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PREFACE

This supplement consists of my lectures of a freshmen-level mathematics class
offered at Arkansas Tech University. The lectures are designed to accompany
the textbook ”Applied Calculus” written by Hughes-Hallett et al.
The lectures cover Chapters 1, 2, 3, 4, 5, 6, and 7. These chapters are basi-
cally well suited for a one semester course in Business Calculus.

Marcel B. Finan
January 2003
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1 Functions and Function Notation

Functions play a crucial role in mathematics. A function describes how one
quantity depends on others. More precisely, when we say that a quantity y
is a function of a quantity x we mean a rule that assigns to every possible
value of x exactly one value of y. We call x the input and y the output. In
function notation we write

y = f(x)

Since y depends on x it makes sense to call x the independent variable
and y the dependent variable.
In applications of mathematics, functions are often representations of real
world phenomena. Thus, the functions in this case are referred to as math-
ematical models. If the set of input values is a finite set then the models
are known as discrete models. Otherwise, the models are known as con-
tinuous models. For example, if H represents the temperature after t hours
for a specific day, then H is a discrete model. If A is the area of a circle of
radius r then A is a continuous model.
There are four common ways in which functions are presented and used: By
words, by tables, by graphs, and by formulas.

Example 1.1
The sales tax on an item is 6%. So if p denotes the price of the item and C
the total cost of buying the item then if the item is sold at $ 1 then the cost
is 1 + (0.06)(1) = $1.06 or C(1) = $1.06. If the item is sold at $2 then the
cost of buying the item is 2 + (0.06)(2) = $2.12, or C(2) = $2.12, and so on.
Thus we have a relationship between the quantities C and p such that each
value of p determines exactly one value of C. In this case, we say that C is
a function of p. Describes this function using words, a table, a graph, and a
formula.

Solution.
•Words: To find the total cost, multiply the price of the item by 0.06 and
add the result to the price.
•Table: The chart below gives the total cost of buying an item at price p as
a function of p for 1 ≤ p ≤ 6.

p 1 2 3 4 5 6
C 1.06 2.12 3.18 4.24 5.30 6.36
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•Graph: The graph of the function C is obtained by plotting the data in
the above table. See Figure 1.
•Formula: The formula that describes the relationship between C and p is
given by

C(p) = 1.06p.

Figure 1

Example 1.2
The income tax T owed in a certain state is a function of the taxable income
I, both measured in dollars. The formula is

T = 0.11I − 500.

(a) Express using functional notation the tax owed on a taxable income of $
13,000, and then calculate that value.
(b) Explain the meaning of T (15, 000) and calculate its value.

Solution.
(a) The functional notation is given by T (13, 000) and its value is

T (13, 000) = 0.11(13, 000)− 500 = $930.

(b) T (15, 000) is the tax owed on a taxable income of $15,000. Its value is

T (15, 000) = 0.11(15, 000)− 500 = $1, 150.
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Emphasis of the Four Representations
A formula has the advantage of being both compact and precise. However,
not much insight can be gained from a formula as from a table or a graph.
A graph provides an overall view of a function and thus makes it easy to
deduce important properties. Tables often clearly show trends that are not
easily discerned from formulas, and in many cases tables of values are much
easier to obtain than a formula.

Remark 1.1
To evaluate a function given by a graph, locate the point of interest on the
horizontal axis, move vertically to the graph, and then move horizontally to
the vertical axis. The function value is the location on the vertical axis.

Now, most of the functions that we will encounter in this course have for-
mulas. For example, the area A of a circle is a function of its radius r. In
function notation, we write A(r) = πr2. However, there are functions that
can not be represented by a formula. For example, the value of Dow Jones
Industrial Average at the close of each business day. In this case the value
depends on the date, but there is no known formula. Functions of this nature,
are mostly represented by either a graph or a table of numerical data.

Example 1.3
The table below shows the daily low temperature for a one-week period in
New York City during July.
(a) What was the low temperature on July 19?
(b) When was the low temperature 73◦F?
(c) Is the daily low temperature a function of the date?Explain.
(d) Can you express T as a formula?

D 17 18 19 20 21 22 23
T 73 77 69 73 75 75 70

Solution.
(a) The low temperature on July 19 was 69◦F.
(b) On July 17 and July 20 the low temperature was 73◦F.
(c) T is a function of D since each value of D determines exactly one value
of T.
(d) T can not be expressed by an exact formula.
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So far, we have introduced rules between two quantities that define func-
tions. Unfortunately, it is possible for two quantities to be related and yet
for neither quantity to be a function of the other.

Example 1.4
Let x and y be two quantities related by the equation

x2 + y2 = 4.

(a) Is x a function of y? Explain.
(b) Is y a function of x? Explain.

Solution.
(a) For y = 0 we have two values of x, namely, x = −2 and x = 2. So x is
not a function of y.
(b) For x = 0 we have two values of y, namely, y = −2 and y = 2. So y is
not a function of x.

Next, suppose that the graph of a relationship between two quantities x
and y is given. To say that y is a function of x means that for each value of
x there is exactly one value of y. Graphically, this means that each vertical
line must intersect the graph at most once. Hence, to determine if a graph
represents a function one uses the following test:

Vertical Line Test: A graph is a function if and only if every vertical
line crosses the graph at most once.

According to the vertical line test and the definition of a function, if a ver-
tical line cuts the graph more than once, the graph could not be the graph
of a function since we have multiple y values for the same x-value and this
violates the definition of a function.

Example 1.5
Which of the graphs (a), (b), (c) in Figure 2 represent y as a function of x?
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Figure 2

Solution.
By the vertical line test, (b) represents a function whereas (a) and (c) fail to
represent functions since one can find a vertical line that intersects the graph
more than once.

Recommended Problems (pp. 4 - 6): 1, 3, 5, 10, 13, 15, 17, 24, 25.
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2 Linear Functions

This section is designed to introduce students to the concept of linear func-
tions.
A linear function f is a function with the property that for any two points
(x1, f(x1)) and (x2, f(x2)) on the graph of f , the difference quotient

f(x2)− f(x1)

x2 − x1

is constant. We say that y is changing at a constant rate with respect to x.
Thus, y changes by the some amount for every unit change in x. Geometri-
cally, the graph is a straight line ( and thus the term linear). The constant
rate of change, denoted by m, is called the slope of the line and Figure 3
shows its geometrical significance.

Figure 3

Example 2.1
Show that the function f(x) = x2 is not linear.

Solution.
Taking the points (0, 0) and (1, 1) we find

f(1)− f(0)

1− 0
= 1.
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On the other hand, taking the point (1, 1) and (2, 4) we find

f(2)− f(1)

2− 1
= 3.

Thus, f is not linear.

Example 2.2
Suppose you pay $ 192 to rent a booth for selling necklaces at an art fair.
The necklaces sell for $ 32. Explain why the function that shows your net
income (revenue from sales minus rental fees) as a function of the number of
necklaces sold is a linear function.

Solution.
Let P (n) denote the net income from selling n necklaces. Each time a neck-
lace is sold, that is, each time n is increased by 1, the net income P is
increased by the same constant, $32. Thus the rate of change for P is always
the same, and hence P is a linear function.

Testing Data for Linearity
Next, we will consider the question of recognizing a linear function given by
a table.
Let f be a linear function given by a table. Then the rate of change is the
same for all pairs of points in the table. In particular, when the x values are
evenly spaced the change in y is constant.

Example 2.3
Which of the following tables could represent a linear function?

x f(x)
0 10
5 20
10 30
15 40

x g(x)
0 20
10 40
20 50
30 55

Solution.
Since equal increments in x yield equal increments in y then f(x) is a linear
function. On the contrary, since 40−20

10−0
6= 50−40

20−10
then g(x) is not linear.

It is possible to have a table of linear data in which neither the x-values
nor the y-values go up by equal amounts. However, the rate of change of any
pairs of points in the table is constant.

11



Example 2.4
The following table contains linear data, but some data points are missing.
Find the missing data points.

x 2 5 8
y 5 17 23 29

Solution.
Consider the points (2, 5), (5, a), (b, 17), (8, 23), and (c, 29). Since the data is
linear then we must have a−5

5−2
= 23−5

8−2
. That is, a−5

3
= 3. Cross multiplying

to obtain a − 5 = 9 or a = 14. It follows that when x in increased by 1, y
increases by 3. Hence, b = 6 and c = 10.

Next, we consider the question of recognizing a linear function defined by
an equation.
Linear functions come in three main forms: slope-intercept form, point-slope
form, and standard form. Suppose, first, that f(x) is a linear function of
x. Then f changes at a constant rate, say m. That is, if we pick two points
(0, f(0)) and (x, f(x)) then

m =
f(x)− f(0)

x− 0
.

Writing f(x) in terms of x we obtain f(x) = mx+ f(0). This is the function
notation of the linear function f(x). Another notation is the equation nota-
tion, y = mx + f(0). We will denote the number f(0) by b. In this case, the
linear function will be written as

f(x) = mx + b or y = mx + b.

We call this equation the slope-intercept form since it involves the slope
m and the vertical intercept b.

Example 2.5
The value of a new computer equipment is $20,000 and the value drops at a
constant rate so that it is worth $ 0 after five years. Let V (t) be the value
of the computer equipment t years after the equipment is purchased.

(a) Find the slope m and the y-intercept b.
(b) Find a formula for V (t).
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Solution.
(a) Since V (0) = 20, 000 and V (5) = 0 then the slope of V (t) is

m =
0− 20, 000

5− 0
= −4, 000

and the vertical intercept is V (0) = 20, 000.
(b) A formula of V (t) is V (t) = −4, 000t + 20, 000. In financial terms, the
function V (t) is known as the straight-line depreciation function.

So far we have represented a linear function by the expression y = mx + b.
This is known as the slope-intercept form of the equation of a line. Now,
if the slope m of a line is known and one point (x0, y0) is given then by taking
any point (x, y) on the line and using the definition of m we find

y − y0

x− x0

= m.

Cross multiply to obtain: y − y0 = m(x− x0). This is known as the point-
slope form of a line.

Example 2.6
Find the equation of the line passing through the point (100, 1) and with
slope m = 0.01.

Solution.
Using the above formula we have: y − 1 = 0.01(x− 100) or y = 0.01x.

Note that the form y = mx + b can be rewritten in the form

Ax + By + C = 0. (1)

where A = m,B = −1, and C = b. The form (1) is known as the standard
form of a linear function.

Example 2.7
Rewrite in standard form: 3x + 2y + 40 = x− y.

Solution.
Subtracting x− y from both sides to obtain 2x + 3y + 40 = 0.
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Families of Linear Functions
We have seen that the graph of a linear function f(x) = mx + b is a straight
line. But a line can be horizontal, vertical, rising to the right or falling to
the right. The slope is the parameter that provides information about the
steepness of a straight line.

• If m = 0 then f(x) = b is a constant function whose graph is a hori-
zontal line at (0, b).
• For a vertical line, the slope is undefined since any two points on the line
have the same x-value and this leads to a division by zero in the formula for
the slope. The equation of a vertical line has the form x = a.
• Suppose that the line is neither horizontal nor vertical. If m > 0 then by
Section 3, f(x) is increasing. That is, the line is rising to the right.
• If m < 0 then f(x) is decreasing. That is, the line is falling to the right.
• The slope, m, tells us how fast the line is climbing or falling. The larger
the value of m the more the line rises and the smaller the value of m the
more the line falls.
The parameter b tells us where the line crosses the vertical axis.

Example 2.8
Arrange the slopes of the lines in the figure from largest to smallest.

Figure 4

Solution.
According to Figure 4 we have

mG > mF > mD > mA > mE > mB > mC .
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Recommended Problems (pp. 11 - 13): 1, 3, 7, 9, 11, 12, 15,
17, 23, 25, 29.

15



3 The Rate of Change

Functions given by tables of values have their limitations in that nearly always
leave gaps. One way to fill these gaps is by using the average rate of
change. For example, Table 1 below gives the population of the United
States between the years 1950 - 1990.

d(year) 1950 1960 1970 1980 1990
N(in millions) 151.87 179.98 203.98 227.23 249.40

Table 1

This table does not give the population in 1972. One way to estimate
N(1972), is to find the average yearly rate of change of N from 1970 to
1980 given by

227.23− 203.98

10
= 2.325 million people per year.

Then,
N(1972) = N(1970) + 2(2.325) = 208.63 million.

Average rates of change can be calculated not only for functions given by
tables but also for functions given by formulas. The average rate of change
of a function y = f(x) from x = a to x = b is given by the difference
quotient

∆y

∆x
=

Change in function value

Change in x value
=

f(b)− f(a)

b− a
.

Geometrically, this quantity represents the slope of the secant line going
through the points (a, f(a)) and (b, f(b)) on the graph of f(x). See Figure 5.
The average rate of change of a function on an interval tells us how much
the function changes, on average, per unit change of x within that interval.
On some part of the interval, f may be changing rapidly, while on other
parts f may be changing slowly. The average rate of change evens out these
variations.
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Figure 5

Example 3.1
Find the average value of the function f(x) = x2 from x = 3 to x = 5.

Solution.
The average rate of change is

∆y

∆x
=

f(5)− f(3)

5− 3
=

25− 9

2
= 8.

Example 3.2 (Average Speed)
During a typical trip to school, your car will undergo a series of changes in its
speed. If you were to inspect the speedometer readings at regular intervals,
you would notice that it changes often. The speedometer of a car reveals
information about the instantaneous speed of your car; that is, it shows your
speed at a particular instant in time. The instantaneous speed of an object
is not to be confused with the average speed. Average speed is a measure of
the distance traveled in a given period of time. That is,

Average Speed =
Distance traveled

Time elapsed
.

If the trip to school takes 0.2 hours (i.e. 12 minutes) and the distance traveled
is 5 miles then what is the average speed of your car?

Solution.
The average velocity is given by
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Ave. Speed =
5 miles

0.2 hours
= 25miles/hour.

This says that on the average, your car was moving with a speed of 25 miles
per hour. During your trip, there may have been times that you were stopped
and other times that your speedometer was reading 50 miles per hour; yet
on the average you were moving with a speed of 25 miles per hour.

Average Rate of Change and Increasing/Decreasing Functions
Now, we would like to use the concept of the average rate of change to test
whether a function is increasing or decreasing on a specific interval. First,
we introduce the following definition: We say that a function is increasing
if its graph climbs as x moves from left to right. That is, the function values
increase as x increases. It is said to be decreasing if its graph falls as x
moves from left to right. This means that the function values decrease as x
increases.

As an application of the average rate of change, we can use such quantity
to decide whether a function is increasing or decreasing. If a function f is
increasing on an interval I then by taking any two points in the interval I,
say a < b, we see that f(a) < f(b) and in this case

f(b)− f(a)

b− a
> 0.

Going backward with this argument we see that if the average rate of change
is positive in an interval then the function is increasing in that interval.
Similarly, if the average rate of change is negative in an interval I then the
function is decreasing there.

Example 3.3
The table below gives values of a function w = f(t). Is this function increasing
or decreasing?

t 0 4 8 12 16 20 24
w 100 58 32 24 20 18 17

Solution.
The average of w over the interval [0, 4] is

w(4)− w(0)

4− 0
=

58− 100

4− 0
= −10.5
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The average rate of change of the remaining intervals are given in the chart
below

time interval [0,4] [4,8] [8,12] [12,16] [16, 20] [20,24]
Average -10.5 -6.5 -2 -1 -0.5 -0.25

Since the average rate of change is always negative on [0, 24] then the func-
tion is decreasing on that interval. Of Course, you can see from the table
that the function is decreasing since the output values are decreasing as x
increases. The purpose of this problem is to show you how the average rate
of change is used to determine whether a function is increasing or decreasing.

