sin x.

Figure 98

• The parameter b: This is inside the function and so effects the input (i.e.
x values). Now, the graph of either y = a sin (bx) or y = a cos (bx) completes
one period from bx = 0 to bx = 2π. By solving for x we find the interval of
one period to be [0, 2π

b
]. Thus, the above mentioned functions have a period

of 2π
b
. The number b tells you the number of cylces in the interval [0, 2π].

Graphically,b either stretches (if b < 1) or compresses (if b > 1) the graph
horizontally.
Figure 99 shows the function y = sin x with period 2π and the function
y = sin (2x) with period π.

160



Figure 99

Guidelines for Sketching Graphs of Sine and Cosine Functions
To graph y = a sin (bx) or y = a cos (bx), with b > 0, follow these steps.

1. Find the period, 2π
b
. Start at 0 on the x-axis, and lay off a distance

of 2π
b
.

2. Divide the interval into four equal parts by means of the points: 0, π
2b

, π
b
, 3π

2b
,

and 2π
b
.

3. Evaluate the function for each of the five x-values resulting from step 2.
The points will be maximum points, minimum points and x-intercepts.
4. Plot the points found in step 3, and join them with a sinusoidal curve
with amplitude |a|.
5. Draw additional cycles of the graph, to the right and to the left, as needed.

Example 36.1
(a) What are the zeros of y = a sin (bx) on the interval [0, 2π

b
]?

(b) What are the zeros of y = a cos (bx) on the interval [0, 2π
b
]?

Solution.
(a) The zeros of the sine function y = a sin (bx) on the interval [0, 2π] occur
at bx = 0, bx = π, and bx = 2π. That is, at x = 0, x = π

b
, and x = 2π

b
.

The maximum value occurs at bx = π
2

or x = π
2b

. The minimum value occurs
at bx = 3π

2
or x = 3π

2b
.

(b) The zeros of the cosine function y = a cos (bx) occur at bx = π
2

and
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bx = 3π
2

. That is, at x = π
2b

and x = 3π
2b

.
The maximum value occurs at bx = 0 or bx = 2π. That is, at x = 0 or
x = 2π

b
. The minimum value occurs at bx = π or x = π

b
.

Example 36.2
Sketch one cycle of the graph of y = 2 cos x.

Solution.
The amplitude of y = 2 cos x is 2 and the period is 2π. Finding five points
on the graph to obtain

x 0 π
2

π 3π
2

2π
y 2 0 -2 0 2

The graph is a vertical stretch by a factor of 2 of the graph of cos x as shown
in Figure 100.

Figure 100

Example 36.3
Sketch one cycle of the graph of y = cos πx.

Solution.
The amplitude of the function is 1 and the period is 2π

b
= 2π

π
= 2.

x 0 1
2

1 3
2

2
y 1 0 -1 0 1
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The graph is a horizontal compression by a factor of 1
π

of the graph of cos x
as shown in Figure 101.

Figure 101

Example 36.4
Sketch the graph of the function y = | cos x| on the interval [0, 2π].

Solution.
Since | cos x| = cos x when cos x ≥ 0 and | cos x| = − cos x for cos x < 0 then
the graph of y = | cos x| is the same as the graph of cos x on the intervals
where cos x ≥ 0 and is the reflection of cos x about the x-axis on the intervals
where cos x < 0. One cycle of the graph is shown in Figure 102.

Figure 102
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Review Problems

Exercise 36.1
State the amplitude and the period of the function defined by each equation:

(a) y = 2 sin x.
(b) y = 1

2
sin 2πx.

(c) y = 2 cos πx
3

.
(d) y = −3 cos 2x

3
.

Exercise 36.2
Graph one full cycle of the function defined by each equation:

(a) y = 1
2
sin x.

(b) y = −7
2
cos x.

(c) y = cos 3x.
(d) y = sin 3π

4
x.

Exercise 36.3
Graph one full cycle of the function defined by each equation:

(a) y = 2 sin πx.
(b) y = 4 sin 2πx

3
.

(c) y = sin 3π
4

x.

Exercise 36.4
Graph one full cycle of the function defined by each equation:
(a) y =

∣∣2 sin x
2

∣∣ .
(b) y = | − 2 cos 3x|.
(c) y = −

∣∣2 sin x
2

∣∣ .

Exercise 36.5
Find an equation of the following graph.
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Exercise 36.6
Find an equation of the following graph.

Exercise 36.7
Find an equation of the following graph.

Exercise 36.8
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Find an equation of the following graph.

Exercise 36.9
Sketch the graph of y = 2 sin 2x

3
,−3π ≤ x ≤ 6π.

Exercise 36.10
Sketch the graphs of y1 = 2 cos x

2
and y2 = 2 cos x on the same axes for

−2π ≤ x ≤ 4π.

Exercise 36.11
Write an equation for a sine function with amplitude = 5 and period = 2π

3
.

Exercise 36.12
Write an equation for a cosine function with amplitude = 3 and period = π

2
.

Exercise 36.13
A tidal wave that is caused by an earthquake under the ocean is called a
tsunami. A model of a tsunami is given by f(t) = A cos Bt. Find the equa-
tion of a tsunami that has an amplitude of 60 feet and a period of 20 seconds.

Exercise 36.14
The electricity supplied to your home, called alternating current, can be
modeled by I(t) = A sin ωt, where I is the number of amperes of current at
time t seconds. Write the equation of household current whose graph is given
in the figure below. Calculate I when t = 0.5 second.

Exercise 36.15
The temperature of a chemical reaction oscillated between a low of 30circC
and a high of 110◦C. The temperature is at its lowest point when t = 0 and
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completes one cycle over a five hour period.

(a) Sketch a graph of the temperature T , against the elapsed time, t, over
a ten-hour period.
(b) Find the period and the amplitude of the graph you drew in part (a).

Exercise 36.16
The function f(x) = sin x

x
is important in calculus. Graph this function using

a graphing calculator. Comment on its behavior when x is close to 0.

Exercise 36.17
The function f(x) = a sin bx has an amplitude of 3 and a period of 4. Find
the possible values of a and b.

Exercise 36.18
Determine the domain and the range of the function f(x) = (sin x)cos x. What
is its amplitude?
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37 Graphs of the Other Trigonometric Func-

tions

In this section, you will learn how to sketch the graphs of the functions
tan x, cot x, sec x, and csc x and transformations of these functions. We are
going to use the same method we used for sin x and cos x. We will use a table
of values to plot some of the points. However, the functions of this section
are not continuous everywhere like the sin x and cos x functions; what this
means is that there will be some ”breaks” in the graphs- each of them will
have vertical asymptotes.

Graph of y = tan x
Recall that the domain of the tangent function consists of all numbers x 6=
(2n+1)π

2
, where n is any integer. The range consists of the interval (−∞,∞).

Also, the tangent function is periodic of period π. Thus, we will sketch the
graph on an interval of length π and then complete the whole graph by repe-
tition. The interval we consider is the interval (−π

2
, π

2
). First, we will consider

the behavior of the tangent function near both −π
2

and π
2
. For this purpose,

we construct the following table:

x −π
2

-1.57 -1.5 -1.4 0 1.4 1.5 1.57 π
2

tan x undefined -1255.77 -14.10 -5.80 0 5.8 14.10 1255.77 undefined

It follows that as x approaches −π
2

from the right the tangent function
decreases without bound whereas it increases without bound when x gets
closer to π

2
from the left. We say that the vertical lines x = ±π

2
are verti-

cal asymptotes. In general, the vertical asymptotes for the graph of the
tangent function consist of the zeros of the cosine function, i.e. the lines
x = (2n + 1)π

2
, where n is an integer.

Next, we construct the following table that provides points on the graph of
the tangent function:

x −π
3

−π
4

−π
6

0 π
6

π
4

π
3

tan x −
√

3 -1 -
√

3
3

0
√

3
3

1
√

3

Plotting these points and connecting them with a smooth curve we obtain
one period of the graph of y = tan x as shown in Figure 103.
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Figure 103

We obtain the complete graph by repeating the one cycle over intervals of
lengths π as shown in Figure 104.

Figure 104

Example 37.1
What are the x-intercepts of y = tan x?

Solution.
The x-intercepts of y = tan x are the zeros of the sine function. That is, the
numbers x = nπ where n is any integer.

Graph of y = cot x
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The graph of the cotangent function is similar to the graph of the tangent
function. Since

cot x =
cos x

sin x

then the vertical asymptotes occur at x = nπ where n is any integer.
Figure 105 shows two periods of the graph of the cotangent function.

Figure 105

The Functions y = a tan (bx) and y = a cot (bx), b > 0
• Note that since the graphs of the tangent function and the cotangent func-
tion have no maximum or minimum then these functions have no amplitude.
• The parameter |a| indicates a vertical stretching of the basic tangent or
cotangent function if a > 1, and a vertical compression if 0 < a < 1. If a < 0
then reflection about the x-axis is required.
• Since the function y = tan x (respectively y = cot x) completes one cycle on
the interval (−π

2
, π

2
) (respectively, on (0, π)) then the function y = a tan (bx)

(respectively, y = a cot (bx)) completes one cycle on the interval (− π
2b

, π
2b

)
(respectively, on the interval (0, π

b
)). Thus, these functions are periodic of

period π
b
.

Guidelines for Sketching Graphs of Tangent and Cotangent Func-
tions
To graph y = a tan (bx) or y = a cot (bx), with b > 0, follow these steps.

1. Find the period, π
b
.

2. Graph the asymptotes:
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• x = − π
2b

and x = π
2b

, for the tangent function.
• x = 0 and x = π

b
for the cotangent function.

3. Divide the interval into four equal parts by means of the points:
• − π

4b
, 0, π

4b
(for the tangent function).

• π
4b

, π
2b

, 3π
4b

(for the cotangent function).

4. Evaluate the function for each of the three x-values resulting from step 3.
5. Plot the points found in step 4, and join them with a smooth curve.
6. Draw additional cycles of the graph, to the right and to the left, as needed.

Example 37.2
Find the period of the function y = 2 tan (x

2
) and then sketch its graph.

Solution.
The period is π

1
2

= 2π. Finding some points on the graph

x -π
2

0 π
2

y -2 0 2

The graph of one cycle is given in Figure 106.

Figure 106

Example 37.3
Sketch the graph of cot 3x through two periods.
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Solution.
The given function is of period π

b
= π

3
. Finding points for one cycle

x π
12

π
6

π
4

y 1 0 -1

Two cycles of the graph is shown in Figure 107.

Figure 107

Graph of the Secant Function
Recall that the domain of the secant function consists of all numbers x 6=
(2n + 1)π

2
, where n is any integer. So the graph has vertical asymptotes at

x = (2n + 1)π
2
. The range consists of the interval (−∞,−1] ∪ [1,∞). Also,

the secant function is periodic of period 2π. Thus, we will sketch the graph
on an interval of length 2π and then complete the whole graph by repetition.
Note that the value of sec x at a given number x equals the reciprocal of
the corresponding value of cos x. Thus, to sketch the graph of y = sec x, we
first sketch the graph of y = cos x. On the same coordinate system, we plot,
for each value of x, a point with height equal the reciprocal of cos x. The
accompanying table gives some points to plot.

172



x sec x
−π

2
undefined

−π
4

1.414
0 1
π
4

1.414
π
2

undefined
3π
4

-1.414
π -1
5π
4

-1.414
3π
2

undefined

Plotting these points and connecting them with a smooth curve we obtain
the graph of y = sec x on the interval (−π

2
, π

2
)∪(π

2
, 3π

2
) as shown in Figure 108.

Figure 108

Example 37.4
What are the x-intercepts of y = sec x?

Solution.
There are no x-intercepts since either sec x ≤ −1 or sec x ≥ 1.

Graph of y = cscx
The graph of y = csc x may be graphed in a manner similar to sec x. The
resulting graph is shown in Figure 109. Note that the vertical asymptotes
occur at x = nπ, where n is an integer since the domain consists of all real
numbers different from nπ.
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Figure 109

Finally, note that in comparing the graphs of secant and cosecant functions
with those of the sine and the cosine functions, the ”hills” and ”valleys” are
interchanged. For example, a hill on the cosine curve corresponds to a valley
on the secant curve and a valley corresponds to a hill.

Guidelines for Sketching Graphs of y = a sec (bx) and y = a csc (bx)
To graph y = a sec (bx) or y = a csc (bx), with b > 0, follow these steps.

1. Find the period, 2π
b
.

2. Graph the asymptotes:
• x = − π

2b
, x = π

2b
, and x = 3π

2b
, for the secant function.

• x = −π
b
, x = 0, and x = π

b
for the cosecant function.

3. Divide the interval into four equal parts by means of the asymptotes
and of the points:
• 0, π

b
(for the secant function).

• − π
2b

, π
2b

(for the cosecant function).

4. Evaluate the function for each of the two x-values resulting from step
3. One of the point is the lowest of the ”valley” and the other is the highest
of the ”hill.”
5. Plot the points found in step 4, and join them with a smooth curve.
6. Draw additional cycles of the graph, to the right and to the left, as needed.
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Example 37.5
Sketch the graph of y = sec 2x.

Solution.
The period is 2π

b
= 2π

2
= π. Finding some of the points on the graph

x 0 π
2

y 1 -1

Figure 110 shows one period of the graph.

Figure 110
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Review Problems

Exercise 37.1
For what values of x is y = tan x undefined?

Exercise 37.2
For what values of x is y = cot x undefined?

Exercise 37.3
State the period of each function:

(a) y = 1
2
cot 2x.

(b) y = − tan 3x.
(c) y = −3 cot 2x

3
.

Exercise 37.4
Sketch one full cycle of the graph of each function:

(a) y = 3 tan x.
(b) y = 4 cot x.
(c) y = −3 tan 3x.
(d) y = −3 cot x

2
.

(e) y = 1
2
cot 2x.

Exercise 37.5
Graph y = 3 tan πx from -2 to 2.

Exercise 37.6
Graph y = cot πx

2
from -4 to 4.

Exercise 37.7
Sketch the graph of y = | tan x| on the interval (−π

2
, π

2
).

Exercise 37.8
Sketch the graph of y = | cot x| on the interval (0, π).

Exercise 37.9
Find the value of b if the function y = tan bx has period π

3
.
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Exercise 37.10
Find the value of b if the function y = cot bx has period 2.

Exercise 37.11
Find an equation of the graph

Exercise 37.12
Find an equation of the graph

Exercise 37.13
For what values of x is y = sec x undefined?
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Exercise 37.14
For what values of x is y = csc x undefined?

Exercise 37.15
State the period of each function:

(a) y = csc 3x.
(b) y = csc x

2
.

(c) y = −3 sec x
4
.

(d) y = 2 csc πx
2

.

Exercise 37.16
Sketch one full cycle of the graph of each function:

(a) y = −2 csc x
3
.

(b) y = 1
2
sec x

2
.

(c) y = 3 csc πx
2

.

Exercise 37.17
Graph y = 3 sec πx from -2 to 4.

Exercise 37.18
Graph y = csc πx

2
from -4 to 4.

Exercise 37.19
Find the value of b if the function y = sec bx has period 3π

4
.

Exercise 37.20
Find the value of b if the function y = csc bx has period 5π

2
.

Exercise 37.21
Find an equation of the graph
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Exercise 37.22
Find an equation of the graph

Exercise 37.23
Sketch the graph of y = | csc x|.

Exercise 37.24
Sketch the graph of y = | sec x|.
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38 Translations of Trigonometric Functions

In this section, we will rely heavily on our knowledge of transformations to
develop an efficient way of graphing periodic functions. Essentially we will
be concerned with translations of the basic trigonometric graphs.
Recall the following translations of graphs(See Sections 21- 24):

• To get the graph of y = f(x − c) with c > 0, move the graph of y = f(x)
to the right by c units.
• To get the graph of y = f(x + c) with c > 0, move the graph of y = f(x)
to the left by c units.
• To get the graph of y = f(x) + c with c > 0, move the graph of y = f(x)
upward by c units.
• To get the graph of y = f(x) − c with c > 0, move the graph of y = f(x)
downward by c units.
• The graph of y = −f(x) is a reflection of the graph of f(x) about the
x-axis.
• The graph of y = f(−x) is a reflection of the graph of f(x) about the
y-axis.
• The graph of y = cf(x) is the graph of y = f(x) vertically stretched (re-
spectively compressed) by a factor of c, if c > 1 (respectively 0 < c < 1). If
c < 0 then either the vertical stretch or compression must be followed by a
reflection about the x-axis.
• The graph of y = f(cx) is the graph of y = f(x) horizontally stretched
(respectively compressed) by a factor of c, if 0 < c < 1 (respectively c > 1).
If c < 0 then either the horizontal stretch or compression must be followed
by a reflection about the y-axis.

Graphs of y = a sin (bx + c) + d, b > 0
We will discuss transformations of the sine function of the form y = a sin (bx + c)+
d, b > 0. Similar arguments apply for the remaining five trigonometric func-
tions.
Let’s look closely at the effects of each of the parameters a, b, c, and d.

• The value a.
This is outside the function and so deals with the output (i.e. the y values).
This constant will change the amplitude of the graph, or how tall the graph
is. The amplitude, |a|, is half the distance from the top of the curve to the

180



bottom of the curve. Multiplying the sine function by a results in a verti-
cal stretch or compression (followed by a reflection about the x-axis if a < 0.)

• The value b.
This is inside the function and so effects the input or domain (i.e. the x val-
ues). This constant will stretch or compress the graph horizontally. However,
it will not change the period directly. For example the function y = sin (2x)
does not have period 2. The period is given by the fraction 2π

b
(i.e. the original

period divided by the constant b). So for example the function y = sin (2x)
will have period 2π

2
= π. b tells you the number of the cycles of the sine

function on an interval of length 2π. Thus, the graph of y = sin 2x consists
of two cycles of the sine function on an interval like [0, 2π].

• The value d.
This again is outside and so will effect the y values of the graph. This con-
stant will vertically shift the graph up and down (depending on if d is positive
or negative).

• The constant c.
This is on the inside and deals with moving the function horizontally left/right.
For example the curve y = sin (x− 2) is the graph of y = sin (x) shifted hori-
zontally to the right 2 units. Note that b = 1 in this example. For b 6= 1, the
shift is − c

b
. To see why this is so, recall that one cycle of y = a sin (bx + c) is

completed for
0 ≤ bx + c ≤ 2π.

Solving for x we find
−c ≤ bx ≤ −c + 2π
− c

b
≤ x ≤ − c

b
+ 2π

b
.

So basically, the graph of y = a sin (bx + c) is a horizontal shift of the graph
of y = a sin (bx) by − c

b
units. We call − c

b
the phase shift.

Guidelines for Graphing y = a sin (bx + c) + d, b > 0
To sketch the graph of y = a sin (bx + c) + d follow these steps.

1. Find the period 2π
b
.

2. Find the phase shift − c
b
.

3. Find the points: − c
b
, π

2b
− c

b
, π

b
− c

b
, 3π

2b
− c

b
, 2π

b
− c

b
.
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4. Compute the sine of the angles in step 3.
5. Multiply the numbers in step 4 by a.
6. Add the number d to the values obtained in step 5.
7. Plot the points in Step 6 and connect them with a smooth curve to obtain
one full cycle of the graph.

Example 38.1
Sketch one full cycle of the graph of y = − sin x + 1, 0 ≤ x ≤ 2π.