Some functions can be increasing on some intervals and decreasing on other
intervals. These intervals can often be identified from the graph.

Example 3.4
Determine the intervals where the function is increasing and decreasing.

Figure 6

Solution.
The function is increasing on (−∞,−1) ∪ (1,∞) and decreasing on the in-
terval (−1, 1).

Rate of Change and Concavity
We have seen that when the rate of change of a function is constant then its
graph is a straight line. However, not all graphs are straight lines; they may
bend up or down as shown in the following two examples.
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Example 3.5
Consider the following two graphs in Figure 7.

Figure 7

(a) What do the graphs above have in common?
(b) How are they different? Specifically, look at the rate of change of each.

Solution.
(a) Both graphs represent increasing functions.
(b) The rate of change of f(x) is more and more positive so the graph bends
up whereas the rate of change of g(x) is less and less positive and so it bends
down.

The following example deals with version of the previous example for de-
creasing functions.

Example 3.6
Consider the following two graphs given in Figure 8.

Figure 8
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(a) What do the graphs above have in common?
(b) How are they different? Specifically, look at the rate of change of each.

Solution.
(a) Both functions are decreasing.
(b) The rate of change of f(x) is more and more negative so the graph bends
down, whereas the rate of change of g(x) is less and less negative so the graph
bends up.

Conclusions:
• When the rate of change of a function is increasing then the function is
concave up. That is, the graph bends upward.
• When the rate of change of a function is decreasing then the function is
concave down. That is, the graph bends downward.

The following example discusses the concavity of a function given by a table.

Example 3.7
Given below is the table for the function H(x). Calculate the rate of change
for successive pairs of points. Decide whether you expect the graph of H(x)
to concave up or concave down?

x 12 15 18 21
H(x) 21.40 21.53 21.75 22.02

Solution.

H(15)−H(12)
15−12

= 21.53−21.40
3

≈ 0.043
H(18)−H(15)

18−15
= 21.75−21.53

3
≈ 0.073

H(21)−H(18)
21−18

= 22.02−21.75
3

≈ 0.09

Since the rate of change of H(x) is increasing then the function is concave
up.

Remark 3.1
Since the graph of a linear function is a straight line, that is its rate of change
is constant, then it is neither concave up nor concave down.

Recommended Problems (pp. 19 - 21): 1, 2, 3, 4, 5, 7, 10, 12, 13,
16, 17, 25, 27, 30.
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4 Applications of Functions to Economics

The goal of this section is to exhibit some functions used in business and
economics.

The cost function C gives the cost C(q) of manufacturing a quantity q
of some good. A linear cost function has the form

C(q) = mq + b,

where the y-intercept b is called the fixed cost, i.e. the costs incurred even
if nothing is produced, and the slope m is called the variable costs per
unit.
The function C(x) = C(x)

x
is called the average cost function.

Example 4.1
What is the cost function of manufacturing a product with fixed cost of $400
and variable costs of $40 per item, assuming the function is linear?

Solution.
The cost function is

C(q) = 40q + 400.

Example 4.2
Values of a linear cost function are shown below. What are the fixed costs
and the variable costs per units? Find a formula for the cost function.

q 0 5 10 15 20
C(q) 5000 5020 5040 5060 5080

Solution.
The fixed costs are b = C(0) = $5, 000, the variable costs are

m =
5020− 5000

5− 0
= 4

The cost function is
C(q) = 4q + 5, 000

A revenue function R gives the total revenue R(q) from the sale of a
quantity q at a unit price p dollars. Thus, R(q) = pq.
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Example 4.3
A company that makes a certain brand of chairs has fixed costs of $5, 000
and marginal cost of $30 per chair. The company sells the chairs for $50
each. Find formulas for the cost and revenue functions.

Solution.
The cost function is C(q) = 30q +5000. The revenue function is R(q) = pq =
30q.

In any business, decisions are made based on the profit function. Profit
is defined to be revenue minus cost. That is

P (q) = R(q)− C(q).

The break-even point is the point where the profit is zero, i.e. R(q) = C(q).

Example 4.4
A company has cost and revenue functions, in dollars, given by C(q) =
6, 000 + 10q and R(q) = 12q.

(a) Graph the functions C(q) and R(q) on the same coordinate axes.
(b) Find the break-even point and illustrate it graphically.
(c) When does the company make a profit? Loses money?

Solution.
(a) The graph is given in Figure 9.

Figure 9
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(b) The break-even point is the point of intersection of the two lines. To find
the point, set 12q = 10q + 6000 and solve for q to find q = 3000. Thus, the
break-even point is the point (3000, 36000).
(c) The company makes profit for q > 3000 and loses money for q < 3000.

Marginal Analysis
In economics and business the term marginal stands for a rate of change.
Marginal analysis is an area of economics concerned with estimating the
effect on quantities such as cost, revenue, and profit when the level of pro-
duction is changed by a unit amount. For example, if C(q) is the cost of
producing q units of a certain commodity, then the marginal cost, MC(q),
is the additional cost of producing one more unit and is given by the difference
MC(q) = C(q + 1)− C(q).

Example 4.5
Let C(q) represent the cost, R(q) the revenue, and P (q) the total profit, in
dollars, of producing q units.

(a) If MC(50) = 75 and MR(50) = 84, approximately how much profit
is earned by the 51st item?
(b) If MC(90) = 71 and MR(90) = 68, approximately how much profit is
earned by the 91st item?

Solution.
(a) MP (50) = MR(50)−MC(50) = 84− 75 = 9.
(b) MP (90) = MR(90)−MC(90) = 68− 71 = −3. A loss by 3 dollars.

Remark 4.1
Marginal cost and average cost can differ greatly. For example, suppose
it costs $1000 to produce 100 units and $1020 to produce 101 units. The
average cost per unit is $10, but the marginal cost of the 101st unit is $20.
Similar remarks apply for the marginal revenue and the marginal profit.

The Depreciation Function
An important application of linear functions in financial modeling is the de-
preciation function.
In a financial setting, a linear function with negative slope is called a depre-
ciation function.
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Example 4.6
A new sports car costs $40,000 and depreciates $3000 per year.

(a) Determine an equation for the depreciation function.
(b) How much will the car be worth in 5 years?

Solution.
Since the rate of depreciation is constant then the depreciation function is a
linear function, say, V (t) = mt + b. Since b = V (0) then b = $40, 000. Also,
m = −$3000 per year. Thus, V (t) = −3000t + 40, 000.
(b) The question here is equivalent to finding V (5). That is, V (5) = −3000(5)+
40, 000 = $25, 000.

Supply and Demand Curves
The quantity q manufactured and sold depends on the unit price p. In gen-
eral, when the price goes up then manufacturers are willing to supply more
of the product whereas consumers are going to reduce their buyings. Since
consumers and manufacturers react differently to changes in price, there are
two curves relating p and q.

The supply curve is the quantity that producers are willing to make at
a given price. Thus, increasing price will increase quantity.
The demand curve is the amount that will be bought by consumers at a
given price. Thus, decreasing price will increase quantity.
Even though quantity is a function of price, it is the tradition to use the
vertical y-axis for the variable p and the horizontal x-axis for the variable q.
The supply and demand curves intersect at point (q∗, p∗) called the point of
equilibrium. We call p∗ the equilibrium price and q∗ the equilibrium
quantity.

Example 4.7
Find the equilibrium point for the supply function S(p) = 3p − 50 and the
demand function D(p) = 100− 2p.

Solution.
Setting the equation S(p∗) = D(p∗) to obtain 3p∗−50 = 100−2p∗. By adding
2p∗ + 50 to both sides we obtain 5p∗ = 150. Solving for p∗ we find p∗ = 30.
Substituting this value in S(p) we find q∗ = 3(30)− 50 = 40.
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The impact of Taxes on Equilibrium
Now let us consider the previous problem again. Suppose that the govern-
ment imposes a $ 5 tax per item on the supplier. How does this increase
affect the equilibrium price p? By imposing the $ 5 tax per item the new
quantity to be supplied is now given by

S(p− 5) = 3(p− 5)− 50 = 3p− 65.

However, the demand function is the same. Calculating the equilibrium price
we find

3p− 65 = 100− 2p
5p = 165
p = $33.

Thus, the previous equilibrium price has increased by $ 3. This means that
the consumer’s share of the $5 tax is $3 whereas the supplier share is $2.
That is, even though the tax was imposed on the producer, some of the tax
is passed on to the consumer in terms of higher prices.

Recommended Problems (pp. 29 - 32): 1, 3, 4, 5, 7, 8, 11, 14,
18, 20, 24, 26.

26



5 Exponential Functions

Exponential functions appear in many applications such as population growth,
radioactive decay, and interest on bank loans.
Recall that linear functions are functions that change at a constant rate. For
example, if f(x) = mx + b then f(x + 1) = m(x + 1) + b = f(x) + m. So
when x increases by 1, the y value increases by m. In contrast, an exponential
function with base a is one that changes by constant multiples of a. That is,
f(x + 1) = af(x). Writing a = 1 + r we obtain f(x + 1) = f(x) + rf(x).
Thus, an exponential function is a function that changes at a constant per-
cent rate.
Exponential functions are used to model increasing quantities such as pop-
ulation growth problems.

Example 5.1
Suppose that you are observing the behavior of cell duplication in a lab. In
one experiment, you started with one cell and the cells doubled every minute.
That is, the population cell is increasing at the constant rate of 100%. Write
an equation to determine the number (population) of cells after one hour.

Solution.
Table 2 below shows the number of cells for the first 5 minutes. Let P (t) be
the number of cells after t minutes.

t 0 1 2 3 4 5
P(t) 1 2 4 8 16 32

Table 2

At time 0, i.e t=0, the number of cells is 1 or 20 = 1. After 1 minute, when
t = 1, there are two cells or 21 = 2. After 2 minutes, when t = 2, there are 4
cells or 22 = 4.
Therefore, one formula to estimate the number of cells (size of population)
after t minutes is the equation (model)

f(t) = 2t.
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It follows that f(t) is an increasing function. Computing the rates of change
to obtain

f(1)−f(0)
1−0

= 1
f(2)−f(1)

2−1
= 2

f(3)−f(2)
3−2

= 4
f(4)−f(3)

4−3
= 8

f(5)−f(4)
5−4

= 16.

Thus, the rate of change is increasing. Geometrically, this means that the
graph of f(t) is concave up. See Figure 10.

Figure 10

Now, to determine the number of cells after one hour we convert to minutes
to obtain t = 60 minutes so that f(60) = 260 = 1.15× 1018 cells.

Exponential functions can also model decreasing quantities known as de-
cay models.

Example 5.2
If you start a biology experiment with 5,000,000 cells and 45% of the cells
are dying every minute, how long will it take to have less than 50,000 cells?

Solution.
Let P (t) be the number of cells after t minutes. Then P (t + 1) = P (t) −
45%P (t) or P (t + 1) = 0.55P (t). By constructing a table of data we find
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t P(t)
0 5,000,000
1 2,750,000
2 1,512,500
3 831,875
4 457,531.25
5 251,642.19
6 138,403.20
7 76,121.76
8 41,866.97

So it takes 8 minutes for the population to reduce to less than 50,000 cells.
A formula of P (t) is P (t) = 5, 000, 000(0.55)t. The graph of P (t) is given in
Figure 11.

Figure 11

From the previous two examples, we see that an exponential function has the
general form

P (t) = b · at, a > 0 a 6= 1.

Since b = P (0) then we call b the initial value. We call a the base of P (t).
If a > 1, then P (t) shows exponential growth with growth factor a. The
graph of P will be similar in shape to that in Figure 10.
If 0 < a < 1, then P shows exponential decay with decay factor a. The
graph of P will be similar in shape to that in Figure 11.
Since P (t + 1) = aP (t) then P (t + 1) = P (t) + rP (t) where r = a − 1. We
call r the percent growth rate.

29



Remark 5.1
Why a is restricted to a > 0 and a 6= 1? Since t is allowed to have any value
then a negative a will create meaningless expressions such as

√
a (if t = 1

2
).

Also, for a = 1 the function P (t) = b is called a constant function and its
graph is a horizontal line.

Example 5.3
Suppose you are offered a job at a starting salary of $40,000 per year. To
strengthen the offer, the company promises annual raises of 6% per year for
the first 10 years. Let P (t) be your salary after t years. Find a formula for
P (t) and then compute your projected salary after 4 years from now.

Solution.
A formula of P (t) is P (t) = 40, 000(1.06)t. After four years, the projected
salary is P (3) = 40, 000(1.06)4 ≈ 50, 499.08.

Example 5.4
The amount in milligrams of a drug in the body t hours after taking a pill is
given by A(t) = 25(0.85)t.
(a) What is the initial dose given?
(b) What percent of the drug leaves the body each hour?
(c) What is the amount of drug left after 10 hours?

Solution.
(a) Initial dose give is A(0) = 25 mg.
(b) r = a − 1 = 0.85 − 1 = −.15 so that 15% of the drug leaves the body
each hour.
(c) A(10) = 25(0.85)10 ≈ 4.92 mg.

Recognizing an Exponential Function Defined by Data
Suppose that f is a function defined by a table of values. If f is an ex-
ponential function then f can be written in the form f(x) = bax. Thus,
f(x+n)

f(x)
= bax+n

baxn = an. This says that the ratios of y values are constant for
equally spaced x values.

Example 5.5
Decide if the function is linear or exponential?Find a formula for each case.
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x 0 1 2 3 4
f(x) 12.5 13.75 15.125 16.638 18.301
g(x) 0 2 4 6 8

Solution.
Since 13.75

12.5
≈ 15.125

13.75
≈ 16.638

15.125
≈ 18.301

16.638
≈ 1.1 then f(x) is an exponential func-

tion.
To find a formula for f(x) = bax we use the first two points obtaining
12.5 = f(0) = b and 13.75 = f(1) = ba = 12.5a. Hence, a = 13.75

12.5
≈ 1.1

so that f(x) = 12.5(1.1)x.
On the other hand, equal increments in x corresponds to equal increments
in the g-values so that g(x) is linear, say g(x) = mx + b. Since g(0) = 0 then
b = 0. Also, 2 = g(1) = m so that g(x) = 2x.

The Effect of the Parameters a and b
Recall that an exponential function with base a and initial value b is a func-
tion of the form f(x) = b · ax. In what follows, we assume that b > 0. Since
b = f(0) then (0, b) is the vertical intercept of f(x).
Let’s see the effect of the parameter b on the graph of f(x) = bax.

Example 5.6
Graph, on the same axes, the exponential functions f1(x) = 2 ·(1.1)x, f2(x) =
(1.1)x, and f3(x) = 0.75(1.1)x.

Solution.
The three functions as shown in Figure 12.

Figure 12
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Note that these functions have the same growth factor but different b and
therefore different vertical intercepts.

We know that the slope of a linear function measures the steepness of the
graph. Similarly, the parameter a measures the steepness of the graph of an
exponential function. First, we consider the effect of the growth factor on
the graph.

Example 5.7
Graph, on the same axes, the exponential functions f1(x) = 4x, f2(x) = 3x,
and f3(x) = 2x.

Solution.
Using a graphing calculator we find

Figure 13

It follows that the greater the value of a, the more rapidly the graph rises.
That is, the growth factor a affects the steepness of an exponential function.
Also note that as x decreases, the function values approach the x-axis. Sym-
bolically, as x → −∞, y → 0.

Next, we study the effect of the decay factor on the graph.

Example 5.8

Graph, on the same axes, the exponential functions f1(x) = 2−x =
(

1
2

)x
, f2(x) =

3−x, and f3(x) = 4−x.
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Solution.
Using a graphing calculator we find

Figure 14

It follows that the smaller the value of a, the more rapidly the graph falls.
Also as x increases, the function values approach the x-axis. Symbolically,
as x →∞, y → 0.

• General Observations
(i) For a > 1, as x decreases, the function values get closer and closer to 0.
Symbolically, as x → −∞, y → 0. For 0 < a < 1, as x increases, the function
values gets closer and closer to the x-axis. That is, as x → ∞, y → 0. We
call the x-axis, a horizontal asymptote.
(ii) The domain of an exponential function consists of the set of all real num-
bers whereas the range consists of the set of all positive real numbers.
(iii) The graph of f(x) = bax with b > 0 is always concave up.

Recommended Problems (pp. 37 - 9): 1, 3, 7, 8, 10, 11, 13, 15, 20,
25.
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6 Logarithms and their Properties

An equation of the form ax = b can be solved graphically. That is, using a
calculator we graph the horizontal line y = b and the exponential function
y = ax and then find the point of intersection.
In this section we discuss an algebraic way to solve equations of the form
ax = b where a and b are positive constants. For this, we introduce a func-
tion that is found in today’s calculators, namely, the function ln x.

y = ln x if and only if ey = x.

where e = 2.71828 · · · We call ln x the natural logarithm of x.

Properties of Logarithms

(i) Since ex = ex we can write

ln ex = x

(ii) Since ln x = ln x then
eln x = x

(iii) ln 1 = 0 since e0 = 1.
(iv) ln e = 1 since e1 = e.
(v) Suppose that m = ln a and n = ln b. Then a = em and b = en. Thus,
a · b = em · en = em+n. Rewriting this using logs instead of exponents, we see
that

ln (a · b) = m + n = ln a + ln b.

(vi) If, in (v), instead of multiplying we divide, that is a
b

= em

en = em−n then
using logs again we find

ln
(

a

b

)
= ln a− ln b.

(vii) It follows from (vi) that if a = b then ln a − ln b = ln 1 = 0 that is
ln a = ln b.
(viii) Now, if n = ln b then b = en. Taking both sides to the power k we find
bk = (en)k = enk. Using logs instead of exponents we see that ln bk = nk =
k ln b that is

ln bk = k ln b.
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Example 6.1
Solve the equation: 4(1.171)x = 7(1.088)x.

Solution.
Rewriting the equation into the form

(
1.171
1.088

)x
= 7

4
and then using properties

(vii) and (viii) to obtain

x ln
(

1.171

1.088

)
= ln

7

4
.

Thus,

x =
log 7

4

ln
(

1.171
1.088

) .

Example 6.2
Solve the equation ln (2x + 1) + 3 = 0.

Solution.
Subtract 3 from both sides to obtain ln (2x + 1) = −3. Switch to exponential
form to get 2x + 1 = e−3. Subtract 1 and then divide by 2 to obtain x =
−0.4995.

Remark 6.1
Keep in mind the following:
ln (a + b) 6= ln a + ln b. For example, ln 2 6= ln 1 + ln 1 = 0.
ln (a− b) 6= ln a−ln b. For example, ln (2− 1) = ln 1 = 0 whereas ln 2−ln 1 =
ln 2 6= 0.
ln (ab) 6= ln a · ln b. For example, ln 1 = ln (2 · 1

2
) = 0 whereas ln 2 · ln 1

2
=

− ln2 2 6= 0.
ln
(

a
b

)
6= ln a

ln b
. For example, letting a = b = 2 we find that ln a

b
= ln 1 = 0

whereas ln a
ln b

= 1.

ln
(

1
a

)
6= 1

ln a
. For example, ln 1

1
2

= ln 2 whereas 1
ln 1

2

= − 1
ln 2

.

Example 6.3
Sketch the graphs of the functions y = ln x and y = ex on the same axes.
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Solution.
The graphs of y = ln x and y = ex are reflections of one another across the
line y = x as shown in Figure 15.

Figure 15

C
¯
ontinuous Growth Rate and the Number e

When writing y = bet then we say that y is an exponential function with
base e. Suppose that Q(t) = bat. Then a = ek where k = ln a. Thus,

Q(t) = b(ek)t = bekt.

Note that if k > 0 then ek > 1 so that Q(t) represents an exponential growth
and if k < 0 then ek < 1 so that Q(t) is an exponential decay.
We call the constant k the continuous growth rate.

Example 6.4
If f(t) = 3(1.072)t is rewritten as f(t) = 3ekt, find k.

Solution.
By comparison of the two functions we find ek = 1.072. Solving this equation
we find k = ln 1.072 ≈ 0.695.

Example 6.5
A population increases from its initial level of 7.3 million at the continuous
rate of 2.2% per year. Find a formula for the population P (t) as a function
of the year t. When does the population reach 10 million?
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Solution.
We are given the initial value 7.3 million and the continuous growth rate
k = 0.022. Therefore, P (t) = 7.3e0.022t. Next,we want to find the time when
P (t) = 10. That is , 7.3e0.022t = 10. Divide both sides by 7.3 to obtain
e0.022t ≈ 1.37. Solving this equation to obtain t = ln1.37

0.022
≈ 14.3.

Next, in order to convert from Q(t) = bekt to Q(t) = bat we let a = ek.
For example, to convert the formula Q(t) = 7e0.3t to the form Q(t) = bat we
let b = 7 and a = e0.3 ≈ 1.35. Thus, Q(t) = 7(1.35)t.

Example 6.6
Find the annual percent rate and the continuous percent growth rate of
Q(t) = 200(0.886)t.

Solution.
The annual percent of decrease is r = a−1 = 0.886−1 = −0.114 = −11.4%.
To find the continuous percent growth rate we let ek = 0.886 and solve for k
to obtain k = ln 0.886 ≈ −0.121 = −12.1%.

Recommended Problems (pp. 42 - 3): 3, 5, 9, 11, 15, 17, 19,
22, 23, 26, 27, 31.
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7 Exponential Growth and Decay

In this section, we consider some applications of exponential functions.

Doubling Time
In some exponential models one is interested in finding the time for an expo-
nential growing quantity to double. We call this time the doubling time.
To find it, we start with the equation b · at = 2b or at = 2. Solving for t we
find t = ln 2

ln a
.

Example 7.1
Find the doubling time of a population growing according to P = P0e

0.2t.

Solution.
Setting the equation P0e

0.2t = 2P0 and dividing both sides by P0 to obtain
e0.2t = 2. Take ln of both sides to obtain 0.2t = ln 2. Thus, t = ln 2

0.2
≈ 3.47.

Half-Life
On the other hand, if a quantity is decaying exponentially then the time
required for the quantity to reduce into half is called the half-life. To find
it, we start with the equation bat = b

2
and we divide both sides by b to obtain

at = 0.5. Take the log of both sides to obtain t ln a = ln (0.5). Solving for t

we find t = ln (0.5)
ln a

.

Example 7.2
The half-life of Iodine-123 is about 13 hours. You begin with 50 grams of
this substance. What is a formula for the amount of Iodine-123 remaining
after t hours?

Solution.
Since the problem involves exponential decay then if Q(t) is the quantity re-
maining after t hours then Q(t) = 50at with 0 < t < 1. But Q(13) = 25. That

is, 50a13 = 25 or a13 = 0.5. Thus a = (0.5)
1
13 ≈ 0.95 and Q(t) = 50(0.95)t.

Compound Interest
The term compound interest refers to a procedure for computing interest
whereby the interest for a specified interest period is added to the original
principal. The resulting sum becomes a new principal for the next interest
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period. The interest earned in the earlier interest periods earn interest in the
future interest periods.
Suppose that you deposit P dollars into a saving account that pays annual
interest r and the bank agrees to pay the interest at the end of each time
period( usually expressed as a fraction of a year). If the number of periods
in a year is n then we say that the interest is compounded n times per year
(e.g.,’yearly’=1, ’quarterly’=4, ’monthly’=12, etc.). Thus, at the end of the
first period the balance will be

B = P +
r

n
P = P

(
1 +

r

n

)
.

At the end of the second period the balance is given by

B = P
(
1 +

r

n

)
+

r

n
P
(
1 +

r

n

)
= P

(
1 +

r

n

)2

.

Continuing in this fashion, we find that the balance at the end of the first
year, i.e. after n periods, is

B = P
(
1 +

r

n

)n

.

If the investment extends to another year than the balance would be given
by

P
(
1 +

r

n

)2n

.

For an investment of t years then balance is given by

B = P
(
1 +

r

n

)nt

.

Since
(
1 + r

n

)nt
=
[(

1 + r
n

)n]t
then the function B can be written in the

form B(t) = Pat where a =
(
1 + r

n

)n
. That is, B is an exponential function.

Remark 7.1
Interest given by banks are known as nominal rate (e.g. ”in name only”).
When interest is compounded more frequently than once a year, the account
effectively earns more than the nominal rate. Thus, we distinguish between
nominal rate and effective rate. The effective annual rate tells how much
interest the investment actually earns. The quantity (1 + r

n
)n − 1 is known

as the effective interest rate.
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Example 7.3
Translating a value to the future is referred to as compounding. What will
be the maturity value of an investment of $15, 000 invested for four years at
9.5% compounded semi-annually?

Solution.
Using the formula for compound interest with P = $15, 000, t = 4, n = 2,
and r = .095 we obtain

B = 15, 000
(
1 +

0.095

2

)8

≈ $21, 743.20

Example 7.4
Translating a value to the present is referred to as discounting. We call
(1 + r

n
)−nt the discount factor. What principal invested today will amount

to $8, 000 in 4 years if it is invested at 8% compounded quarterly?

Solution.
The present value is found using the formula

P = B
(
1 +

r

n

)−nt

= 8, 000
(
1 +

0.08

4

)−16

≈ $5, 827.57

Example 7.5
What is the effective rate of interest corresponding to a nominal interest rate
of 5% compounded quarterly?

Solution.

effective rate =
(
1 +

0.05

4

)4

− 1 ≈ 0.051 = 5.1%

Continuous Compound Interest
When the compound formula is used over smaller time periods the interest
becomes slightly larger and larger. That is, frequent compounding earns a
higher effective rate, though the increase is small.
This suggests compounding more and more, or equivalently, finding the value
of B in the long run. In Calculus, it can be shown that the expression(
1 + r

n

)n
approaches er as n →∞, where e (named after Euler) is a number

whose value is e = 2.71828 · · · . The balance formula reduces to B = Pert.
This formula is known as the continuous compound formula. In this
case, the annual effective interest rate is found using the formula er − 1.
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Example 7.6
Find the effective rate if $1000 is deposited at 5% annual interest rate com-
pounded continuously.

Solution.
The effective interest rate is e0.05 − 1 ≈ 0.05127 = 5.127%

Example 7.7
Which is better: An account that pays 8% annual interest rate compounded
quarterly or an account that pays 7.95% compounded continuously?

Solution.
The effective rate corresponding to the first option is(

1 +
0.08

4

)4

− 1 ≈ 8.24%

That of the second option

e0.0795 − 1 ≈ 8.27%

Thus, we see that 7.95% compounded continuously is better than 8% com-
pounded quarterly.

Present and Future Value
Many business deals involve payments in the future. For example, when a
car or a home is bought on credits, payments are made over a period of time.
The future value, FV, of a payment P is the amount to which P would have
grown if deposited today in an interest bearing bank account. The present
value, PV, of a future payment FV, is the amount that would have to be
deposited in a bank account today to produce exactly FV in the account at
the relevant time future.
If interest is compounded n times a year at a rate r for t years, then the
relationship between FV and PV is given by the formula

FV = PV (1 +
r

n
)nt.

In the case of continuous compound interest, the forumla is given by

FV = PV ert.
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Example 7.8
You need $10,000 in your account 3 years from now and the interest rate is
8% per year, compounded continuously. How much should you deposit now?

Solution.
We have FV = $10, 000, r = 0.08, t = 3 and we want to find PV. Solving the
formula FV = PV ert for PV we find PV = FV e−rt. Substituting to obtain,
PV = 10, 000e−0.24 ≈ $7, 866.28.

Recommended Problems (pp. 48 - 51): 5, 7, 8, 13, 19, 22, 28,
29, 30, 33.
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8 Building New Functions from Old Ones

In this section we discuss various ways for building new functions from old
ones. New functions can be obtained by composing functions, using arith-
metic combinations, and finally by making changes to either the input or the
output of a function.

Composition of Functions
The first procedure for building new functions from old ones known is the
composition of functions.
We start with an example of a real-life situation where composite functions
are applied.

Example 8.1
You have two money machines, both of which increase any money inserted
into them. The first machine doubles your money. The second adds five
dollars. The money that comes out is described by f(x) = 2x in the first
case, and g(x) = x + 5 in the second case, where x is the number of dollars
inserted. The machines can be hooked up so that the money coming out of
one machine goes into the other. Find formulas for each of the two possible
composition machines.

Solution.
Suppose first that x dollars enters the first machine. Then the amount of
money that comes out is f(x) = 2x. This amount enters the second machine.
The final amount coming out is given by g(f(x)) = f(x) + 5 = 2x + 5.
Now, if x dollars enters the second machine first, then the amount that comes
out is g(x) = x + 5. If this amount enters the second machine then the final
amount coming out is f(g(x)) = 2(x + 5) = 2x + 10.
The function f(g(x)) is called the composition of the functions f and g;
the function g(f(x)) is called the composition of the functions g and f.

In general, suppose we are given two functions f and g such that the range
of g is contained in the domain of f so that the output of g can be used as
input for f. We define a new function, called the composition of f and g,
by the formula f(g(x)) where g is the inside function and f is the outside
function. In a similar way, we can define the composition of g and f to be
the function

g(f(x))
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so that the output of f is the input of g.
Using a Venn diagram (See Figure 16) we have

Figure 16

Composition of Functions Defined by Tables

Example 8.2
Complete the following table

x 0 1 2 3 4 5
f(x) 1 0 5 2 3 4
g(x) 5 2 3 1 4 8
f(g(x))

Solution.

x 0 1 2 3 4 5
f(x) 1 0 5 2 3 4
g(x) 5 2 3 1 4 8
f(g(x)) 4 5 2 0 3 undefined

Composition of Functions Defined by Formulas

Example 8.3
Suppose that f(x) = 2x + 1 and g(x) = x2 − 3.
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(a) Find f(g(x)) and g(f(x)).
(b) Calculate f(g(5)) and g(f(−3)).
(c) Are f(g(x)) and g(f(x)) equal?

Solution.
(a) f(g(x)) = f(x2 − 3) = 2(x2 − 3) + 1 = 2x2 − 5. Similarly, g(f(x)) =
g(2x + 1) = (2x + 1)2 − 3 = 4x2 + 4x− 2.
(b) f(g(5)) = 2(5)2 − 5 = 45 and g(f(−3)) = 4(−3)2 + 4(−3)− 2 = 22.
(c) f(g(x)) 6= g(f(x)).