Solution.
Starting with the basic sine function we use the points

x 0 π
2

π 3π
2

2π
y 0 1 0 -1 0

Find some plotting points (see the guidelines above)

x 0 π
2

π 3π
2

2π
y 1 0 1 2 1

The graph consists of a reflection of the graph of sin x about the x-axis and
then a vertical shift upward by 1 unit as shown in Figure 111.

Figure 111

Example 38.2
Sketch one full cycle of the graph of the function y = sin (x− π

4
).

Solution.
Find some plotting points as suggested by the guideline.
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x π
4

3π
4

5π
4

7π
4

9π
4

y 0 1 0 -1 0

The graph consists of a horizontal shift of sin x by π
4

units to the right as
shown in Figure 112.

Figure 112

Example 38.3
Sketch one full cycle of the graph of y = 1

2
sin (x− π

3
).

Solution.
The amplitude is 1

2
, the period is 2π, and the phase shift is π

3
. Find some

plotting points.

x π
3

5π
6

4π
3

11π
6

7π
3

y 0 1
2

0 -1
2

0
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Figure 113 shows one period of the graph on the interval [π
3
, 7π

3
].

Figure 113

Example 38.4
Sketch the graph of y = −3 cos (2πx + 4π).

Solution.
Find some plotting points.

x -2 −7
4

−3
2

-5
4

-1
y -3 0 3 0 -3

The amplitude is 3, the period is 2π
b

= 2π
2π

= 1, and the phase shift is− c
b

= −2.
Figure 114 shows two cycles of the graph.

Figure 114
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Review Problems

Exercise 38.1
Find the amplitude, period, and phase shift for the graph of each function:

(a) y = −4 sin
(

2
3
x + π

6

)
.

(b) y = 5
4
cos (3x− 2π).

Exercise 38.2
Find the phase shift and period for the graph of each function:

(a) y = 2 tan
(
2x− π

4

)
.

(b) y = −3 cot
(

x
4

+ 3π
)
.

Exercise 38.3
Find the phase shift and period for the graph of each function:

(a) y = 2 sec
(
2x− π

8

)
.

(b) y = −3 csc
(

x
3

+ π
)
.

Exercise 38.4
Graph one full cycle of each function:

(a) y = cos
(
2x− π

3

)
.

(b) y = −2 sin
(

x
3
− 2π

3

)
.

Exercise 38.5
Graph one full cycle of each function:

(a) y = tan (x− π).
(b) y = 3

2
cot

(
3x + π

4

)
.

Exercise 38.6
Graph one full cycle of each function:

(a) y = csc (2x + π).
(b) y = sec (2x + π

6
).
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Exercise 38.7
Graph one full cycle of each function:

(a) y = 2 sin
(

π
2
x + 1

)
− 2.

(b) y = −3 cos (2πx− 3) + 1.

Exercise 38.8
Graph one full cycle of each function:

(a) y = csc x
3

+ 4.
(b) y = sec

(
x− π

2

)
+ 1.

Exercise 38.9
Graph one full cycle of each function:

(a) y = tan x
2
− 4.

(b) y = cot 2x + 3.

Exercise 38.10
Find an equation of the graph

Exercise 38.11
Find an equation of the graph
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Exercise 38.12
Find an equation of the graph

Exercise 38.13
Find an equation of the graph
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Exercise 38.14
Find an equation of the graph

Exercise 38.15
Find an equation of the sine function with amplitude 2, period π, and phase
shift π

3
.

Exercise 38.16
Find an equation of the cosine function with amplitude 3, period 3π, and
phase shift −π

4
.

Exercise 38.17
Find an equation of the tangent function with period 2π and phase shift π

2
.

188



Exercise 38.18
Find an equation of the cotangent function with period π

2
and phase shift −π

4
.

Exercise 38.19
Find an equation of the secant function with period 4π and phase shift 3π

4
.

Exercise 38.20
Find an equation of the cosecant function with period 3π

2
and phase shift π

4
.
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39 Verifying Trigonometric Identities

In this section, you will learn how to use trigonometric identities to simplify
trigonometric expressions.
Equations such as

(x− 2)(x + 2) = x2 − 4 or
x2 − 1

x− 1
= x + 1

are referred to as identities. An identity is an equation that is true for all
values of x for which the expressions are defined. For example, the equation

(x− 2)(x + 2) = x2 − 4

is defined for all real numbers x. The equation

x2 − 1

x− 1
= x + 1

is true for all real numbers x 6= 1.
We have already seen many trigonometric identities. For the sake of com-
pleteness we list these basic identities:

Reciprocal Identities

sin x = 1
csc x

cos x = 1
sec x

csc x = 1
sin x

sec x = 1
cos x

tan x = 1
cot x

tan x = 1
cot x

quotient identities

tan t = sin t
cos t

; cot t = cos t
sin t

Pythagorean identities

cos2 x + sin2 x = 1
1 + tan2 x = sec2 x
1 + cot2 x = csc2 x

Even-Odd identities

sin (−x) = − sin x cos (−x) = cos x
csc (−x) = − csc x sec (−x) = sec x
tan (−x) = − tan x cot (−x) = − cot x
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Simplifying Trigonometric Expressions
Some algebraic expressions can be written in different ways. Rewriting a
complicated expression in a much simpler form is known as simplifying the
expression. There are no standard steps to take to simplify a trigonomet-
ric expression. Simplifying trigonometric expressions is similar to factoring
polynomials: by trial and error and by experience, you learn what will work
in which situations. To simplify algebraic expressions we used factoring,
common denominators, and other formulas. We use the same techniques
with trigonometric expressions together with the fundamental trigonometric
identities listed earlier in the section.

Example 39.1
Simplify the expression sec2 θ−1

sec2 θ
.

Solution.
Using the identity 1 + tan2 θ = sec2 θ we find

sec2 θ−1
sec2 θ

= 1+tan2 θ−1
sec2 θ

= tan2 θ
sec2 θ

= sin2 θ
cos2 θ

cos2 θ = sin2 θ

Example 39.2
Simplify the expression: sin θ

1+cos θ
+ 1+cos θ

sin θ
.

Solution.
Taking common denominator and using the identity cos2 θ + sin2 θ = 1 we
find

sin θ
1+cos θ

+ 1+cos θ
sin θ

= (1+cos θ)2+sin2 θ
sin θ(1+cos θ)

= 2(1+cos θ)
sin θ(1+cos θ)

= 2 csc θ

Example 39.3
Simplify the expression: (sin x− cos x)(sin x + cos x).

Solution.
Multiplying we find

(sin x− cos x)(sin x + cos x) = sin2 x− cos2 x
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Example 39.4
Simplify cos x + tan x sin x.

Solution.
Using the quotient identity tan x = sin x

cos x
and the Pythagorean identity cos2 x+

sin2 x = 1 we find

cos x + tan x sin x = cos x + sin x
cos x

sin x

= cos2 x+sin2 x
cos x

= 1
cos x

= sec x.

Establishing Trigonometric Identities
A trigonometric identity is a trigonometric equation that is valid for all values
of the variable for which the expressions in the equation are defined. How do
you show that a trigonometric equation is not an identity? All you need to
do is to show that the equation does not hold for some value of the variable.
For example, the equation

sin x + cos x = 1

is not an identity since for x = π
4

we have

sin
π

4
+ cos

π

4
=

√
2

2
+

√
2

2
=
√

2 6= 1.

To verify that an equation is an identity, we start by simplifying one side of
the equation and end up with the other side.
One of the common methods for establishing trigonometric identities is to
start with the side containing the more complicated expression and, using
appropriate basic identities and algebraic manipulations, such as taking a
common denominator, factoring and multiplying by a conjugate, to arrive at
the other side of the equality.

Example 39.5
Establish the identity: 1+sec θ

sec θ
= sin2 θ

1−cos θ
.

Solution.
Using the identity cos2 θ + sin2 θ = 1 we have

sin2 θ
1−cos θ

= 1−cos2θ
1−cos θ

= (1−cos θ)(1+cos θ)
1−cos θ

= 1 + cos θ = cos θ(1 + sec θ)
= 1+sec θ

sec θ
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Example 39.6
Show that sin θ = cos θ is not an identity.

Solution.
Letting θ = π

2
we get 1 = sin π

2
6= cos π

2
= 0.

Example 39.7
Verify the identity: cos x(sec x− cos x) = sin2 x.

Solution.
The left-hand side looks more complex then the right-hand side, so we start
with it and try to transform it to the right-hand side.

cos x(sec x− cos x) = cos x sec x− cos2 x
= cos x 1

cos x
= cos2 x

= 1− cos2 x = sin2 x.

Example 39.8
Verify the identity: 2 tan x sec x = 1

1−sin x
− 1

1+sin x
.

Solution.
Starting from the right-hand side to obtain

1
1−sin x

− 1
1+sin x

= (1+sin x)−(1−sin x)
(1−sin x)(1+sin x)

= 2 sin x
1−sin2 x

= 2 sin x
cos2 x

= 2 sin x
cos x

1
cos x

= 2 tan x sec x

Example 39.9
Verify the identity: cos x

1−sin x
= sec x + tan x.

Solution.
Using the conjugate of 1− sin x to obtain

cos x
1−sin x

= cos x(1+sin x)
(1−sin x)(1+sin x)

= cos x+cos x sin x
1−sin2 x

= cos x+cos x sin x
cos2 x

= 1
cos x

+ sin x
cos x

= sec x + tan x.
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Review Problems

Exercise 39.1
Simplify: sin x sec x

tan x
.

Exercise 39.2
Simplify: cos3 x + sin2 x sec x.

Exercise 39.3
Simplify: 1+cos x

1+sec x
.

Exercise 39.4
Simplify: sin x

csc x
+ cos x

sec x
.

Exercise 39.5
Simplify: 1+sin x

cos x
+ cos x

1+sin x
.

Exercise 39.6
Simplify: cos x

sec x+tan x
.