With only one function you can build new functions using composition of
the function with itself. Also, there is no limit on the number of functions
that can be composed.

Example 8.4
Suppose that f(x) = 2x + 1 and g(x) = x2 − 3.

(a) Find f(f(x)).
(b) Find f(f(g(x))).

Solution.
(a) f(f(x)) = f(2x + 1) = 2(2x + 1) + 1 = 4x + 3.
(b) f(f(g(x))) = f(f(x2 − 3)) = f(2x2 − 5) = 2(2x2 − 5) + 1 = 4x2 − 9.

Decomposition of Functions
If a formula for f(g(x)) is given then the process of finding the formulas for
f and g is called decomposition.

Example 8.5
Decompose f(g(x)) =

√
1− 4x2.

Solution.
One possible answer is f(x) =

√
x and g(x) = 1 − 4x2. Another possible

answer is f(x) =
√

1− x2 and g(x) = 2x.

Combinations of Functions
A second way to constructing new functions from old ones is to use the op-
erations of addition, subtraction, multiplication, and division.
Let f(x) and g(x) be two given functions. Then for all x in the common
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domain of these two functions we define new functions as follows:

• Sum: (f + g)(x) = f(x) + g(x).
• Difference: (f − g)(x) = f(x)− g(x).
• Product: (f · g)(x) = f(x) · g(x).

• Division:
(

f
g

)
(x) = f(x)

g(x)
provided that g(x) 6= 0.

In the following example we see how to construct the four functions discussed
above when the individual functions are defined by formulas.

Example 8.6
Let f(x) = x + 1 and g(x) =

√
x + 3. Find the common domain and then

find a formula for each of the functions f + g, f − g, f · g, f
g
.

Solution.
The domain of f(x) consists of all real numbers whereas the domain of g(x)
consists of all numbers x ≥ 3. Thus, the common domain is the interval
[−3,∞). For any x in this domain we have

(f + g)(x) = x + 1 +
√

x + 3
(f − g)(x) = x + 1−

√
x + 3

(f · g)(x) = x
√

x + 3 +
√

x + 3(
f
g

)
(x) = x+1√

x+3
provided x > −3.

In the next example, we see how to evaluate the four functions when the
individual functions are given in numerical forms.

Example 8.7
Suppose the functions f and g are given in numerical forms. Complete the
following table:

x -1 -1 0 1 1 3
f(x) 8 2 7 -1 -5 -3
g(x) -1 -5 -11 7 8 9
(f + g)(x)
(f − g)(x)
(f · g)(x)

(f
g
)(x)
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Solution.

x -1 -1 0 1 1 3
f(x) 8 2 7 -1 -5 -3
g(x) -1 -5 -11 7 8 9
(f + g)(x) 7 -3 -4 6 3 6
(f − g)(x) 9 7 18 -8 -13 -12
(f · g)(x) -8 -10 -77 -7 -40 -27

(f
g
)(x) -8 -2

5
- 7
11

-1
7

-5
8

-1
3

Transformations of Functions
We close this section by giving a summary of the various transformations
obtained when either the input or the output of a function is altered.

Vertical Shifts: The graph of f(x) + k with k > 0 is a vertical transla-
tion of the graph of f(x), k units upward, whereas for k < 0 it is a shift by
k units downward.
Horizontal Shifts: The graph of f(x + k) with k > 0 is a horizontal trans-
lation of the graph of f(x), k units to the left, whereas for k < 0 it is a shift
by k units to the right.
Reflections about the x-axis: For a given function f(x), the graph of
−f(x) is a reflection of the graph of f(x) about the x-axis.
Reflections about the y-axis: For a given function f(x), the graph of
f(−x) is a reflection of the graph of f(x) about the y-axis.
Vertical Stretches and Compressions: If a function f(x) is given, then
the graph of kf(x) is a vertical stretch of the graph of f(x) by a factor of k
for k > 1, and a vertical compression for 0 < k < 1.
What about k < 0? If |k| > 1 then the graph of kf(x) is a vertical stretch
of the graph of f(x) followed by a reflection about the x-axis. If 0 < |k| < 1
then the graph of kf(x) is a vertical compression of the graph of f(x) by a
factor of k followed by a reflection about the x-axis.
Horizontal Stretches and Compressions: If a function f(x) is given,
then the graph of f(kx) is a horizontal stretch of the graph of f(x) by a
factor of 1

k
for 0 < k < 1, and a horizontal compression for k > 1.

What about k < 0? If |k| > 1 then the graph of f(kx) is a horizontal com-
pression of the graph of f(x) followed by a reflection about the y-axis. If
0 < |k| < 1 then the graph of f(kx) is a horizontal stretch of the graph of

47



f(x) by a factor of 1
k

followed by a reflection about the y-axis.

Example 8.8
Write an equation for a graph obtained by vertically stretching the graph of
f(x) = x2 by a factor of 2, followed by a vertical upward shift of 1 unit.

Solution.
The function is given by the formula y = 2f(x) + 1 = 2x2 + 1.

Recommended Problems (pp. 54 - 56): 1, 5, 7, 13, 14, 15, 16,
17, 18, 19, 31.
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9 Power and Polynomial Functions

A function f(x) is a power function of x if there is a constant k such that

f(x) = kxn

If n > 0, then we say that f(x) is proportional to the nth power of x. If
n < 0 then f(x) is said to be inversely proportional to the nth power of
x. We call k the constant of proportionality.

Example 9.1
(a) The strength, S, of a beam is proportional to the square of its thickness,
h. Write a formula for S in terms of h.
(b) The gravitational force, F, between two bodies is inversely proportional
to the square of the distance d between them. Write a formula for F in terms
of d.

Solution.
(a) S = kh2, where k > 0. (b) F = k

d2 , k > 0.

A power function f(x) = kxn , with n a positive integer, is called a mono-
mial function. A polynomial function is a sum of several monomial func-
tions. Typically, a polynomial function is a function of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0, an 6= 0

where an, an−1, · · · , a1, a0 are all real numbers, called the coefficients of f(x).
The number n is a non-negative integer. It is called the degree of the
polynomial. A polynomial of degree zero is just a constant function. A
polynomial of degree one is a linear function, of degree two a quadratic
function, etc. The number an is called the leading coefficient and a0 is
called the constant term.
Note that the terms in a polynomial are written in descending order of the
exponents. Polynomials are defined for all values of x.

Example 9.2
Find the leading coefficient, the constant term and the degreee of the poly-
nomial f(x) = 4x5 − x3 + 3x2 + x + 1.
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Solution.
The given polynomial is of degree 5, leading coefficient 4, and constant term
1.

Remark 9.1
A polynomial function will never involve terms where the variable occurs in
a denominator, underneath a radical, as an input of either an exponential or
logarithmic function.

Example 9.3
Determine whether the function is a polynomial function or not:

(a) f(x) = 3x4 − 4x2 + 5x− 10
(b) g(x) = x3 − ex + 3
(c) h(x) = x2 − 3x + 1

x
+ 4

(d) i(x) = x2 −
√

x− 5
(e) j(x) = x3 − 3x2 + 2x− 5 ln x− 3.

Solution.
(a) f(x) is a polynomial function of degree 4.
(b) g(x) is not a ploynomial degree because one of the terms is an exponential
function.
(c) h(x) is not a polynomial because x is in the denominator of a fraction.
(d) i(x) is not a polynomial because it contains a radical sign.
(e) j(x) is not a olynomial because one of the terms is a logarithm of x.

Graphs of a Polynomial Function
Polynomials are continuous and smooth everywhere:

• A continuous function means that it can be drawn without picking up
your pencil. There are no jumps or holes in the graph of a polynomial func-
tion.
• A smooth curve means that there are no sharp turns (like an absolute
value) in the graph of the function.
• The y-intercept of the polynomial is the constant term a0.

The shape of a polynomial depends on the degree and leading coefficient:
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• If the leading coefficient, an, of a polynomial is positive, then the right
hand side of the graph will rise towards +∞.
• If the leading coefficient, an, of a polynomial is negative, then the right
hand side of the graph will fall towards −∞.
• If the degree, n, of a polynomial is even, the left hand side will do the same
as the right hand side.
• If the degree, n, of a polynomial is odd, the left hand side will do the
opposite of the right hand side.

Example 9.4
According to the graphs given below, indicate the sign of an and the parity
of n for each curve.

Figure 17

Solution.
(a) an < 0 and n is odd.
(b) an > 0 and n is odd.
(c) an > 0 and n is even.
(d) an < 0 and n is even.

Long-Run Behavior of a Polynomial Function
If f(x) and g(x) are two functions such that f(x)− g(x) ≈ 0 as x increases
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without bound then we say that f(x) resembles g(x) in the long run. For
example, if n is any positive integer then 1

xn ≈ 0 in the long run.
Now, if f(x) = anx

n + an−1x
n + · · ·+ a1x + a0 then

f(x) = xn(an +
an−1

x
+

an−2

x2
+ · · ·+ a1

xn−1
+

a0

xn

Since 1
xk ≈ 0 in the long run, for each 0 ≤ k ≤ n− 1 then

f(x) ≈ anx
n

in the long run.

Example 9.5
Find the long run behavior of the polynomial f(x) = 1− 2x4 + x3.

Solution.
The polynomial function f(x) = 1− 2x4 + x3 resembles the function g(x) =
−2x4 in the long run.

Zeros of a Polynomial Function
If f is a polynomial function in one variable, then the following statements
are equivalent:

• x = a is a zero or root of the function f.
• x = a is a solution of the equation f(x) = 0.
• (a, 0) is an x-intercept of the graph of f. That is, the point where the graph
crosses the x-axis.

Example 9.6
Find the x-intercepts of the polynomial f(x) = x3 − x2 − 6x.

Solution.
Factoring the given function to obtain

f(x) = x(x2 − x− 6)
= x(x− 3)(x + 2)

Thus, the x-intercepts are the zeros of the equation

x(x− 3)(x + 2) = 0

That is, x = 0, x = 3, or x = −2.

Recommended Problems (pp. 60 - 2): 1, 4, 7, 9, 13, 15, 17, 21, 25,
27, 30, 37.
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10 Periodic Functions

A function f is said to be periodic if there is a smallest positive number p
such that

f(x + p) = f(x)

for all x in the domain of f. For example, in trigonometry, one can show that
the functions f(x) = sin x and g(x) = cos x are periodic of period 2π. Geo-
metrically, this means that the graph is the same on any interval of length
2π. Figure 18 Shows the graph of sin x and Figure 19 shows the graph of cos x.

Figure 18

Figure 19
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Amplitude and period of y = a sin (bx), y = a cos (bx), b > 0
We now consider graphs of functions that are transformations of the sine and
cosine functions.

• The parameter a: This is outside the function and so deals with the
output (i.e. the y values). Since −1 ≤ sin (bx) ≤ 1 and −1 ≤ cos (bx) ≤ 1
then −a ≤ a sin (bx) ≤ a and −a ≤ a cos (bx) ≤ a. So, the range of the
function y = a sin (bx) or the function y = a cos (bx) is the closed interval
[−a, a]. The number |a| is called the amplitude. Graphically, this number
describes how tall the graph is. The amplitude is half the distance from the
top of the curve to the bottom of the curve. If b = 1, the amplitude |a|
indicates a vertical stretch of the basic sine or cosine curve if a > 1, and a
vertical compression if 0 < a < 1. If a < 0 then a reflection about the x-axis
is required.
Figure 20 shows the graph of y = 2 sin x and the graph of y = 3 sin x.

Figure 20

• The parameter b: This is inside the function and so effects the input (i.e.
x values). Now, the graph of either y = a sin (bx) or y = a cos (bx) completes
one period from bx = 0 to bx = 2π. By solving for x we find the interval of
one period to be [0, 2π

b
]. Thus, the above mentioned functions have a period

of 2π
b
. The number b tells you the number of cylces in the interval [0, 2π].

Graphically,b either stretches (if b < 1) or compresses (if b > 1) the graph
horizontally.
Figure 21 shows the function y = sin x with period 2π and the function
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y = sin (2x) with period π.

Figure 21

Recommended Problems (pp. 67 - 9): 3, 5, 7, 9, 10, 11, 13, 14, 17,
19, 20, 24, 25.
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11 Instantaneous Rate of Change

In this section, we discuss the concept of the instantaneous rate of change of
a given function. As an application, we use the velocity of a moving object.
The motion of an object along a line at a particular instant is very difficult
to define precisely. The modern approach consists of computing the average
velocity over smaller and smaller time intervals. To be more precise, let s(t)
be the position function or displacement of a moving object at time t. We
would like to compute the velocity of the object at the instant t = t0 :

Average Velocity
We start by finding the average velocity of the object over the time interval
t0 ≤ t ≤ t0 + ∆t given by the expression

v =
Distance Traveled

Elapsed T ime
=

s(t0 + ∆t)− s(t0)

∆t

Geometrically, the average velocity over the time interval [t0, t0 + ∆t] is just
the slope of the line joining the points (t0, s(t0)) and (t0 + ∆t, s(t0 + ∆t)) on
the graph of s(t).(See Figure 22)

Figure 22

Example 11.1
A freely falling body experiencing no air resistance falls s(t) = 16t2 feet in t
seconds. Complete the following table

time interval [1.8,2] [1.9,2] [1.99,2] [1.999,2] [2,2.0001] [2,2.001] [2,2.01]
Average velocity
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Solution.

time interval [1.8,2] [1.9,2] [1.99,2] [1.999,2] [2,2.0001] [2,2.001] [2,2.01]
Average velocity 60.8 62.4 63.84 63.98 64.0016 64.016 64.16

Instantaneous Velocity and Speed
The next step is to calculate the average velocity on smaller and smaller time
intervals ( that is, make ∆t close to zero). The average velocity in this case
approaches what we would intuitively call the instantaneous velocity at
time t = t0 which is defined using the limit notation by

v(t0) = lim
∆t→0

s(t0 + ∆t)− s(t0)

∆t

Geometrically, the instantaneous velocity at t0 is the slope of the tangent
line to the graph of s(t) at the point (t0, s(t0)).(See Figure 23)

Figure 23

Example 11.2
For the distance function in Example 11.1, find the instantaneous velocity at
t = 2.

Solution.
Examining the bottom row of the table in Example 11.1, we see that the av-
erage velocity seems to be approaching the value 64 as we shrink the time in-
tervals. Thus, it is reasonable to expect the velocity to be v(2) = 64 ft/sec.
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In general, we define the instantaneous rate of change of a function
y = f(x) at x = a to be

lim
x→a

f(x)− f(a)

x− a
.

We define the speed of a moving object to be the absolute value of the veloc-
ity function. Sometimes there is confusion between the words ”speed” and
”velocity”. Speed is a nonnegative number that indicates how fast an object
is moving, whereas velocity indicates both speed and direction(relative to a
coordinate system). For example, if the object is moving along a vertical line
we define a positive velocity when the object is going upward and a negative
velocity when the object is going downward.