Exercise 39.7
Establish the following identities:

(a) 4 sin2 x−1
2 sin x+1

= 2 sin x− 1.
(b) (sin x− cos x)(sin x + cos x) = 1− 2 cos2 x.

Exercise 39.8
Establish the following identities:

(a) 1
sin x

− 1
cos x

= cos x−sin x
sin x cos x

.
(b) cos x

1−sin x
= sec x + tan x.

Exercise 39.9
Establish the following identities:

(a) sin4 x− cos4 x = sin2 x− cos2 x.
(b) 2 sin x cot x+sin x−4 cot x−2

2 cot x+1
= sin x− 2.
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Exercise 39.10
Establish the following identities:

(a) 1
sin2 x

+ 1
cos2 x

= csc2 x sec2 x.

(b)
1

sin x
+ 1

cos x
1

sin x
− 1

cos x

= cos2 x−sin2 x
1−2 cos x sin x

.

Exercise 39.11
Establish the following identities:

(a)
1

tan x
+cot x

1
tan x

+tan x
= 2

sec2 x
.

(b) 1+sin x
cos x

− cos x
1−sin x

= 0.

Exercise 39.12
Establish the following identities:

1 + tan x

1− tan x
=

cos x + sin x

cos x− sin x
.

Exercise 39.13
Express cos x in terms of sin x.

Exercise 39.14
Express tan x in terms of cos x.

Exercise 39.15
Express sec x in terms of sin x.

Exercise 39.16
Express csc x in terms of sec x.

Exercise 39.17
Making the indicated trigonometric substitutions in the given algebraic ex-
pression and simplify. Assume that 0 ≤ θ ≤ π

2
.

(a) x√
1−x2 , x = sin θ.

(b)
√

1 + x2, x = tan θ.
(c)

√
x2 − 1, x = sec θ.

(d) x2
√

4+x2 , x = 2 tan θ.
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Exercise 39.18
Show that (sin x + cos x)2 = sin2 x + cos2 x is not an identity.

Exercise 39.19
Show that tan4 x− sec4 x = tan2 x + sec2 x is not an identity.

Exercise 39.20
Show that tan4 x− 1 = sec2 x is not an identity.
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40 Sum and Difference Identities

In this section, you will learn how to apply identities involving the sum or
difference of two variables.

Formulas for sin (x + y) and sin (x− y)
Let x and y be two angles as shown in Figure 115.

Figure 115

Let A be the point on the x-axis such that |OA| = 1. From A drop the
perpendicular to the terminal side of x. From B drop the perpendicular to
the x-axis. Then

Area ∆OAB = Area ∆OAC + area∆OCB.

But

Area ∆OAC =
1

2
|OC||AC| = 1

2
sin x cos x.

Area ∆OCB =
1

2
|OC||BC| = 1

2
|OB|2 sin y cos y.

Area ∆OAB =
1

2
|BD||OA| = 1

2
|OB| sin (x + y).

Hence,
1

2
|OB| sin (x + y) =

1

2
sin x cos x +

1

2
|OB|2 sin y cos y.
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Mutliplying both sides by 2
|OB| and using the fact that |OB| = cos x

cos y
one

obtains the addition formula for the sine function:

sin (x + y) = sin x cos y + cos x sin y.

To find the difference formula for the sine function we proceed as follows:

sin (x− y) = sin (x + (−y))
= sin x cos (−y) + cos x sin (−y)
= sin x cos y − cos x sin y

where we use the fact that the sine function is odd and the cosine function
is even.

Example 40.1
Find the exact value of sin 75◦.

Solution.
Notice first that 75◦ = 30◦ + 45◦. Thus,

sin 75◦ = sin (45◦ + 30◦)
= sin 45◦ cos 30◦ + cos 45◦ sin 30◦

=
√

2
2

√
3

2
+

√
2

2
1
2

=
√

6+
√

2
4

Example 40.2
Find the exact value of sin π

12
.

Solution.
Since π

12
= π

4
− π

3
, the difference formula for sine gives

sin π
12

= sin (π
4
− π

6
)

= sin π
4

cos π
6
− cos π

4
sin π

6

=
√

2
2

√
3

2
−

√
2

2
1
2

=
√

6−
√

2
4

Example 40.3
Show that cos (π

2
− x) = sin x using the difference formula of the sine func-

tion.
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Solution.
Since the sine function is an odd function then we can write

sin x = − sin (−x) = − sin [(π
2
− x)− π

2
]

= −[sin (π
2
− x) cos (π

2
)− cos (π

2
− x) sin (π

2
)]

= cos (π
2
− x)

Theorem 40.1 (Cofunctions Identities)
For any angle x, measured in radians, we have

sin (π
2
− x) = cos x cos (π

2
− x) = sin x

sec (π
2
− x) = csc x csc (π

2
− x) = sec x

tan (π
2
− x) = cot x cot (π

2
− x) = tan x

Proof.
Recall that sin (π

2
) = 1 and cos (π

2
) = 0.

sin (π
2
− x) = sin (π

2
) cos x− cos (π

2
) sin x = cos x

cos (π
2
− x) = sin x (See Example 16.3)

sec (π
2
− x) = 1

cos (π
2
−x)

= 1
sin x

= csc x

csc (π
2
− x) = 1

sin (π
2
−x)

= 1
cos x

= sec x

tan (π
2
− x) =

sin (π
2
−x)

cos (π
2
−x)

= cos x
sin x

= cot x

cot (π
2
− x) = 1

tan (π
2
−x)

= 1
cot x

= tan x

Formulas for cos (x + y) and cos (x− y)
Since sin x and cos x are cofunctions of each other then

cos (x + y) = sin (π
2
− (x + y)) = sin

[
(π

2
− x)− y

]
= sin (π

2
− x) cos y − cos (π

2
− x) sin y

= cos x cos y − sin x sin y

For the difference formula we have

cos (x− y) = cos (x + (−y))
= cos x cos (−y)− sin x sin (−y)
= cos x cos y + sin x sin y

where we have used the fact that the sine function is odd and the cosine is
even.
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Example 40.4
Find the exact value of cos 7π

12
.

Solution.

cos 7π
12

= cos (π
4

+ π
3
)

= cos π
4

cos π
3
− sin π

4
sin π

3

=
√

2
2

1
2
−

√
2

2

√
3

2
=

√
2−

√
6

4

Example 40.5
Find the exact value of: sin 42◦ cos 12◦ − cos 42◦ sin 12◦.

Solution.
sin 42◦ cos 12◦ − cos 42◦ sin 12◦ = sin (42◦ − 12◦) = sin 30◦ = 1

2
.

Example 40.6
Suppose that α and β are both in the third quadrant and that sin α = −

√
3

2

and sin β = −1
2
. Determine the value of cos (α + β).

Solution.
Since α and β are in the third quadrant then cos α = −

√
1− sin2 α = −1

2

and cos β = −
√

1− sin2 β = −
√

3
2

. Thus,

cos (α + β) = cos α cos β − sin α sin β

= (−1
2
)(−

√
3

2
)− (−

√
3

2
)(−1

2
) = 0

Formulas for tan (x + y) and tan (x− y)
Using the sum formulas for the sine and the cosine functions we have

tan (x + y) = sin (x+y)
cos (x+y)

= sin x cos y+cos x sin y
cos x cos y−sin x sin y

=
sin x cos y
cos x cos y

+ cos x sin y
cos x cos y

1− sin x sin y
cos x cos y

= tan x+tan y
1−tan x tan y

For the difference formula we have

tan (x− y) = tan (x + (−y)) = tan x+tan (−y)
1−tan x tan (−y)

= tan x−tan y
1+tan x tan y

since tan (−x) = − tan x.
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Example 40.7
Establish the identity: tan (θ + π) = tan θ.

Solution.
tan (θ + π) = tan θ+tan π

1−tan θ tan π
= tan θ since tan π = 0.
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Review Problems

Exercise 40.1
Find the exact value of the expression

(a) sin (45◦ + 30◦).
(b) cos

(
π
4
− π

3

)
.

(c) tan
(

π
6

+ π
4

)
.

Exercise 40.2
Find the exact value of the expression

(a) cos 212◦ cos 122◦ + sin 212◦ sin 122◦.
(b) sin 167◦ cos 107◦ − cos 167◦ sin 107◦.

Exercise 40.3
Find the exact value of the expression

(a) sin 5π
12

cos π
4
− cos 5π

12
sin π

4
.

(b) cos π
12

cos π
4
− sin π

12
sin π

4
.

Exercise 40.4
Find the exact value of the expression

(a)
tan 7π

12
−tan π

4

1+tan 7π
12

tan π
4

.

(b)
tan π

6
+tan π

3

1−tan π
6

tan π
3
.

Exercise 40.5
Write each expression in terms of a single trigonometric function.

(a) sin x cos 3x + cos x sin 3x.
(b) sin 7x cos 3x− sin x sin 5x.

Exercise 40.6
Write each expression in terms of a single trigonometric function.

(a) cos 4x cos (−2x)− sin 4x sin (−2x).
(b) tan 3x+tan 4x

1−tan 3x tan 4x
.

(c) tan 2x−tan 3x
1+tan 2x tan 3x

.
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Exercise 40.7
Given tan α = 24

7
, α in Quadrant I, and sin β = − 8

17
, β in Quadrant II, find

the exact value of

(a) sin (α + β) (b) cos (α + β) (c) tan (α− β).

Exercise 40.8
Given sin α = −4

5
, α in Quadrant III, and cos β = −12

13
, β in Quadrant II,

find the exact value of

(a) sin (α− β) (b) cos (α + β) (c) tan (α + β).

Exercise 40.9
Given cos α = −3

5
, α in Quadrant III, and sin β = 5

13
, β in Quadrant I, find

the exact value of

(a) sin (α− β) (b) cos (α + β) (c) tan (α + β).

Exercise 40.10
Establish the following identities:

(a) sin
(
θ + π

2

)
= cos θ.

(b) csc (π − θ) = csc θ.

Exercise 40.11
Establish the following identities:

(a) sin 6x cos 2x− cos 6x sin 2x = 2 sin 2x cos 2x.
(b) sin (α + β) + sin (α− β) = 2 sin α cos β.

Exercise 40.12
Establish the following identity: sin (α+β)

sin (α−β)
= 1+cot α tan β

1−cot α tan β
.

Exercise 40.13
Write the given expression as a function of only sin θ, cos θ, or tan θ. (k is a
given integer)

(a) cos (θ + 3π) (b) cos [θ + (2k + 1)π] (c) sin (θ + 2kπ).
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Exercise 40.14
Establish the identity

sin (x + h)− sin x

h
= cos x

sin h

h
+ sin x

(
cos h− 1

h

)
.

Exercise 40.15
Establish the identity

cos (x + h)− cos x

h
= cos x

(
cos h− 1

h

)
− sin x

sin h

h
.
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41 The Double-Angle and Half-Angle Identi-

ties

The sum formulas discussed in the previous section are used to derive for-
mulas for double angles and half angles.
To be more specific, consider the sum formula for the sine function

sin (x + y) = sin x cos y + cos x sin y.

Then letting y = x to obtain

sin 2x = 2 sin x cos x. (6)

This is the first double angle formula. To obtain the formula for cos 2x we
use the sum formula for the cosine function

cos (x + y) = cos x cos y − sin x sin y.

Letting y = x we obtain

cos 2x = cos2 x− sin2 x. (7)

Since sin2 x + cos2 x = 1 then there are two alternatives to Eq (7), namely

cos 2x = 2 cos2 x− 1 (8)

and

cos 2x = 1− 2 sin2 x. (9)

Letting y = x in the sum formula of the tangent function we obtain

tan (2x) = tan (x + x) =
2 tan x

1− tan2 x
. (10)

Formulas (6) - (10) are examples of double angle identities.

Example 41.1
Given cos θ = 5

13
, 3π

2
< θ < 2π, find sin 2θ, cos 2θ, and tan 2θ.
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Solution.
Since θ is in quadrant IV then sin θ = −

√
1− cos2 θ = −12

13
. Thus,

sin 2θ = 2 sin θ cos θ = −120
169

cos 2θ = 2 cos2 θ − 1 = −119
169

tan 2θ = sin 2θ
cos 2θ

= 120
119

Example 41.2
Develop a formula for cot 2θ in terms of θ.

Solution.
Using the formula for tan 2θ we have

cot 2θ = 1
tan (2θ)

= 1−tan2 θ
2 tan θ

= 1
2
( 1

tan θ
− tan θ) = 1

2
(cot θ − tan θ)

Using Eq (8) we find 2 sin2 x = 1− cos 2x and therefore

sin2 x =
1− cos 2x

2
. (11)

Similarly, using Eq (9) to obtain

cos2 x =
1 + cos 2x

2
(12)

and

tan2 x =
sin2 x

cos2 x
=

1− cos 2x

1 + cos 2x
. (13)

Formulas (11) - (13) are known as the square identities.

Example 41.3
Show that

sin4 θ =
3

8
− 1

2
cos 2θ +

1

8
cos 4θ.

Solution.

sin4 θ = (sin2 θ)2 = (1−cos 2θ
2

)2

= 1
4
(1 + cos2 2θ − 2 cos 2θ)

= 1
4
(1 + (1+cos 4θ

2
)− 2 cos 2θ)

= 3
8
− 1

2
cos 2θ + 1

8
cos 4θ
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We close this section by deriving identities for the sine, cosine, and tangent
for half-angle α

2
.

Let θ = α
2

in Eq ( 11) through Eq ( 13) we obtain

sin2 α
2

= 1−cos α
2

cos2 α
2

= 1+cos α
2

tan2 α
2

= 1−cos α
1+cos α

.

Taking square roots to obtain

sin α
2

= ±
√

1−cos α
2

cos α
2

= ±
√

1+cos α
2

tan α
2

= ±
√

1−cos α
1+cos α

.

where + or − is determined by the quadrant of the angle α
2
.

Alternative formulas for tan α
2

can be obtained geometrically by means of
Figure 116.

Figure 116

Indeed, we have cos α = |OB|, sin α = |AB|, and

tan
α

2
=
|AB|
|BC|

=
sin α

1 + cos α
.

If we mutliply the top and bottom of the last identity by 1− cos θ and then
using the identity cos2 θ + sin2 θ = 1 we obtain

tan
θ

2
=

sin θ(1− cos θ)

1− cos2 θ
=

1− cos θ

sin θ
.
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Example 41.4
—rm Given sin α = 3

5
and α in quadrant II. Determine the values of sin α

2
, cos α

2
,

and tan α
2
.

Solution.
Since α is in quadrant II then cos α = −

√
1− sin2 α = −4

5
. Thus,

sin α
2

=
√

1−cos α
2

=

√
1+ 4

5

2
= 3

√
10

10

cos α
2

= −
√

1+cos α
2

= −
√

1− 4
5

2
= −

√
10

10

tan α
2

= −
√

1−cos α
1+cos α

= −3
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Review Problems

Exercise 41.1
Write each trigonometric expression in terms of a single trigonometric func-
tion.

(a) 1− 2 sin2 5β.
(b) 2 tan 3α

1−tan2 3α
.

Exercise 41.2
Use the half-angle identities to find the exact value of each trigonometric ex-
pression.

(a) cos 157.5◦ (b) sin 112.5◦.

Exercise 41.3
Use the half-angle identities to find the exact value of each trigonometric ex-
pression.

(a) tan 67.5◦ (b) tan 3π
8

.

Exercise 41.4
Find the exact value of sin 2θ, cos 2θ, and tan 2θ given that sin θ = 8

17
and θ

is in Quadrant II.

Exercise 41.5
Find the exact value of sin 2θ, cos 2θ, and tan 2θ given that tan θ = −24

7
and

θ is in Quadrant IV.

Exercise 41.6
Find the exact value of sin 2θ, cos 2θ, and tan 2θ given that cos θ = 40

41
and θ

is in Quadrant IV.

Exercise 41.7
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that sin θ = 5

13
and θ is

in Quadrant II.

Exercise 41.8
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that cos θ = − 8

17
and θ is

in Quadrant III.
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Exercise 41.9
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that tan θ = 4

3
and θ is

in Quadrant I.

Exercise 41.10
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that sec θ = 17

15
and θ is

in Quadrant I.

Exercise 41.11
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that cot θ = 8

15
and θ is

in Quadrant III.

Exercise 41.12
Establish the identities:

(a) sin 2x
1−sin2 x

= 2 tan x.

(b) cos4 x− sin4 x = cos 2x.

Exercise 41.13
Establish the identities:

(a) cos 3x− cos x = 4 cos3 x− 4 cos x.
(b) sin2 x

2
= sec x−1

2 sec x
.

Exercise 41.14
Establish the identities:

(a) 2 sin x
2
cos x

2
= sin x.

(b) tan 2x = 2
cot x−tan x

.
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42 Conversion Identities

In this section, you will learn (1) how to restate a product of two trigono-
metric functions as a sum, (2) how to restate a sum of two trigonometric
functions as a product, and (3) how to write a sum of two trigonometric
functions as a single function.

Product-To-Sum Identities
By the addition and subtraction formulas for the cosine, we have

cos (x + y) = cos x cos y − sin x sin y (14)

and

cos (x− y) = cos x cos y + sin x sin y. (15)

Adding these equations together to obtain

2 cos x cos y = cos (x + y) + cos (x− y) (16)

or

cos x cos y =
1

2
[cos (x + y) + cos (x− y)] (17)

Subtracting( 14) from ( 15) to obtain

2 sin x sin y = cos (x− y)− cos (x + y) (18)

or

sin x sin y =
1

2
[cos (x− y)− cos (x + y)]. (19)

Now, by the addition and subtraction formulas for the sine, we have

sin (x + y) = sin x cos y + cos x sin y
sin (x− y) = sin x cos y − cos x sin y.

Adding these equations together to obtain

2 sin x cos y = sin (x + y) + sin (x− y) (20)

or

sin x cos y =
1

2
[sin (x + y) + sin (x− y)]. (21)

Identities ( 17), ( 19), and ( 21) are known as the product-to-sum identi-
ties.
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Example 42.1
Write sin 3x cos x as a sum/difference containing only sines and cosines.

Solution.
Using ( 21) we obtain

sin 3x cos x = 1
2
[sin (3x + x) + sin (3x− x)]

= 1
2
(sin 4x + sin 2x)

Sum-to-Product Identities
We next derive the so-called sum-to-product identities. For this purpose,
we let α = x + y and β = x− y. Solving for x and y in terms of α and β we
find

x =
α + β

2
and y =

α− β

2
.

By identity ( 16) we find

cos α + cos β = 2 cos (
α + β

2
) cos (

α− β

2
). (22)

Using identity ( 18) we find

cos α− cos β = −2 sin (
α + β

2
) sin (

α− β

2
). (23)

Now, by identity ( 20) we have

sin α + sin β = 2 sin (
α + β

2
) cos (

α− β

2
). (24)

Using this last identity by replacing β by −β and using the fact that the sine
function is odd we find

sin α− sin β = 2 sin (
α− β

2
) cos (

α + β

2
). (25)

Formulas (22) - (25) are known as the sum-to-product formulas.