The instantaneous rate of change of a function f(x) from x = a to x = a + h
is called the derivative of f at a and we denote it by f ′(a) :

f ′(a) = lim
h→0

f(a + h)− f(a)

h

If the derivative exists, i.e. can be found, then we say that the function is
differentiable at x = a. The process of finding the derivative of a function
is called differentiation. If a function has no derivative at a point then we
say that it is non-differentiable there.
Since the instantaneous rate of change represents the slope of a tangent line
then f ′(a) is the slope of the tangent line to the graph of y = f(x) at the
point (a, f(a)). The equation of the tangent line is given by

y − f(a) = f ′(a)(x− a).

Example 11.3
(a) Find f ′(1) for f(x) = x2.
(b) Find the equation of the tangent line to the graph of f(x) at the point
(1, f(1)).

Solution.
Completing the following chart

x [0.9,1] [0.99,1] [0.999,1] [1,1.0001] [1,1.001] [1,1.01] [1,1.1]
f(b)−f(a)

b−a
1.9 1.99 1.999 2.0001 2.001 2.01 2.1
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we see that f ′(1) = 2.
(b) The equation of the tangent line is

y − f(1) = f ′(1)(x− 1)

or
y − 1 = 2(x− 1)

In point-intercept form, we have y = 2x− 1.

Example 11.4 (Numerical Estimation of the Derivative)
Find approximate values for f ′(x) at each of the x-values given in the follow-
ing table

x 0 5 10 15 20
f(x) 100 70 55 46 40

Solution.
The derivative can be estimated by using the average rate of change or the
difference quotient

f ′(a) ≈ f(a + h)− f(a)

h
.

If a is a left-endpoint then f ′(a) is estimated by

f ′(a) ≈ f(b)− f(a)

b− a

where b > a. If a is a right-endpoint then f ′(a) is estimated by

f ′(a) ≈ f(a)− f(b)

a− b

where b < a. If a is an interior point then f ′(a) is estimated by

f ′(a) ≈ 1

2

(
f(a)− f(b)

a− b
+

f(c)− f(a)

c− a

)

where b < a < c. For example,

f ′(0) ≈ f(5)−f(0)
5

= −6

f ′(5) ≈ 1
2

(
f(10)−f(5)

5
+ f(5)−f(0)

5

)
= −4.5

f ′(10) ≈ 1
2

(
f(15)−f(10)

5
+ f(10)−f(5)

5

)
= −2.4

f ′(15) ≈ 1
2

(
f(20)−f(15)

5
+ f(15)−f(10)

5

)
= −1.5

f ′(20) ≈ f(20)−f(15)
5

= −1.2
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The quantity f(10)−f(5)
10−5

is known as the right slope estimation of f ′(5). Simi-
larly, we can estimate f ′(5) by using a left slope estimation,i.e.

f ′(5) ≈ f(5)− f(0)

5− 0
= −6

An improved estimation consists of taking the average of the left slope and
the right slope, that is,

f ′(5) ≈ −3− 6

2
= −4.5

Recommended Problems (pp. 99 - 101): 1, 3, 4, 6, 8, 10, 11, 12,
13, 15, 18, 19, 24.
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12 The Derivative Function

Recall that a function f is differentiable at x if the following limit exists

f ′(x) = lim
h→0

f(x + h)− f(x)

h
. (2)

Thus, we associate with the function f , a new function f ′ whose domain is
the set of points x at which the limit (2) exists. We call the function f ′ the
derivative function of f.

The Derivative Function Graphically
Since the derivative at a point represents the slope of the tangent line then
one can obtain the graph of the derivative function from the graph of the
original function. It is important to keep in mind the relationship between
the graphs of f and f ′. If f ′(x) > 0 then the tangent line must be tilted
upward and the graph of f is rising or increasing. Similarly, if f ′(x) < 0 then
the tangent line is tilted downward and the graph of f is falling or decreasing.
If f ′(a) = 0 then the tangent line is horizontal at x = a.

Example 12.1
Sketch the graph of the derivative of the function shown in Figure 24.

Figure 24

Solution.
Note that for x < −1.12 the derivative is positive and getting less and less
positive. At x ≈ −1.12 we have f ′(−1.12) = 0. For −1.12 < x < 0 the
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derivative is negative and getting more and more negative till reaching x = 0.
For 0 < x < 1.79 the derivative is less and less negative and at x = 1.79 we
have f ′(1.79) = 0. Finally, for x > 1.79 the derivative is getting more and
more positive. Thus, a possible graph of f ′ is given in Figure 25.

Figure 25

The Derivative Function Numerically
Here, we want to estimate the derivative of a function defined by a table.
The derivative can be estimated by using the average rate of change or the
difference quotient

f ′(a) ≈ f(a + h)− f(a)

h
.

If a is a left-endpoint then f ′(a) is estimated by

f ′(a) ≈ f(b)− f(a)

b− a

where b > a. If a is a right-endpoint then f ′(a) is estimated by

f ′(a) ≈ f(a)− f(b)

a− b

where b < a. If a is an interior point then f ′(a) is estimated by

f ′(a) ≈ 1

2

(
f(a)− f(b)

a− b
+

f(c)− f(a)

c− a

)

where b < a < c.
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Example 12.2
Find approximate values for f ′(x) at each of the x-values given in the follow-
ing table

x 0 5 10 15 20
f(x) 100 70 55 46 40

Solution.

f ′(0) ≈ f(5)−f(0)
5

= −6

f ′(5) ≈ 1
2

(
f(10)−f(5)

5
+ f(5)−f(0)

5

)
= −4.5

f ′(10) ≈ 1
2

(
f(15)−f(10)

5
+ f(10)−f(5)

5

)
= −2.4

f ′(15) ≈ 1
2

(
f(20)−f(15)

5
+ f(15)−f(10)

5

)
= −1.5

f ′(20) ≈ f(20)−f(15)
5

= −1.2

The Derivative Function From a Formula
Now, if a formula for f is given then by applying the definition of f ′(x) as
the limit of the difference quotient we can find a formula of f ′ as shown in
the following two problems.

Example 12.3 (Derivative of a Constant Function)
Suppose that f(x) = k for all x. Find a formula for f ′(x).

Solution.

f ′(x) = limh→0
f(x+h)−f(x)

h

= limh→0
k−k

h
= 0.

Thus, f ′(x) = 0.

Example 12.4 (Derivative of a Linear Function)
Find the derivative of the linear function f(x) = mx + b.

Solution.

f ′(x) = limh→0
f(x+h)−f(x)

h

= limh→0
m(x+h)+b−(mx+b)

h

= limh→0
mh
h

= m.

Thus, f ′(x) = m.

Recommended Problems (pp. 104 - 6): 5, 6, 7, 9, 11, 13, 15,
19, 21.
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13 Leibniz Notation for The Derivative

When dealing with mathematical models that involve derivatives it is conve-
nient to denote the prime notation of the derivative of a function y = f(x)
by dy

dx
. That is,

dy

dx
= f ′(x)

This notation is called Leibniz notation (due to W.G. Leibniz). For exam-
ple, we can write dy

dx
= 2x for y′ = 2x.

When using Leibniz notation to denote the value of the derivative at a point
a we will write

dy

dx

∣∣∣∣∣
x=a

Thus, to evaluate dy
dx

= 2x at x = 2 we would write

dy

dx

∣∣∣∣∣
x=2

= 2x|x=2 = 2(2) = 4.

Remark 13.1
Even though dy

dx
appears as a fraction but it is not. It is just an alterna-

tive notation for the derivative. A concept called differential will provide
meaning to symbols like dy and dx.

One of the advantages of Leibniz notation is the recognition of the units
of the derivative. For example, if the position function s(t) is expressed in
meters and the time t in seconds then the units of the velocity function ds

dt

are meters/sec.
In general, the units of the derivative are the units of the dependent variable
divided by the units of the independent variable.

Example 13.1
The cost, C ( in dollars) to produce x gallons of ice cream can be expressed
as C = f(x). What are the units of measurements and the meaning of the

statement dC
dx

∣∣∣
x=200

= 1.4?

Solution.
dC
dx

is measured in dollars per gallon. The notation

dC

dx

∣∣∣∣∣
x=200

= 1.4
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means that if 200 gallons of ice cream have already been produced then the
cost of producing the next gallon will be roughly 1.4 dollars.

Example 13.2
The derivative of the velocity function v is called acceleration and is denoted
by a. Suppose that v is measured in meters/seconds, what are the units of
a?

Solution.
The units of a are meters/seconds/seconds = meters/seconds2.

Local Linear Approximation
Finally, one can use the derivative at a point to approximate values of the
function at nearby points. For example, if we know the values of f(a) and
f ′(a) then for a nearby point b the value of f(b) is found by the formula

f(b) ≈ f ′(a)(b− a) + f(a).

Example 13.3
Climbing health care costs have been a source of concern for some time. Use
the data in the table below to estimate the average per capita expenditure
in 1991 and 2010 assuming that the costs climb at the same rate since 1990.

Year 1970 1975 1980 1985 1990
Per capita expenditure ($) 349 591 1055 1596 2714

Solution.
Between 1985 and 1990 the rate of increase in the costs is 2714−1596

5
= $223.60

per year. Since we are assuming that the costs continue to increase at the
same rate then

C(1991) ≈ C(1990) + C ′(1990)(1991− 1990) = 2714 + 223.60 = $2937.60

and
C(2010) = 2714 + 223.60(10) = $7, 186.

Recommended Problems (pp. 111 - 3): 1, 3, 6, 8, 9, 12, 13, 14, 17,
23.
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14 The Second Derivative

Let f(x) be a differentiable function. If the limit

lim
h→0

f ′(x + h)− f ′(x)

h

exists then we say that the function f ′(x) is differentiable and we denote its
derivative by f ′′(x) or using Leibniz notation

d2y

dx2
=

d

dx

(
dy

dx

)
.

We call f ′′(x) the second derivative of f(x).

Now, recall that if f ′(x) > 0 ( resp. f ′(x) < 0) over an interval I then
the function f(x) is increasing (resp. decreasing on I). So if f ′′(x) > 0 on I
then f ′(x) is increasing on I. So either f ′(x) gets more and more positive or
less and less negative. This occurs only when the graph of f is concave up.
Similarly, if f ′′(x) < 0 on I then f ′(x) is decreasing. So either f(x) is getting
less and less positive or more and more negative. This means that the graph
of f is concave down.

Remark 14.1
Note that when a curve is concave up then the tangent lines lie below the
curve whereas when it is concave down then the tangent lines lie above the
curve.

Example 14.1
Give the signs of f ′ and f ′′ for the function whose graph is given in Figure
26
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Figure 26

Solution.
Since f is always increasing then f ′ is always positive. Since the graph is
concave up then f ′′ is always positive.

Example 14.2
Find where the graph of f(x) = x3 + 3x + 1 is concave up and where it is
concave down.

Solution.
Finding the first and second derivatives of f we obtain f ′(x) = 3x2 + 3 and
f ′′(x) = 6x. Thus, the graph of f is concave up for x > 0 and concave down
for x < 0.

As an application to the second derivative, we consider the motion of an
object determined by the position function s(t). Recall that the velocity of
the object is defined to be the first derivative of s(t), i.e.

v(t) = s′(t) =
ds

dt

and the absolute value of v(t) is the speed. When the object speeds up we say
that he/she accelerates and when the object slows down we say that he/she
decelerates. We define the acceleration of an object as the derivative of the
velocity function and consequently as the second derivative of the position
function

a(t) =
d2s

dt2
=

ds

dt
.

Example 14.3
A particle is moving along a straight line. If its distance, s, to the right of a
fixed point is given by Figure 27, estimate:

(a) When the particle is moving to the right and when it is moving to the
left.
(b) When the particle has positive acceleration and when it has negative

67



acceleration.

Figure 27

Solution.
(a) When s is increasing then the particle moves to the right. This occurs
when 0 < t < 2

3
and for t > 2. On the other hand, the particle moves to the

left when s is decreasing. This happens when 2
3

< t < 2.
(b) Positive acceleration occurs when the graph is concave up. This occurs
when t > 4

3
. The particle has negative acceleration when the curve is concave

down, i.e for t < 4
3
.

Recommended Problems (pp. 115 - 7): 2, 3, 8, 9, 11, 12, 13,
15, 17, 18, 23.
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15 Marginal Cost and Revenue

We start this section by looking at possible graphs of the cost and revenue
functions.
A cost function can be linear as shown in Figure 28(a) , or have the shape
shown in Figure 28(b). Note that in Figure 28(b), the graph is concave up
then concave down. This means that the cost function increases first at a
slow rate, then slows down, and finally increases at a faster rate.

Figure 28

Now, since R = pq then the graph of R as a function of q is a straight line
going through the origin and with slope p when the price p is constant (See
Figure 29(a)), or the graph shown in Figure 29(b).
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Figure 29

Marginal Analysis
Marginal analysis is an area of economics concerned with estimating the effect
on quantities such as cost, revenue, and profit when the level of production
is changed by a unit amount. For example, if C(q) is the cost of producing
q units of a certain commodity, then the marginal cost, MC(q), is the
additional cost of producing one more unit and is given by the difference
MC(q) = C(q + 1)− C(q). Using the estimation

C ′(q) ≈ C(q + 1)− C(q)

(q + 1)− q
= C(q + 1)− C(q)

we find that
MC(q) ≈ C ′(q)

and for this reason, we will compute the marginal cost by the derivative
C ′(q).
Similarly, if R(q) is the revenue obtained from producing q units of a com-
modity, then the marginal revenue, MR(q), is the additional revenue ob-
tained from producing one more unit, and we compute MR(q) by the deriva-
tive R′(q).

Example 15.1
Let C(q) represent the cost, R(q) the revenue, and P (q) the total profit, in
dollars, of producing q units.
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(a) If C ′(50) = 75 and R′(50) = 84, approximately how much profit is earned
by the 51st item?
(b) If C ′(90) = 71 and R′(90) = 68, approximately how much profit is earned
by the 91st item?

Solution.
(a) P ′(50) = R′(50)− C ′(50) = 84− 75 = 9.
(b) P ′(90) = R′(90)− C ′(90) = 68− 71 = −3. A loss by 3 dollars.

Example 15.2
Cost and Revenue are given in Figure 30. Sketch the graphs of the marginal
cost and marginal revenue.

Figure 30

Solution.
Since the graph of R is a straight line with positive slope p then the graph
of MR is a horizontal line at p. (See Figure 31 (a)). For the marginal cost,
note that the marginal cost is decreasing for q < 100 and then increasing for
q > 100. Thus, q = 100 is a minimum point. (See Figure 31 (b)).
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Figure 31

Maximizing Profit
We end this section by considering the question of maximizing the profit
function P. That is, maximizing the function

P (q) = R(q)− C(q).

We will see in Section 24, that the profit function attains its maximum for
the level of production q for which P ′(q) = 0, i.e.MC(q) = MR(q). Geomet-
rically, this occurs at q where the tangent line to the graph of C is parallel
to the tangent line to the graph of R at q.

Example 15.3
A manufacturer estimates that when q units of a particular commodity are
produced each month, the total cost (in dollars) will be

C(q) =
1

8
q2 + 4q + 200

and all units are sold at a price p = 49 − q dollars per unit. Determine the
price that corresponds to the maximum profit.

Solution.
The revenue function is given by

R(q) = pq = 49q − q2
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and its derivative is MR(q) = 49 − 2q. Setting this expression equal to the
marginal cost to obtain

1

4
q + 4 = 49− 2q.

Solving for q we obtain q = 20 units. Thus, p = 49− 20 = $29.