Example 42.2
Establish the identity: cos 2x+cos 2y

cos 2x−cos 2y
= − cot (x + y) cot (x− y).
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Solution.
Using the product-to-sum identities we find

cos 2x+cos 2y
cos 2x−cos 2y

=
2 cos ( 2x+2y

2
) cos ( 2x−2y

2
)

−2 sin ( 2x+2y
2

) sin ( 2x−2y
2

)

= − cot (x + y) cot (x− y)

Writing a sin x + b cos x in the Form k sin (x + θ).
Let P (a, b) be a coordinate point in the plane and let θ be the angle with

initial side the x-axis and terminal side the ray
−→
OP as shown in Figure 117

Figure 117

Let k =
√

a2 + b2. Then, according to Figure 91 we have

cos θ =
a√

a2 + b2
and sin θ =

b√
a2 + b2

.

Then in terms of k and θ we can write

a sin x + b cos x =
√

a2 + b2
(

a√
a2+b2

sin x + b√
a2+b2

cos x
)

= k(cos θ sin x + sin θ cos x) = k sin (x + θ).

Example 42.3
Write y = 1

2
sin x− 1

2
cos x in the form y = k sin (x + θ).

Solution.

Since a = 1
2

and b = −1
2

then k =
√

(1
2
)2 + (−1

2
)2 =

√
2

2
, cos θ = a

k
=

√
2

2
, sin θ = b

k
= −

√
2

2
. Thus θ = −45◦ and

y =

√
2

2
sin (x− 45◦).
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Review Problems

Exercise 42.1
Write each expression as the sum or difference of two functions.

(a) 2 sin x cos 2x (b) 2 sin 4x sin 2x (c) cos 3x cos 5x

Exercise 42.2
Find the exact value of each expression.

(a) cos 75◦ cos 15◦ (b) sin 13π
12

cos π
12

(c) sin 11π
12

sin 7π
12

Exercise 42.3
Write each expression as the product of two functions.

(a) sin 4θ + sin 2θ
(b) cos 3θ + cos θ

Exercise 42.4
Write each expression as the product of two functions.

(a) sin θ
2
− sin θ

3

(b) cos θ
2
− cos θ

Exercise 42.5
Establish the identity.

(a) 2 cos α cos β = cos (α + β) + cos (α− β).
(b) 2 cos 3x sin x = 2 sin x cos x− 8 cos x sin3 x.

Exercise 42.6
Establish the identity.

(a) sin 3x− sin x = 2 sin x− 4 sin3 x
(b) sin (x + y) cos (x− y) = sin x cos x + sin y cos y.

Exercise 42.7
Establish the identity.

(a) sin 3x−sin x
cos 3x−cos x

= − cot 2x

(b) sin 5x+sin 3x
4 sin x cos3 x−4 sin3 x cos x

= 2 cos x.
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Exercise 42.8
Write the given equation in the form y = k sin (x + α), where α is in degrees.

(a) y = 1
2
sin x−

√
3

2
cos x

(b) y =
√

2
2

sin x +
√

2
2

cos x.

Exercise 42.9
Write the given equation in the form y = k sin (x + α), where α is in degrees.

(a) y = π sin x− π cos x
(b) y = 1

2
sin x− 1

2
cos x.

Exercise 42.10
Write the given equation in the form y = k sin (x + α), where α is in radians.

(a) y =
√

3
2

sin x + 1
2
cos x

(b) y = −10 sin x + 10
√

3 cos x.

Exercise 42.11
Graph one full cycle of each equation.

(a) y = − sin x−
√

3 cos x
(b) y = sin x +

√
3 cos x.

Exercise 42.12
Graph one full cycle of each equation.

(a) y = −5 sin x + 5
√

3 cos x
(b) y = 6

√
3 sin x− 6 cos x.

Exercise 42.13
Find the amplitude, phase shift, and period, and then graph one full cycle of
the function.

y = sin
x

2
− cos

x

2
.

Exercise 42.14
Find the amplitude, phase shift, and period, and then graph one full cycle of
the function.
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y =
√

3 sin 2x− cos 2x.

Exercise 42.15
Find the amplitude, phase shift, and period, and then graph one full cycle of
the function.

y = sin πx−
√

3 cos πx.
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43 Inverse Trigonometric Functions

In this and the next section, we will discuss the inverse trigonometric func-
tions. Looking at the graphs of the trigonometric functions we see that these
functions are not one-to-one in their domains by the horizontal line test.
However, restricted to suitable domains these functions become one- to-one
and therefore possess inverse functions.

The Inverse Sine Function
The function f(x) = sin x is increasing on the interval [−π

2
, π

2
]. See Figure

118. Thus, f(x) is one-to-one and consequently it has an inverse denoted by

f−1(x) = sin−1 x.

We call this new function the inverse sine function.

Figure 118

From the definition of inverse functions discussed in Section 27, we have the
following properties of f−1(x) :

(i) Dom(sin−1 x) = Range(sin x) = [−1, 1].
(ii) Range(sin−1 x) = Dom(sin x) = [−π

2
, π

2
].

(iii) sin (sin−1 x) = x for all −1 ≤ x ≤ 1.
(iv) sin−1 (sin x) = x for all −π

2
≤ x ≤ π

2
.

(v) y = sin−1 x if and only if sin y = x. Using words, the notation y = sin−1 x
gives the angle y whose sine value is x.

Remark 43.1
If x is outside the interval [−π

2
, π

2
] then we look for the angle y in the interval

[−π
2
, π

2
] such that sin x = sin y. In this case, sin−1 (sin x) = y. For example,

sin−1 (sin 5π
6

) = sin−1 (sin π
6
) = π

6
.
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The graph of y = sin−1 x is the reflection of the graph of y = sin x about the
line y = x as shown in Figure 119.

Figure 119

Example 43.1
Find the exact value of:
(a) sin−1 1 (b) sin−1

√
3

2
(c) sin−1 (−1

2
)

Solution.
(a) Since sin π

2
= 1 then sin−1 1 = π

2
.

(b) Since sin π
3

=
√

3
2

then sin−1
√

3
2

= π
3
.

(c) Since sin (−π
6
) = −1

2
then sin−1 (−1

2
) = −π

6
.

Example 43.2
Find the exact value of:
(a) sin (sin−1 2) (b) sin−1 (sin π

3
).

Solution.
(a) sin (sin−1 2) is undefined since 2 is not in the domain of sin−1 x.
(b) sin (sin−1 π

3
) = Π

3
.

Next, we will express the trigonometric functions of the angle sin−1 x in
terms of x. Let u = sin−1 x. Then sin u = x. Since sin2 u + cos2 u = 1 then
cos u = ±

√
1− x2. But −π

2
≤ u ≤ π

2
so that cos u ≥ 0. Thus

cos (cos−1 x) =
√

1− x2.
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It follows that for −π
2
≤ x ≤ π

2
we have

sin (sin−1 x) = x

cos (sin−1 x) =
√

1− x2

csc (sin−1 x) = 1
sin (sin−1 x)

= 1
x

sec (sin−1 x) = 1
cos (sin−1 x)

= 1√
1−x2

tan (sin−1 x) = sin (sin−1 x)

cos (sin−1 x)
= x√

1−x2

cot (sin−1 x) = 1
tan (sin−1 x)

=
√

1−x2

x
.

Example 43.3
Find the exact value of:
(a) cos (sin−1

√
2

2
) (b) tan (sin−1 (−1

2
))

Solution.

(a) Using the above discussion we find cos (sin−1
√

2
2

) =
√

1− (
√

2
2

)2 =
√

2
2

.

(b) tan (sin−1 (−1
2
)) =

−1
2√
1− 1

4

= −
√

3
3

.

The Inverse Cosine Function
In order to define the inverse cosine function, we will restrict the function
f(x) = cos x over the interval [0, π]. There the function is always decreasing.
See Figure 120. Therefore f(x) is one-to-one function. Hence, its inverse will
be denoted by

f−1(x) = cos−1 x.

We call cos−1 x the inverse cosine function.

Figure 120
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The following are consequences of the definition of inverse functions:
(i) Dom(cos−1 x) = Range(cos x) = [−1, 1].
(ii) Range(cos−1 x) = Dom(cos x) = [0, π].
(iii) cos (cos−1 x) = x for all −1 ≤ x ≤ 1.
(iv) cos−1 (cos x) = x for all 0 ≤ x ≤ π.
(v) y = cos−1 x if and only if cos y = x. Using words, the notation y = cos−1 x
gives the angle y whose cosine value is x.

Remark 43.2
If x is outside the interval [0, π] then we look for the angle y in the interval
[0, π] such that cos x = cos y. In this case, cos−1 (cos x) = y. For example,
cos−1 (cos 7π

6
) = cos−1 (cos 5π

6
) = 5π

6
.

The graph of y = cos−1 x is the reflection of the graph of y = cos x about the
line y = x as shown in Figure 121.

Figure 121

Example 43.4
Let θ = cos−1 x. Find the six trigonometric functions of θ.

Solution.
Let u = cos−1 x. Then cos u = x. Since sin2 u + cos2 u = 1 then sin u =
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±
√

1− x2. Since 0 ≤ u ≤ π then sin u ≥ 0 so that sin u =
√

1− x2. Thus,

sin (cos−1 x) =
√

1− x2

cos (cos−1 x) = x
csc (cos−1 x) = 1

sin (cos−1 x)
= 1√

1−x2

sec (cos−1 x) = 1
cos (cos−1 x)

= 1
x

tan (cos−1 x) = sin (cos−1 x)
cos (cos−1 x)

=
√

1−x2

x

cot (cos−1 x) = 1
tan (cos−1x)

= x√
1−x2 .

Example 43.5
Find the exact value of:
(a) cos−1

√
2

2
(b) cos−1 (−1

2
).

Solution.
(a) cos−1

√
2

2
= π

4
since cos π

4
=

√
2

2
.

(b) cos−1 (−1
2
) = 2π

3
.

The Inverse Tangent Function
Although not one-to-one on its full domain, the tangent function is one-to-
one when restricted to the interval (−π

2
, π

2
) since it is increasing there (See

Figure 122).

Figure 122

Thus, the inverse function exists and is denoted by

f−1(x) = tan−1 x.
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We call this function the inverse tangent function.
As before, we have the following properties:
(i) Dom(tan−1 x) = Range(tan x) = (−∞,∞).
(ii) Range(tan−1 x) = Dom(tan x) = (−π

2
, π

2
).

(iii) tan (tan−1 x) = x for all x.
(iv) tan−1 (tan x) = x for all −π

2
< x < π

2
.

(v) y = tan−1 x if and only if tan y = x. In words, the notation y = tan−1 x
means that y is the angle whose tangent value is x.

Remark 43.3
If x is outside the interval (−π

2
, π

2
) and x 6= (2n + 1)π

2
, where n is an

integer, then we look for the angle y in the interval (−π
2
, π

2
) such that

tan x = tan y. In this case, tan−1 (tan x) = y. For example, tan−1 (tan 5π
6

) =
tan−1 (tan (−π

6
)) = −π

6
.

The graph of y = tan−1 x is the reflection of y = tan x about the line y = x
as shown in Figure 123.

Figure 123

Example 43.6
Find the exact value of:
(a) tan−1 (tan π

4
) (b) tan−1 (tan 7π

5
).

Solution.
(a) tan−1 (tan π

4
) = π

4
.

(b) tan−1 (tan 7π
5

) = tan−1 (tan (2π
5

)) = 2π
5

.
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Example 43.7
Let u = tan−1 x. Find the six trigonometric functions of u.

Solution.
Since 1 + tan2 u = sec2 u then sec u = ±

√
1 + x2. But −π

2
< u < π

2
then

sec u > 0 so that sec u =
√

1 + x2. Also, cot u = 1
tan u

= 1
x
. In summary,

sin (tan−1 x) = 1
csc (tan−1 x)

= x√
1+x2

cos (tan−1 x) = 1
sec (tan−1 x)

= 1√
1+x2

csc (tan−1 x) =
√

1+x2

x

sec (tan−1 x) =
√

1 + x2

tan (tan−1 x) = x
cot (tan−1 x) = 1

x

The Inverse Cotangent Function
The function f(x) = cot x is always decreasing on (0, π). See Figure 124.

Figure 124

Thus, it is one-to-one and has an inverse denoted by

f−1(x) = cot−1 x

We call f−1(x) the inverse cotangent function.

Properties of y = cot−1 x :
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(i) Dom(cot−1 x) = Range(cot x) = (−∞,∞).
(ii) Range(cot−1 x) = Dom(cot x) = (0, π).
(iii) cot (cot−1 x) = x for any x.
(iv) cot−1 (cot x) = x for 0 < x < π.
(v) y = cot−1 x if and only if cot y = x. Thus, y = cot−1 x means that y is
the angle whose cotangent value is x.

Remark 43.4
If x is outside the interval (0, π) and x 6= nπ, where n is an integer, then we
look for the angle y in the interval (0, π) such that cot x = cot y. In this case,
cot−1 (cot x) = y. For example, cot−1 (cot 7π

5
) = cot−1 (cot 2π

5
) = 2π

5
.

The graph of y = cot−1 x is shown in Figure 125.

Figure 125

Example 43.8
Let u = cot−1 x. Find the six trigonometric functions of u.

Solution.
Since 1+cot2u = csc2 u then csc u = ±

√
1 + x2. But 0 < u < π then csc u > 0

so that csc u =
√

1 + x2. Also, tan u = 1
cot u

= 1
x
. In summary,

sin (cot−1 x) = 1
csc (cot−1 x)

= 1√
1+x2

cos (cot−1 x) = 1
sec (cot−1 x)

= x√
1+x2

csc (cot−1 x) =
√

1 + x2

sec (cot−1 x) =
√

1+x2

x

tan (cot−1 x) = 1
x

cot (cot−1 x) = x
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The Inverse Secant Function
The function f(x) = sec x is increasing on the interval [0, π

2
) ∪ (π

2
, π]. See

Figure 126. Thus, f(x) is one-to-one and consequently it has an inverse
denoted by

f−1(x) = sec−1 x.

We call this new function the inverse secant function.

Figure 126

We call this new function the inverse secant function. From the definition
of inverse functions we have the following properties of f−1(x) :
(i) Dom(sec−1 x) = Range(sec x) = (−∞,−1] ∪ [1,∞).
(ii) Range(sec−1 x) = Dom(sec x) = [0, π

2
) ∪ (π

2
, π].

(iii) sec (sec−1 x) = x for all x ≤ −1 or x ≥ 1.
(iv) sec−1 (sec x) = x for all x in [0, π

2
) or x in (π

2
, π].

(v) y = sec−1x if and only if sec y = x.

Remark 43.5
If x is outside the interval [0, π

2
) ∪ (π

2
, π] and x 6= (2n + 1)π

2
, where n is an

integer, then we look for the angle y in the interval [0, π
2
) ∪ (π

2
, π] such that

sec x = sec y. In this case, sec−1 (sec x) = y. For example, sec−1 (sec 7π
6

) =
sec−1 (sec 5π

6
) = 5π

6
.

The graph of y = sec−1 x is the reflection of the graph of y = sec x about the
line y = x as shown in Figure 127.
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Figure 127

Example 43.9
Find the exact value of:
(a) sec−1

√
2 (b) sec−1 (sec π

3
).

Solution.
(a) sec−1

√
2 = π

4
.

(b) sec−1 (sec π
3
) = π

3
.

Example 43.10
Let u = sec−1 x. Find the six trigonometric functions of u.

Solution.
Since sec u = x then cos u = 1

x
. Since sin2 u + cos2 u = 1 and u is in either

Quadrant I or Quadrant II where sin u > 0 then sin u =
√

1−x2

|x| . Also, csc u =
|x|√
1−x2 . In summary,

sin (sec−1 x) =
√

1−x2

|x|
cos (sec−1 x) = 1

x

csc (sec−1 x) = |x|√
1−x2

sec (sec−1 x) = x

tan (sec−1 x) = x
√

1−x2

|x|

cot (sin−1 x) = |x|
x
√

1−x2

The inverse cosecant function
In order to define the inverse cosecant function, we will restrict the function
y = csc x over the interval [−π

2
, 0) ∪ (0, π

2
]. There the function is always
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decreasing (See Figure 128)and therefore is one-to-one function. Hence, its
inverse will be denoted by

f−(x) = csc−1 x.

We call csc−1 x the inverse cosecant function.

Figure 128

The following are consequences of the definition of inverse functions:
(i) Dom(csc−1 x) = Range(csc x) = (−∞,−1] ∪ [1,∞).
(ii) Range(csc−1 x) = Dom(csc x) = [−π

2
, 0) ∪ (0, π

2
].

(iii) csc (csc−1 x) = x for all x ≤ −1 or x ≥ 1.
(iv) csc−1 (csc x) = x for all −π

2
≤ x < 0 or 0 < x ≤ π

2
.

(v) y = csc x if and only if csc y = x.

Remark 43.6
If x is outside the interval [−π

2
, 0) ∪ (0, π

2
] and x 6= nπ, where n is an inte-

ger, then we look for the angle y in the interval [−π
2
, 0) ∪ (0, π

2
] such that

csc x = csc y. In this case, csc−1 (csc x) = y. For example, csc−1 (csc (5π
6

)) =
csc−1 (csc π

6
) = π

6
.

The graph of y = csc−1 x is the reflection of the graph of y = csc x about the
line y = x as shown in Figure 129.
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Figure 129

Example 43.11
Let u = csc−1 x. Find the six trigonometric functions of u.

Solution.
Since csc u = x then sin u = 1

x
. Since sin2 u + cos2 u = 1 and u is in either

Quadrant I or Quadrant IV then cos u > 0 and cos u =
√

x2−1
|x| . Also, sec u =

|x|√
x2−1

. In summary,

sin (csc−1 x) = 1
x

cos (csc−1 x) =
√

x2−1
|x|

csc (csc−1 x) = x

sec (csc−1 x) = |x|√
x2−1

tan (csc−1 x) = |x|
x
√

x2−1

cot (csc−1 x) = x
√

x2−1
|x|

Example 43.12
Find the exact value of cos (π

4
− csc−1 5

3
).

Solution.
We have

cos (π
4
− csc−1 5

3
) = cos π

4
cos (csc−1 5

3
) + sin π

4
sin (csc−1 5

3
)

=
√

2
2

4
5

+
√

2
2

3
5

= 7
√

2
10
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Example 43.13
Find the exact value of sin (csc−1 (− 2√

3
)).

Solution.
Consider a right triangle with acute angle csc−1 2√

3
, opposite side

√
3, adja-

cent side 1 and hypotenuse of length 2. Then

sin (csc−1 (− 2√
3
)) = − sin (csc−1 ( 2√

3
))

= −
√

3
2

Example 43.14
Use a calculator to find the value of csc−1 5, rounded to four decimal places.

Solution.
Let x = csc−1 5 then csc x = 5 and this leads to sin x = 1

5
= 0.2. Hence,

either x = sin−1 0.2 ≈ 0.2014 or x ≈ π − 0.2014.
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Review Problems

Exercise 43.1
Find the exact radian value.

(a) sin−1 1 (b) cos−1
(√

3
2

)
(c) sin−1

(√
2

2

)
(d) cos−1

(
−1

2

)
Exercise 43.2
Find the exact value of the given expression, if it is defined.

(a) cos
(
cos−1 1

2

)
(b) sin−1

(
sin π

6

)
.

Exercise 43.3
Find the exact value of the given expression, if it is defined.

(a) cos−1
(
sin π

4

)
(b) sin−1

[
cos

(
−2π

3

)]
(c) sin

(
sin−1 2

3
+ cos−1 1

2

)
.

Exercise 43.4
Solve the equation for x algebraically.

(a) sin−1 (x− 1) = π
2
.

(b) cos−1
(
x− 1

2

)
= π

3
.