Example 15.4
Locate the quantity in Figure 32 where the profit function is maximum.

Figure 32

Solution.
The quantity q′ for which profit is maximized is shown in Figure 33.

Figure 33
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Recommended Problems (pp. 122 - 4): 1, 3, 5, 7, 8, 9, 13.
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16 Derivative Formulas for Power and Poly-

nomials

Finding the derivative function by using the limit of the difference quotient is
sometimes difficult for functions with complicated expressions. Fortunately,
there is an indirect way for computing derivatives that does not compute
limits but instead uses formulas which we will derive in this section and in
the coming sections.
We first derive a couple of formulas of differentiation.

Theorem 16.1
If f is differentiable and k is a constant then the new function kf(x) is
differentiable with derivative given by

[kf(x)]′ = kf ′(x).

Proof.

[kf ′(x) = limh→0
kf(x+h)−kf(x)

h
= limh→0

k(f(x+h)−f(x))
h

= k limh→0
f(x+h)−f(x)

h
= kf ′(x)

where we used the fact that a constant can be taking across the limit sign
by the properties of limits.

Theorem 16.2
If f(x) and g(x) are two differentiable functions then the functions f +g and
f − g are also differentiable with derivatives

[f(x)± g(x)]′ = f ′(x)± g′(x)

Proof.
Again by using the definition of the derivative and the fact that the limit of
a sum/difference is the sum/difference of limits we find

[f(x) + g(x)]′ = limh→0
(f(x+h)+g(x+h))−(f(x)+g(x))

h

= limh→0
(f(x+h)−f(x))+(g(x+h)−g(x))

h

= limh→0
f(x+h)−f(x)

h
+ limh→0

g(x+h)−g(x)
h

= f ′(x) + g′(x).

The same proof is valid for the difference formula.

Next, we state and give a partial proof of a rule for finding the derivative of
a power function of the form f(x) = xn.
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Theorem 16.3 (Power Rule)
For any real number n, the derivative of the function y = xn is given by the
formula

dy

dx
= nxn−1

Proof.
We prove the result when n is a positive integer. We start by writing the
definition of the derivative of any function f(x)

f ′(x) = lim
h→0

f(x + h)− f(x)

h
.

Letting h = ax− x we can rewrite the previous definition in the form

f ′(x) = lim
a→1

f(ax)− f(x)

ax− x
.

Thus,

f ′(x) = lim
a→1

(ax)n − xn

ax− x
= xn−1 lim

a→1

an − 1

a− 1
.

Dividing an − 1 by a− 1 by the method of synthetic division we find

an − 1 = (a− 1)(1 + a + a2 + a3 + · · ·+ an−1).

Thus,
f ′(x) = xn−1 lim

a→1
(1 + a + a2 + · · ·+ an−1) = nxn−1.

Example 16.1
Use the power rule to differentiate the following:

(a) y = x
4
3 (b) y = 1

3√x
(c) y = xπ.

Solution.
(a) Using the power rule with n = 4

3
to obtain y′ = 4

3
x

1
3 .

(b) Since y = x−
1
3 then using the power rule with n = −1

3
to obtain y′ =

−1
3
x−

4
3 .

(c) Using the power rule with n = π to obtain y′ = πxπ−1.
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Remark 16.1
The derivative of a function of the form y = 2x is not y′ = x2x−1 because
y = 2x is an exponential function and not a power function. A formula for
finding the derivative of an exponential function will be discussed in the next
section.

Now, combining the results discussed above, we can find the derivative of
functions that are combinations of power functions of the form axn. In par-
ticular, the derivative of a polynomial function f(x) = anx

n + an−1x
n−1 +

· · ·+ a1x + a0 is given by the formula

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

Example 16.2
Find the derivative of the function y =

√
3x7 − x5

5
+ π.

Solution.
The derivative is f ′(x) = 7

√
3x6 − x4.

Example 16.3
Find the second derivative of y = 5 3

√
x− 10

x4 + 1
2
√

x
.

Solution.
Note that the given function can be written in the form y = 5x

1
3 − 10x−4 +

1
2
x−

1
2 . Thus, the first derivative is

y′ =
5

3
x−

2
3 + 40x−5 − 1

4
x−

3
2 .

The second derivative is

y′′ = −10

9
x−

5
3 − 200x−6 +

3

8
x−

5
2 .

Recommended Problems (pp. 141 - 2): 1, 3, 6, 11, 18, 29, 32, 34,
36, 38, 41, 42.
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17 Derivative Formulas for Exponential and

Logarithmic Functions

We start this section by looking at the limit

lim
h→0

eh − 1

h
.

The chart below suggests that the limit is 1.

h -0.01 -0.001 -0.0001 0 0.0001 0.001 0.01
eh−1

h
0.995 0.9995 0.99995 undefined 1.0000 1.0005 1.005

Now, let’s try and find the derivative of the function f(x) = ex at any
number x. By the definition of the derivative and the limit above we see that

f ′(x) = limh→0
f(x+h)−f(x)

h

= limh→0
ex+h−ex

h

= limh→0
ex(eh−1)

h

= ex limh→0
eh−1

h
= ex.

This means that ex is its own derivative:

d

dx
(ex) = ex.

Now, suppose that the x in ex is replaced by a differentiable function of x,
say u(x). We would like to find the derivative of eu with respect to x, i.e.,
what is d

dx
(eu)?

Theorem 17.1

d

dx
(eu) = eu du

dx
.

Proof.
By the definition of the derivative we have

d

dx
(eu) = lim

h→0

eu(x+h) − eu(x)

h
.
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Since u is differentiable at x then by letting

v =
u(x + h)− u(x)

h
− u′(x)

we find
u(x + h) = u(x) + (v + u′(x))h

with limh→0 v = 0. Similarly, we can write

ey+k = ey + (w + ey)k

with limk→0 w = 0. In particular, letting y = u(x) and k = (v + u′(x))h we
find

eu(x)+(v+u′(x))h = eu(x) + (w + eu(x))(v + u′(x))h.

Hence,

eu(x+h) − eu(x) = eu(x)+(v+u′(x))h − eu(x)

= eu(x) + (w + eu(x))(v + u′(x))h− eu(x)

= (w + eu)(v + u′(x))h

Thus,
d
dx

(eu) = limh→0
eu(x+h)−eu(x)

h

= limh→0(w + eu)(v + u′(x))
= euu′

Next, we want to find the derivative of the function f(x) = ax, where a > 0
and a 6= 1. First, note that f(x) = ax = (eln a)x = ex ln a. Thus, by Theorem
16.1 we see that

d

dx
(ax) =

d

dx
(ex ln a) = ex ln a d

dx
(x ln a) = ax ln a.

Example 17.1
Find the derivative of each of the following functions:

(a) f(x) = 3x (b) y = 2 · 3x + 5 · e3x−4.

Solution.

(a) f ′(x) = 3x ln 3.
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(b) y′ = 2(3x)′ + 5(e3x−4)′ = 2 · 3x ln 3 + 5(3)e3x−4 = 2 · 3x ln 3 + 15 · e3x−4.

We end this section, by finding the derivative of the function f(x) = ln x. In
the next section, we will prove the formula

d

dx
(ln x) =

1

x
.

Recommended Problems (pp. 145 - 6): 1, 5, 11, 15, 16, 21, 25,
28, 31, 32.
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18 Derivatives of Composite Functions: The

Chain Rule

In this section we want to find the derivative of a composite function f(g(x))
where f(x) and g(x) are two differentiable functions.

Theorem 18.1
If f and g are differentiable then f(g(x)) is differentiable with derivative
given by the formula

d

dx
f(g(x)) = f ′(g(x)) · g′(x).

This result is known as the chain rule. Thus, the derivative of f(g(x)) is
the derivative of f(x) evaluated at g(x) times the derivative of g(x).

Proof.
By the definition of the derivative we have

d

dx
f(g(x)) = lim

h→0

f(g(x + h))− f(g(x))

h
.

Since g is differentiable at x then by letting

v =
g(x + h)− g(x)

h
− g′(x)

we find
g(x + h) = g(x) + (v + g′(x))h

with limh→0 v = 0. Similarly, we can write

f(y + k) = f(y) + (w + f ′(y))k

with limk→0 w = 0. In particular, letting y = g(x) and k = (v + g′(x))h we
find

f(g(x) + (v + g′(x))h) = f(g(x)) + (w + f ′(g(x)))(v + g′(x))h.

Hence,

f(g(x + h))− f(g(x)) = f(g(x) + (v + g′(x))h)− f(g(x))
= f(g(x)) + (w + f ′(g(x)))(v + g′(x))h− f(g(x))
= (w + f ′(g(x)))(v + g′(x))h
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Thus,
d
dx

f(g(x)) = limh→0
f(g(x+h))−f(g(x))

h

= limh→0(w + f ′(g(x)))(v + g′(x))
= f ′(g(x))g′(x).

This completes a proof of the theorem.

Example 18.1
Find the derivative of y = (4x2 + 1)7.

Solution.
First note that y = f(g(x)) where f(x) = x7 and g(x) = 4x2 + 1. Thus,
f ′(x) = 7x6, f ′(g(x)) = 7(4x2 +1)6 and g′(x) = 8x. So according to the chain
rule, y′ = 7(4x2 + 1)6(8x) = 56x(4x2 + 1)6.

Example 18.2
Find the derivative of f(x) = x

x2+1
.

Solution.
We already know one way to find the derivative of this function which is the
use of the quotient rule. Another way, is to use the product rule combined
with the chain rule since f(x) = x(x2 + 1)−1.

f ′(x) = (x)′(x2 + 1)−1 + x[(x2 + 1)−1]′

= (x2 + 1)−1 − x(x2 + 1)−2(2x)

= 1
x2+1

− 2x2

(x2+1)2

Example 18.3
Prove the power rule for rational exponents.

Solution.
Suppose that y = x

p
q , where p and q are integers with q > 0. Take the qth

power of both sides to obtain yq = xp. Differentiate both sides with respect
to x to obtain qyq−1y′ = pxp−1. Thus,

y′ =
p

q

xp−1

x
p(q−1)

q

=
p

q
x

p
q
−1.

Note that we are assuming that x is chosen in such a way that x
p
q is defined.
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Example 18.4
Show that d

dx
xn = nxn−1 for x > 0 and n is any real number.

Solution.
Since xn = en ln x then

d

dx
xn =

d

dx
en ln x = en ln x · n

x
= nxn−1.

We end this section by finding the derivative of f(x) = ln x using the chain
rule. Write y = ln x. Then ey = x. Differentiate both sides with respect to x
to obtain

ey · y′ = 1.

Solving for y′ we find

y′ =
1

ey
=

1

x
.

Recommended Problems (pp. 149 - 150): 3, 15, 23, 29, 30, 32, 33,
35, 36, 38.
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19 The Product and Quotient Rules

At this point we don’t have the tools to find the derivative of either the
function f(x) = x3ex2

or the function g(x) = x2

ex . Looking closely at the
function f(x) we notice that this function is the product of two functions,
namely, x3 and ex2

. On the other hand, the function g(x) is the ratio of two
functions. Thus, we hope to have a rule for differentiating a product of two
functions and one for differentiating the ratio of two functions.
We start by finding the derivative of the product u(x)v(x), where u and v
are differentiable functions:

(u(x)v(x))′ = limh→0
u(x+h)v(x+h)−u(x)v(x)

h

= limh→0
u(x+h)(v(x+h)−v(x))+v(x)(u(x+h)−u(x))

h

= limh→0 u(x + h) limh→0
v(x+h)−v(x)

h
+ v(x) limh→0

u(x+h)−u(x)
h

= u(x)v′(x) + u′(x)v(x).

Note that since u is differentiable so it is continuous and therefore

lim
h→0

u(x + h) = u(x).

The formula

d

dx
(u(x)v(x)) = u(x)

d

dx
(v(x)) +

d

dx
(u(x))v(x). (3)

is called the product rule.

Example 19.1
Find the derivative of f(x) = x3ex2

.

Solution.
Let u(x) = x3 and v(x) = ex2

. Then u′(x) = 3x2 and v′(x) = 2xex2
. Thus,

by the product rule we have

f ′(x) = x3(2x)ex2

+ 3x2ex2

= 2x4ex2

+ 3x2ex2

.

The quotient rule is obtained from the product rule as follows: Let f(x) =
u(x)
v(x)

. Then u(x) = f(x)v(x). Using the product rule, we find u′(x) = f(x)v′(x)+

f ′(x)v(x). Solving for f ′(x) to obtain

f ′(x) =
u′(x)− f(x)v′(x)

v(x)
.
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Now replace f(x) by u(x)
v(x)

to obtain

(
u(x)
v(x)

)′
=

u′(x)−u(x)
v(x)

v′(x)

v(x)

=
u′(x)v(x)−u(x)v′(x)

v(x)

v(x)

= u′(x)v(x)−u(x)v′(x)
(v(x))2

.

Example 19.2
Find the derivative of g(x) = x2

ex .

Solution.
Let u(x) = x2 and v(x) = ex. Then by the quotient rule we have

f ′(x) = (x2)′ex−x2(ex)′

(ex)2

= 2xex−x2ex

e2x

Example 19.3
Prove the power rule for integer exponents.

Solution.
In Section 15, we proved the result for positive integers. The result is trivially
true when the exponent is zero. So suppose that y = xn with n a negative
integer. Then y = 1

x−n where −n is a positive integer. Applying both the
quotient rule and the power rule we find

y′ =
(0)(x−n)− (−nx−n−1)

x−2n
= nxn−1.

Recommended Problems (pp. 152 - 3): 3, 5, 12, 22, 25, 27, 33, 34,
35, 38.
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20 Derivatives of Periodic Functions

The goal of this section is to find the derivatives of the sine and cosine
functions.
We start by finding the derivative of y = sin x. For this purpose, we remind
the reader of the following trigonometric identity:

sin (x + h) = sin x cos h + cos x sin h.

Using the definition of derivative, the above identity and the fact that limh→0
sin h

h
=

1, limh→0
cos h−1

h
= 0 we find

y′ = limh→0
sin (x+h)−sin x

h

= limh→0
sin x cos h+cos x sin h−sin x

h

= limh→0
sin x(cos h−1)+cos x sin h

h

= sin x limh→0
cos h−1

h
+ cos x limh→0

sin h
h

= cos x

Now, if y = sin u where u is a function of x then by the chain rule we have

d

dx
(sin u) = cos u

du

dx
.

As a result of this rule and the fact that cos x = sin
(
x + π

2

)
and cos

(
x + π

2

)
=

− sin x we can obtain the derivative of cos x :

d

dx
(cos x) =

d

dx
sin

(
x +

π

2

)
= cos

(
x +

π

2

)
= − sin x.

If u is a function of x then by the chain rule

d

dx
(cos u) = − sin u

du

dx
.

Example 20.1
Differentiate: (a) 2 sin (3x) (b) cos (x2) (c) esin x.

Solution.
(a) d

dx
(2 sin (3x)) = 2 cos (3x)(3x)′ = 6 cos (3x).

(b) d
dx

(cos (x2)) = − sin (x2)(x2)′ = −2x sin (x2).
(c) d

dx
(esin x) = esin x(sin x)′ = cos xesin x.