Exercise 43.5
Solve the equation for x algebraically.

(a) sin−1
√

2
2

+ cos−1 x = 2π
3

(b) sin−1 x + cos−1 4
5

= π
6
.

Exercise 43.6
Evaluate each expression.
(a) y = cos (sin−1 x) (b) y = tan (cos−1 x) (c) y = sec (sin−1 x).

Exercise 43.7
Establish the identities.

(a) sin−1 x + sin−1 (−x) = 0
(b) cos−1 x + cos−1 (−x) = π.
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Exercise 43.8
Solve for y in terms of x.

(a) 2x = 1
2
sin−1 2y

(b) x− π
3

= cos−1 (y − 3).

Exercise 43.9
Find the exact radian value.

(a) cot−1
√

3
3

(b) csc−1 (−
√

2) (c) tan−1
√

3 (d) sec−1 2
√

3
3

.

Exercise 43.10
Find the exact value of the given expression.

(a) tan (tan−1 2) (b) sin
(
tan−1 3

4

)
.

Exercise 43.11
Find the exact value of the given expression.

(a) tan−1
(
sin π

6

)
(b) cot−1

(
cos 2π

3

)
.

Exercise 43.12
Solve the equation for x algebraically.

tan−1
(
x +

√
2

2

)
= π

4

Exercise 43.13
Establish the identities.

(a) tan−1 x + tan−1 1
x

= π
2
, x > 0.

(b) sec−1 1
x

+ csc−1 1
x

= π
2
.

Exercise 43.14
Solve for y in terms of x.

(a) 5x = tan−1 3y
(b) x + π

2
= tan−1 (2y − 1).
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Exercise 43.15
Show that α + β = π

4
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44 Trigonometric Equations

An equation that contains trigonometric functions is called a trigonomet-
ric equation. In this section we will discuss some techniques for solving
trigonometric equations. The values that satisfy a trigonometric equation
are called solutions of the equation. To solve a trigonometric equation is
to find all its solutions.

Example 44.1
Determine whether x = π

4
is a solution of the equation

sin x =
1

2
.

Is x = π
6

a solution?

Solution.
Since sin π

4
=

√
2

2
6= 1

2
then x = π

4
is not a solution to the given equation. On

the contrary, x = π
6

is a solution since sin π
6

= 1
2
.

Unless the domain of a variable is restricted, most trigonometric equations
have an infinite number of solutions, a fact due to the periodicity property
of the trigonometric functions.

Solving the Equation sin x = sin a
The first set of solutions is given by the formula x = a + 2kπ, where k is an
integer. But sin a = sin (π − a) so that the second set of solutions is given
by the formula x = π − a + 2kπ.

Example 44.2
Find all the solutions of the equation 2 sin x− 1 = 0.

Solution.
The given equation is equivalent to sin x = 1

2
= sin π

6
. The solutions to this

equation are given by {
x = π

6
+ 2kπ

x = 5π
6

+ 2kπ

Example 44.3
Solve the equation: sin x = 1

3
.
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Solution.
Since sin x = sin (sin−1 1

3
) then the solutions are given by{
x = sin−1 1

3
+ 2kπ

x = π − sin−1 1
3

+ 2kπ

Sometimes some standard algebraic techniques such as collecting like terms
or factoring are used in solving trigonometric equations.

Example 44.4
Solve the equation: sin2 x− sin x = 0.

Solution.
Factoring we find sin x(sin x − 1) = 0. Thus, either sin x = 0 or sin x = 1.
The solutions of the equation sin x = 0 are given by x = kπ where k is any
integer. The solutions of the equation sin x = 1 are given by x = (2k + 1)π

2

where k is an arbitrary integer.

Solving the Equation cos x = cos a
The first set of solutions is given by the formula x = a + 2kπ, where k is an
integer. But cos a = cos (−a) so that the second set of solutions is given by
the formula x = −a + 2kπ.

Example 44.5
Solve the equation: 2 cos2 x− 7 cos x + 3 = 0.

Solution.
Factoring the given equation to obtain:

(2 cos x− 1)(cos x− 3) = 0.

This equation is satisfied for all values of x such that either cos x = 1
2

or
cos x = 3. Since −1 ≤ cos x ≤ 1 then the second equation has no solutions.
The solutions to the first equation in the interval [0, 2π) are π

3
and 5π

3
. All

the solutions are given by π
3

+ 2kπ or 5π
3

+ 2kπ where k is an integer.

Example 44.6
Solve the equation: 3 cos x + 3 = sin2 x.
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Solution.
Using the identity sin2 x + cos2 x = 1 we obtain the quadratic equation
2 cos2 x+3 cos x+1 = 0 which can be factored into (2 cos x+1)(cos x+1) = 0.
Thus either cos x = −1

2
or cos x = −1. The solutions to the first equation are

given by {
x = 2π

3
+ 2kπ

x = 4π
3

+ 2kπ.

The solutions to the second equation are given by x = (2k + 1)π where k is
an arbitrary integer.

Example 44.7
Solve the equation: sin 2x− cos x = 0.

Solution.
Using the identity sin 2x = 2 sin x cos x the given equation can be factored
as cos x(2 sin x − 1) = 0. Thus, either cos x = 0 or sin x = 1

2
. The solutions

to the first equation are given by x = (2k + 1)π
2

and those to the second
equation are given by {

x = π
6

+ 2kπ
x = 5π

6
+ 2kπ

where k is an integer.

Example 44.8
Solve the equation: cos x + 1 = sin x in the interval [0, 2π).

Solution.
Squaring both sides of the equation and expanding to obtain

cos2 x + 2 cos x + 1 = sin2 x

Using the identity sin2 x + cos2 x = 1, the last equation reduces to

2 cos2 x + 2 cos x = 0.

Factoring to obtain cos x(2 cos x + 1) = 0. Thus, either cos x = 0 or cos x =
−1

2
. The first equation has the solutions π

2
and 3π

2
. The second equation has

the solution π. Now since we solved this equation by squaring then we must
check for extraneous solutions. Substituting the three values found above in
to the equation we find that only π and π

2
satisfy the equation.
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Solving the Equation tan x = tan a
The solutions to this equation are given by the formula

x = a + kπ

where k is an integer.

Example 44.9
Solve the equation tan2 x− 3 = 0.

Solution.
Isolating tan x we find

tan2 x− 3 = 0
tan2 x = 3

tan x = ±
√

3

Solving the equation tan x =
√

3 = tan π
3

we find the solutions x = π
3

+ kπ.

Solving the equation tan x = −
√

3 = tan 5π
3

we find the solutions x = 5π
3

+
kπ

Example 44.10
Find the values of x for which the curves f(x) = sin x and g(x) = cos x
intersect.

Solution.
The solutions to the equation sin x = cos x are the points of intersection of
the two curves. The above equation is equivalent to tan x = 1 = tan π

4
. The

collection of all solutions is given by π
4

+ kπ where k is an integer.

Example 44.11
Solve the equation: sin 2x = 1, 0 ≤ x < 2π.

Solution.
We have 2x = (2k + 1)π

2
or x = (2k + 1)π

4
, where k is an integer. Since

0 ≤ x < 2π then 0 ≤ (2k + 1)π
4

< 2π or 0 ≤ 2k + 1 < 8. Thus 0 ≤ k < 7
2
.

This gives the values k = 0, 1, 2 and k = 3. So the solutions to the equation
on the given interval are x = π

4
, 3π

4
, 5

4
π, 7

4
π.
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Review Problems

Exercise 44.1
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

sec x−
√

2 = 0.

Exercise 44.2
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

sin2 x− 1 = 0.

Exercise 44.3
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

2 sin2 x + 1 = 3 sin x.

Exercise 44.4
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

sin4 x = sin2 x.

Exercise 44.5
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

tan2 x + tan x−
√

3 =
√

3 tan x.

Exercise 44.6
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

2 cos2 x + 1 = −3 cos x.

Exercise 44.7
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

3 sec x− 8 = 0.

Exercise 44.8
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

3 cos x + 3 = 0.
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Exercise 44.9
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

33 tan2 x− 2 tan x = 0.

Exercise 44.10
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

2 sin2 x = 1− cos x.

Exercise 44.11
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

2 tan2 x− tan x− 10 = 0.

Exercise 44.12
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

2 sin x cos x− sin x− 2 cos x + 1 = 0.

Exercise 44.13
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

3 sin2 x− sin x− 1 = 0.

Exercise 44.14
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

cos2 x− 3 sin x + 2 sin2 x = 0.

Exercise 44.15
Find the exact solutions, in radians, of the equation

tan 2x− 1 = 0.

238



Exercise 44.16
Find the exact solutions, in radians, of the equation

sin 2x− sin x = 0.

Exercise 44.17
Find the exact solutions, in radians, of the equation

sin2 x

2
+ cos x = 1.

Exercise 44.18
Find the exact solutions, in radians, where 0 ≤ x < 2π.

cos 2x = 1− 3 sin x.

Exercise 44.19
Find the exact solutions, in radians, where 0 ≤ x < 2π.

sin 2x cos x + cos 2x sin x = 0.

Exercise 44.20
Find the exact solutions, in radians, where 0 ≤ x < 2π.

cos 2x cos x− sin 2x sin x = 0.

Exercise 44.21
Find the exact solutions, in radians, where 0 ≤ x < 2π.

2 sin x cos x− 2
√

2 sin x−
√

3 cos x +
√

6 = 0.

Exercise 44.22
Solve the equation: 2 sin2 x cos x− cos x = 0, for 0 ≤ x < 2π.

Exercise 44.23
Solve the equation: 3 cos2 x− 5 cos x− 4 = 0, 0 ≤ x < 2π.

Exercise 44.24
Solve the equation sin 3x = 1.

Exercise 44.25
How many solutions does the equation sin ( 1

x
) = 0 have on the interval 0 <

x < π
2
?
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