Recommended Problems (p. 156): 1, 3, 5, 10, 11, 15, 17, 20.
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21 Local Maxima and Minima

We start this section by reviewing what the first and second derivatives of a
function tell us about its graph:

• If f ′(x) > 0 on an open interval I then f(x) is increasing on I.
• If f ′(x) < 0 on an open interval I then f(x) is decreasing on I.
• If f ′′(x) > 0 on an open interval I then f(x) is concave up on I.
• If f ′′(x) < 0 on an open interval I then f(x) is concave down on I.

Example 21.1
Consider the function f(x) = x3 − 9x2 − 48x + 52.

(a) Find the intervals where the function is increasing/decreasing.
(b) Find the intervals where the function is concave up/down.

Solution.
(a) Finding the first derivative we obtain f ′(x) = 3x2 − 18x − 48 = 3(x −
8)(x + 2). Constructing the chart of signs below

we see that f(x) is increasing on (−∞,−2)∪(8,∞) and decreasing on (−2, 8).
(b) Finding the second derivative, we obtain f ′′(x) = 6x− 18 = 6(x− 3). So,
f(x) is concave up on (3,∞) and concave down on (−∞, 3).

Points of interest on the graph of a function are those points that are the
highest on the curve, or the lowest, in a specific interval. Such points are
called local extrema. The highest point, say f(a), is called a local maxi-
mum and satisfies f(x) ≤ f(a) for all x in an interval I. A local minimum
is a point f(a) such that f(a) ≤ f(x) for all x in an interval I containing a.
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Example 21.2
Find the local maxima and the local minima of the function given in Figure
34.

Figure 34

Solution.
The local maxima occur at x = −2 and x = 14 whereas the local minimum
occurs at x = 8.

Next we will discuss two procedures for finding local extrema. We notice
from the previous example that local extrema occur at points p where the
derivative is either zero or undefined. We call p a critical number, f(p) a
critical value, and (p, f(p)) a critical point. Most of the critical numbers
that we will encounter in this book are of the form f ′(p) = 0 type. The
following theorem asserts that local extrema occur at the critical points.

Theorem 21.1
Suppose that f is defined on an interval I and has a local maximum or
minimum at an interior point a. If f is differentiable at a then f ′(a) = 0.

Remark 21.1
By Theorem 21.1, local extrema are always critical points. The converse of
this statement is not true in general. That is, there are critical points that
are not local extrema of a function. An example of this situation is given
next.
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Example 21.3
Show that f(x) = x3 has a critical point at x = 0 but 0 is neither a local
maximum nor a local minimum.

Solution.
Finding the derivative to obtain f ′(x) = 3x2. Setting this to 0 we find the
critical point x = 0. Since f ′(x) does not change sign at 0 then 0 is neither
a local maximum nor a local minimum.

The graph in Example 21.2 suggests two tests for finding local extrema. The
first is known as the first derivative test and the second as the second
derivative test.

First-Derivative Test
Suppose that a continuous function f has a critical point at p.
• If f ′ changes sign from negative to positive at p, then f has a local mini-
mum at p.
• If f ′ changes sign from positive to negative at p, then f has a local maxi-
mum at p. See Figure 35.

Figure 35

Example 21.4
(a) Find the local extrema of the function f(x) = x3 − 9x2 − 48x + 52.
(b) Find the local extrema of the function f(x) = sin x + ex, x ≥ 0.

Solution.
(a) Using the chart of signs of f ′ discussed in Example 21.1, we find that
f(x) has a local maximum at x = −2 and a local minimum at x = 8.
(b) Finding the derivative to obtain f ′(x) = cos x + ex. But for x ≥ 0,
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1 ≤ ex. Since −1 ≤ cos x ≤ 1 then adding the two inequalities we see that
0 ≤ cos x+ex. This implies that f ′ does not change sign for x ≥ 0. Therefore,
there are no local maxima. The only local minimum occurs at (0, 1).

Second-Derivative Test
Let f be a continuous function such that f ′(p) = 0.
• if f ′′(p) > 0 then f has a local minimum at p.
• if f ′′(p) < 0 then f has a local maximum at p.
• if f ′′(p) = 0 then the test fails. In this case, it is recommended that you
use the first derivative test.

Figure 36

Example 21.5
Use the second derivative test to find the local extrema of the function f(x) =
x3 − 9x2 − 48x + 52.

Solution.
The second derivative of f(x) is given by f ′′(x) = 6(x − 3). The critical
numbers are −2 and 8. Since f ′′(−2) = −30 < 0 then x = −2 is a local
maximum. Since f ′′(8) = 30 > 0 then x = 8 is a local minimum.

Example 21.6
Find the local extrema of the function f(x) = x4.

Solution.
Let’s try and find the local extrema by using the second derivative test. Since
f ′(x) = 4x3 then x = 0 is the only critical number. Since f ′′(x) = 12x2 then
f ′′(0) = 0. So the second derivative test is inconclusive. Now, using the first
derivative test, we see that f ′(x) changes sign from negative to positive at
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x = 0. Thus, x = 0 is a local minimum.

Recommended Problems (pp. 170 - 1): 1, 3, 5, 7, 9, 12, 15, 17, 19,
21.
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22 Concavity and Points of Inflection

We have seen that a local extremum is a point where the first derivative
changes sign. In this section we will discuss points where the second deriva-
tive changes sign. That is, the points where the graph of the function changes
concavity. We call such points points of inflection.
How do you find the points of inflection? Well, since f ′′ changes sign on
the two sides of an inflection point then it makes sense to say that points of
inflection occur at points where either the second derivative is 0 or undefined.

Example 22.1
Find the point(s) of inflection of the function f(x) = xe−x.

Solution.
Using the product rule to obtain f ′(x) = e−x−xe−x. Using the product rule
for the second time we find f ′′(x) = e−x(x−2). Thus, a candidate for a point
of inflection is x = 2. Since f ′′(x) > 0 for x > 2 and f ′′(x) < 0 for x < 2 then
x = 2 is a point of inflection.

Remark 22.1
We have seen that not every value of x where the derivative is zero or un-
defined is a local maximum or minimum. The same thing applies for points
of inflection. That is, it is not always true that if the second derivative is 0
or undefined then automatically you have a point of inflection. It is critical
that f ′′ changes sign at such a point in order to have a point of inflection.

Example 22.2
Consider the function f(x) = x4. Show that f ′′(0) = 0 but 0 is not a point
of inflection.

Solution.
The second derivative is given by the formula f ′′(x) = 12x2. Clearly, f ′′(0) =
0. Since f ′′(x) ≥ 0, that is, f ′′(x) does not change sign then 0 is not a point
of inflection.

Example 22.3
Graph the derivative of the function f(x) = x + sin x. Determine where f is
increasing most rapidly, and least rapidly.
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Solution.
The derivative of f(x) is given by the expression f ′(x) = cos x+1 ≥ 0 so that
f(x) is always increasing. Now, f(x) increases most rapidly at the maximum
values of f ′(x) and increases least rapidly at the minimum values of f ′(x).
Graphing the function f ′(x) we find

Thus, f increases most rapidly at x = 2nπ and least rapidly at x = (2n+1)π
where n is an integer.

Example 22.4
Graph a function with the following properties:

• f has a critical point at x = 4 and an inflection point at x = 8.
• f ′ < 0 for x < 4 and f ′ > 0 for x > 4.
• f ′′ > 0 for x < 8 and f ′′ < 0 for x > 8.

Solution.
The graph is given in Figure 37.
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Figure 37

Recommended Problems (pp. 175 - 6): 1, 3, 7, 9, 15, 16, 26,
27, 28, 29.
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23 Global Maxima and Minima

In this section we will look for the largest or the smallest values of a function
on its domain. Such points are called global extrema. If f(a) is the largest
value then it satisfies the inequality f(x) ≤ f(a) for all x in the domain of
f. We call f(a) the global or absolute maximum value of f and the
point (a, f(a)) the global maximum point. Similarly, if f(a) is the smallest
value of f(x) then f(a) ≤ f(x) for all x in the domain of f. We call f(a)
the absolute or global minimum value of f and the point (a, f(a)) the
global minimum.
The process of finding the global extrema is called optimization. Problems
that involve finding the global extrema are called optimization problems.

How do we find the global extrema?
• If the function is continuous on a closed interval then the global extrema
occur at either the critical points or the endpoints of the interval.

Example 23.1
Find the global extrema of the function f(x) = x3 − 9x2 − 48x + 52 on the
closed interval [−5, 12].

Solution.
Finding the derivative of f(x) we get f ′(x) = 3x2 − 18x − 48. Solving the
equation f ′(x) = 0 that is, x2 − 6x − 16 = 0 we find the critical points at
x = 8 and x = −2. Now, evaluating the function at these points and at the
endpoints we find

f(−5) = −58
f(−2) = 104
f(8) = −396
f(12) = −92

It follows that (−2, 104) is the global maximum point and (8,−396) is the
global minimum point.
• If a function is continuous on an open interval or on all real numbers then
it is recommended to find the global extrema by graphing the function.

Example 23.2
Find the global extrema of the function f(x) = 100(e−0.02x−e−0.1x) for x ≥ 0.
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Solution.
Let’s sketch the graph of this function. The standard process of graphing
consists of the following steps:

Step 1. Find the critical numbers. Setting f ′(x) = 0 to obtain

100(−0.02e−0.02x + 0.1e−0.1x) = 0
0.02e−0.02x = 0.1e−0.1x

e−0.02x

e−0.1x = 0.1
0.02

e0.08x = 5
0.08x = ln 5

x = ln 5
0.08

= 20.12

Step 2. We construct the following chart:

x 20.12
f’(x) + 0 -
f(x) ↗ 53.50 ↘

Step 3. Find the second derivative to obtain f ′′(x) = 100(0.0004e−0.02x −
0.01e−0.1x). Setting this to zero and solving for x as in Step 1 we find
x ≈ 40.25. Now we construct the table

x 40.25
f”(x) - 0 +
f(x) ∩ f(40.25) ∪

Step 4.Graph
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Figure 38

Thus, from the graph we see that (20.12, 53.50) is a global maximum. The
function has a global minimum at x = 0.

Recommended Problems (pp. 179 - 182): 2, 3, 5, 9, 11, 13, 19,
21, .
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24 Applications of Optimization to Marginal-

ity

Management of most businesses always aim to maximizing profit. In this
section we will use the derivative to optimizie profit and revenue functions.

Optimizing Profit
Recall that the profit resulting from producing and selling q items is defined
by

P (q) = R(q)− C(q)

where C(q) is the total cost of producing a quantity q and R(q) is the total
revenue from selling a quantity q of some good.
To maximize or minimize profit over a closed interval, we optimize the profit
function P. We know that global extrema occur at the critical numbers of
P or at the endpoints of the interval. Thus, the process of optimization
requires finding the critical numbers which are the zeros of the marginal
profit function

P ′(q) = R′(q)− C ′(q) = 0

where R′(q) is the marginal revenue function and C ′(q) is the marginal cost
function. Thus, the global maximum or the global minimum of P occurs
when

MR(q) = MC(q)

or at the endpoints of the interval.

Example 24.1
Find the quantity q which maximizes profit given the total revenue and cost
functions

R(q) = 5q − 0.003q2

C(q) = 300 + 1.1q.

where 0 ≤ q ≤ 800 units. What production level gives the minimum profit?

Solution.
The profit function is given by

P (q) = R(q)− C(q) = −0.003q2 + 3.9q − 300.
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The critical numbers of P are the solutions to the equation P ′(q) = 0. That
is,

3.9− 0.006q = 0

or q = 650 units. Since P (0) = −$300, P (800) = $900 and P (650) = $967.50
then the maximum profit occurs when q = 800 units and the minimum
profit(or loss) occurs when q = 0, i.e. when there is no production.

Example 24.2
The total revenue and total cost curves for a product are given in Figure 39.

Figure 39

(a) Sketch the curves for the marginal revenue and marginal cost on the
same axes. Show on this graph the quantities where marginal revenue equals
marginal cost. What is the significance of these two quantities? At which
quantity is profit maximum?
(b) Graph the profit function P (q).

Solution.
(a) Since R is a straight line with positive slope then its derivative is a
positive constant. That is, the graph of the marginal revenue is a horizontal
line at some value a > 0. Since C is always increasing then its derivative MC
is always positive. For 0 < q < q3 the curve is concave down so that MC is
decreasing. For q > q3 the graph of C is concave up and so MC is increasing.
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Thus, the graphs of C and R are shown in Figure 40.

Figure 40

According to the graph, marginal revenue equals marginal cost at the values
q = q1 and q = q2. So maximum profit occurs either at q1, q2 or at the
endpoints. Notice that the production levels q1 and q2 correspond to the two
points where the tangent line to C is parallel to the tangent line to R. Now,
for 0 < q < q1 we have MR < MC so that P ′ = MR −MC < 0 and this
shows that P is decreasing. For q1 < q < q2, MR > MC so that P ′ > 0
and hence P is increasing. So P changes from decreasing to increasing at
q1 which means that P has a minimum at q1. Now, for q > q2 we have that
MR < MC so that P ′ < 0 and P is decreasing. Thus, P changes from
increasing to decreasing at q2 so q2 is a local maximum for P. So maximum
profit occurs either at the endpoints or at q2. Since profit is negative for
q < q3 and q > q4 then the profit is maximum for q = q2.
(b)
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Figure 41

Optimizing Revenue

Example 24.3
The demand equation for a product is p = 45 − 0.01q. Write the revenue
function as a function of q and find the quantity that maximizes revenue.
What price corresponds to this quantity? What is the total revenue at this
price?

Solution.
The revenue function is given by R(q) = pq = 45q − 0.01q2. This is a
parabola that opens down so its vertex is the global maximum. The max-
imum then occurs at the critical number of R(q). That is, at the solution
of R′(q) = 0 or 45 − 0.02q = 0. Solving for q we find q = 2250 units.
The maximum revenue is R(2250) = $50, 625. The unit price in this case is
p = 45− 0.01(2250) = $22.50

Recommended Problems (pp. 187 - 8): 1, 2, 3, 5, 7, 8, 9, 16,
17.
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25 Average Cost

We have seen that an important principle in economics is the problem of max-
imizing profit. A second general principle involves the relationship between
the marginal cost and the average cost

a(q) =
C(q)

q
.

Example 25.1
The cost of producing q items is C(q) = 2500 + 12q dollars.

(a) What is the marginal cost of producing the 100th item?
(b) What is the average cost of producing 100 items?

Solution.
(a) The marginal cost is given by MC(q) = 12. This means that after pro-
ducing the 99 items, it costs an additional $12 to produce the 100th item.
(b) a(100) = C(100)

100
= 2500+12(100)

100
= $37 per item.

Since a(q) = C(q)
q

= C(q)−0
q−0

then a(q) is the slope of the line passing through

the points (q, C(q)) and the origin (0, 0). See Figure 42.

Figure 42

Minimizing a(q)
The important question in this section is the question of minimizing the
average cost function a(q). Let’s try to find the derivative of a(q). Using the
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quotient rule of differentiation we obtain

a′(q) =
C ′(q)q − C(q)

q2
=

C ′(q)− a(q)

q
.

Thus, a′(q) = 0 when C ′(q) = a(q). So critical numbers of a(q) satisfy the
relationship C ′(q) = a(q). In economics theory the global minimum of a(q)
occurs at a critical number. Graphically, the minimum average cost occurs
at the point on the graph of C(q) where the line passing through the origin
is tangent to the graph of C(q). See Figure 43.

Figure 43

Thus, if q0 is a critical number of a then for q < q0 the marginal cost is less
than the average cost. This means, increasing production will decrease the
average cost. If, on the other hand, q > q0 then the marginal cost is greater
than the average cost. This means that increasing production will increase
the average cost.

Example 25.2
A total cost function, in thousands of dollars, is given by C(q) = q3−6q2+15q,
where q is in thousands and 0 ≤ q ≤ 5.

(a) Graph C(q). Estimate the quantity at which average cost is minimized.
(b) Graph the average cost function. Use it to estimate the minimum average
cost.
(c) Determine analytically the exact value of q at which average cost is min-
imized.
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Solution.
(a) A graph of C(q) is given in Figure 44. The average cost is minimized at
the point where the line going through the origin is tangent to the graph of
C(q). This occur at approximately q = 3.

Figure 44

(b) The average cost function is given by a(q) = C(q)
q

= q2 − 6q + 15. The
graph of this function is given in Figure 45. Notice that the minimum occurs
at approximately q = 3.

Figure 45

(c) The minimum average cost occurs when C ′(q) = a(q). That is, 3q2 −
12q + 15 = q2 − 6q + 15. This gives 2q2 − 6q = 0. Solving for q we find q = 0
or q = 3. Since the average cost is not defined when q = 0 then the average
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cost is minimum at q = 3.

Recommended Problems (pp. 192 - 3): 1, 3, 5, 9, 11, 13.
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26 Elasticity of Demand

An important quantity in economics theory is the price elasticity of de-
mand which measures the responsiveness of demand to a given change in
price and is found using the formula

E =
∣∣∣percentage change in quantity demanded

percentage change in price

∣∣∣
=

∣∣∣∣ dq
q

dp
p

∣∣∣∣
=

∣∣∣p
q
· dq

dp

∣∣∣
Changing the price of an item by 1% causes a change of E% in the quantity
sold. If E > 1 then this means that an increase (or decrease) of 1% in price
causes demand to drop (increase) by more than one percent. In this case, we
say that the demand is elastic. If 0 ≤ E < 1 then an increase (decrease) of
1% in price causes demand to drop (increase) by less than one percent and
in this case we say that the demand is inelastic.
Note that we are assuming that increasing the price usually decreases de-
mand and decreasing the price will increase demand so that dq

q
and dp

p
have

opposite sign, that is their ratio is always negative.

Example 26.1
Raising the price of hotel rooms from $75 to $80 per night reduces weekly
sales from 100 rooms to 90 rooms.

(a) What is the elasticity of demand for rooms at a price of $75?
(b) Should the owner raise the price?

Solution.
(a) The percent change in price is ∆p

p
= 80−75

75
= 0.067 = 6.7% and the percent

change in demand is ∆q
q

= 90−100
100

= −0.1 = −10%. Thus, the elasticity of

demand is E = 0.1
0.067

= 1.5.
(b) The weekly revenue at the price of $75 is 100 · 75 = $7500 whereas at the
price of $80 the weekly revenue is 90 · 80 = $7200. A price increase results
in loss of revenue, so the price should not be raised.

Example 26.2
The demand for a product is q = 2000 − 5p where q is units sold at a price
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of p dollars. Find the elasticity if the price is $10, and interpret your answer
in terms of demand.

Solution.
Using Leibniz Notation we find dq

dp

∣∣∣
p=10

= −5 and for p = 10 the correspond-

ing quantity is q = 2000− 50 = 1950 so that the elasticity is

E =

∣∣∣∣∣pq dq

dp

∣∣∣∣∣ = 10 · 5
1950

= 0.03.

The demand is inelastic at the given price; a 1% increase in price will result
in a decrease of 0.03% in demand.
Finally, we would like to know the price that maximizes revenue. That is,
the price that brings the greatest revenue. Recall that the revenue function
is given by R = pq so that dR

dp
= q + pdq

dp
= q(1 + p

q
dq
dp

).

If E > 1 then p
q

dq
dp

< −1 so that 1 + p
q

dq
dp

< 0 and therefore dR
dp

< 0. This says,
that increasing price will decrease revenue or decreasing the price will increase
revenue. If E < 1 then p

q
dq
dp

> −1 so that 1 + p
q

dq
dp

> 0 and consequently
dR
dp

> 0. This means that increasing price will increase revenue. Finally, note

that if dR
dp

= 0 then E = 1. That is, E = 1 at the critical points of the revenue
function. See Figure 46.

Figure 46

Recommended Problems (pp. 196 - 8): 1, 2, 3, 7, 8, 10, 12, 13, 17,
18.
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27 Logistic Functions

One of the consequences of exponential growth is that the output f(t) in-
creases indefinitely in the long run. However, in some situations there is a
limit L to how large f(t) can get. For example, the population of bacteria
in a laboratory culture, where the food supply is limited. In such situations,
the rate of growth slows as the population reaches the carrying capacity. One
useful model is the logistic growth model.
Thus, logistic functions model resource-limited exponential growth.
A logistic function involves three positive parameters L, C, k and has the
from

f(t) =
L

1 + Ce−kt
.

We next investigate the meaning of these parameters. From our knowledge of
the graph of e−x we can easily see that e−kt → 0 as t →∞. Thus, f(t) → L
as t → ∞. It follows that the parameter L represents the limiting value of
the output past which the output cannot grow. We call L the carrying
capacity.
Now, to interpret the meaning of C, we let t = 0 in the formula for f(t)
and obtain (1 + C)f(0) = L. This shows that C is the number of times that
the initial output must grow to reach L. Finally, the parameter k affects
the steepness of the curve, that is, as k increases, the curve approaches the
asymptote y = L more rapidly.

Example 27.1
Show that a logistic function is approximately exponential function with
continuous growth rate k for small values of t.

Solution.
Rewriting a logistic function in the form

f(t) =
Lekt

ekt + C

we see that f(t) ≈ L
1+C

ekt for small values of t.

Graphs of Logistic Functions
Graphing the logistic function f(t) = 185

1+48e−0.032t (See Figure 47) we find
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Figure 47

As is clear from the graph above, a logistic function shows that initial expo-
nential growth is followed by a period in which growth slows and then levels
off, approaching (but never attaining) a maximum upper limit.
Notice the characteristic S-shape which is typical of logistic functions.

Point of Diminishing Returns
Another important feature of any logistic curve is related to its shape: every
logistic curve has a single inflection point which separates the curve into two
equal regions of opposite concavity. This inflection point is called the point
of diminishing returns.

Finding the Coordinates of the Point of Diminishing Returns(Optional)
To find the point of inflection of a logistic function of the form P = f(t) =

L
1+Ce−kt , we notice that P satisfies the equation

dP

dt
= kP

(
1− P

L

)
.

Using the product rule we find

d2P

dt2
= k

dP

dt

(
1− 2P

L

)
.
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Since dP
dt

> 0 we conclude that d2P
dt2

= 0 at P = L
2
.

To find y, we set y = L
2

and solve for t :

L
2

= L
1+Ce−kt

2
L

= 1+Ce−kt

L

2 = 1 + Ce−kt

1 = Ce−kt

ekt = C
kt = ln C
t = ln C

k

Thus, the coordinates of the diminishing point of returns are
(

ln C
k

, L
2

)
.

Logistic functions are good models of biological population growth in species
which have grown so large that they are near to saturating their ecosystems,
or of the spread of information within societies. They are also common in
marketing, where they chart the sales of new products over time.

Example 27.2
The following table shows that results of a study by the United Nations
(New York Times, November 17, 1995) which has found that world popula-
tion growth is slowing. It indicates the year in which world population has
reached a given value:

Year 1927 1960 1974 1987 1999 2011 2025 2041 2071
Billion 2 3 4 5 6 7 8 9 10

(a) Construct a scatterplot of the data, using the input variable t is the
number of years since 1900 and output variable P = worldpopulation (in
billions).
(b) Using a logistic regression, fit a logistic function to this data.
(c) Find the point of diminishing returns. Interpret its meaning.

Solution.
(a) For this part, we recommand the reader to use a TI for the plot.
(b) Using a TI with the logisitc regression we find L = 11.5, C = 12.8, k =
0.0266. Thus,

P =
11.5

1 + 12.8e−0.0266t
.

110



(c) The inflection point on the world population curve occurs when t = ln C
k

=
ln 12.8
0.0266

≈ 95.8. In other words, according to the model, in 1995 world popu-
lation attained 5.75 billion, half its limiting value of 11.5 billion. From this
year on, population will continue to increase but at a slower and slower rate.

Recommended Problems (pp. 204 - 6): 3, 4, 5, 7.
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28 Measuring The Distance Traveled

We have seen that the velocity of an object moving along the curve s(t)
is obtained by taking the average rate of change on smaller and samller
intervals, that is finding the derivative of s, i.e. v(t) = s′(t). In this and the
following sections we want to go the opposite direction. That is, given the
velocity function v(t) we want to find the position function s(t).
To be more precise, suppose that we want to estimate the distance s traveled
by a car after 10 seconds of departure. Assume for example, that we are
given the velocity of the car every two seconds as shown in the table below

Time (sec) 0 2 4 6 8 10
Velocity (ft/sec) 20 30 38 44 48 50

Since we don’t know the instantaneous velocity of the car at every momentm
then we can not calculate the distance exactly. What we can do is to estimate
the distance traveled. For the first two seconds, the velocity is at least 20
miles per second so that the distance traveled is at least 20 × 2 = 40 feet.
Likewise, at least 30 × 2 = 60 feet has been traveled the next two seconds
and so on. Thus, we obtain a lower estimate to the exact distance traveled

20× 2 + 30× 2 + 38× 2 + 44× 2 + 48× 2 = 360 feet.

However, we can reason differently and get an overestimate to the total dis-
tance traveled as follows: For the first two seconds the car’s velocity is at
most 30 feet so that the car travels at most 30× 2 = 60 feet. In the next two
seconds, it travels 38 × 2 = 76 feet and so on. So an upper estimate of the
total distance traveled is

30× 2 + 38× 2 + 44× 2 + 48× 2 + 50× 2 = 420 feet

Hence,
360 feet ≤ Total distance traveled ≤ 420 feet.

Notice that the difference between the upper and lower estimates is 60 feet.
Figure 48 shows both the lower estimate and the upper estimate. The graph
of the velocity is obtained by plotting the points given in the above table and
then connect them with a smooth curve. The area of the lower rectangles
represent the lower estimate and the larger rectangles represent the upper
estimate.
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Figure 48

To visualize the difference between the upper and lower estimates, look at
the above figure, and imagine that all the unshaded rectangles are pushed to
the right and stacked on top of each other. This gives a rectangle of width 2
and height 30 so its area is the difference between the estimates.

Example 28.1
Suppose that the velocity of the car is given every second instead as shown
in the table below. Find the lower and upper estimates of the total distance

113



traveled. What is the difference between the lower and upper estimates? Do
you think that knowing the velocity at every second is a better estimate than
knowing the velocity every two seconds?

Time (sec) 0 1 2 3 4 5 6 7 8 9 10
Velocity (ft/sec) 20 26 30 35 38 42 44 46 48 49 50

Solution.
The lower estimate is

(20)(1) + (26)(1) + · · ·+ (48)(1) + (49)(1) = 378 feet

and the upper estimate is

(26)(1) + (30)(1) + · · ·+ (49)(1) + (50)(1) = 408 feet

Hence,
378 feet ≤ Total distance traveled ≤ 408 feet.

So the difference between the upper and lower estimates is 408 − 378 =
30 feet. This shows that by increasing the partition points we get better and
better estimate.

Remark 28.1
Once the upper estimate and the lower estimate are found then one can get
an even better estimate by taking the average of the two estimates.

The use of the average rate of change of the distance leads to finding the total
distance traveled. This same method can be used to find the total change
from the rate of change of other quantities.

Example 28.2
The following table gives world oil consumptions, in billions of barrels per
year. Estimate the total oil consumption during this 20-year period.

Year 1980 1985 1990 1995 2000
Oil (barrels/yr) 22.3 23.0 23.9 24.9 27.0
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Solution.
We underestimate the total oil consumption as follows:

22.3× 5 + 23.0× 5 + 23.9× 5 + 24.9× 5 = 470.5 billion barrels.

The overestimate is

23.0× 5 + 23.9× 5 + 24.9× 5 + 27.0× 5 = 494 billion barrels.

A good single estimate of the total oil consumption is the average of the
above estimates. That is

Total oil consumption ≈ 470.5 + 494

2
= 482.25 billion barrels.

Recommended Problems (pp. 223 - 5): 1, 3, 7, 9, 10, 13, 18.
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29 The Definite Integral

In the previous section, we saw how to approximate total change given the
rate of change. In this section we see how to make the approximation more
accurate.
Suppose that we want to find the total distance traveled over the time interval
a ≤ t ≤ b. We take measurements of the velocity v(t) at equally spaced times,
a = t0, t1, t2, · · · , tn = b. This means that we devide the interval [a, b] into n
equal pieces each of length ∆t = b−a

n
. We first use the left-end point of each

interval [ti−1, ti] and construct the left-hand sum

L(v, n) = v(t0)∆t + v(t1)∆t + · · ·+ v(tn−1)∆t.

Geometrically, this sum represents the sum of areas of rectangles constructed
by taking the height to be the value of the function at the left-endpoint of
each subinterval. See Figure 49.

Figure 49

Secondly, we use the right-end point of each interval [ti−1, ti] and construct
the right-hand sum

R(v, n) = v(t1)∆t + v(t2)∆t + · · ·+ v(tn)∆t.

Geometrically, this sum represents the sum of areas of rectangles constructed
by taking the height to be the value of the function at the right-endpoint of
each subinterval. See Figure 50.
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Figure 50

Now, the exact distance traveled lies between the two estimates. As we have
seen earlier, by making the time interval smaller and smaller we can make the
difference between the two estimates as small as we like. This is equivalent
to letting n → ∞. If the function v(t) is continuous then the following two
limits are equal to the exact distance traveled from t = a to t = b.

Total distance traveled = lim
n→∞

L(v, n) = lim
n→∞

R(v, n).

Geometrically, each of the above limit represents the area under the graph
of v(t) bounded by the lines t = a, t = b and the horizontal axis. See Figure
51.
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Remark 29.1
Notice that for an increasing function the left-hand sum is an underestimate
whereas the right-hand sum is an overestimate. This role is reversed for a
decreasing function.

The above discussion applies to any continuous function f on a closed interval
[a, b]. We start by dividing the interval [a,b] into n subintervals each of length

∆x =
b− a

n
.

Let a = x0, x1, · · · , xn−1, xn = b be the endpoints of the subdivisions. We
construct the left-hand sum or the left Riemann sum

L(f, n) = f(x0)∆x + f(x1)∆x + · · ·+ f(xn−1)∆x =
n−1∑
i=0

f(xi)∆x

and the right-hand sum or the right Riemann sum

R(f, n) = f(x1)∆x + f(x2)∆x + · · ·+ f(xn)∆x =
n∑

i=1

f(xi)∆x

It is shown in advanced calculus that for a continuous function on a closed
interval [a, b] that as n →∞ both the left-hand sum and the right-hand sum
exist and are equal. We denote the common value by the notation

∫ b
a f(x)dx.

Thus, ∫ b
a f(x)dx = limn→∞ L(f, n)

= limn→∞R(f, n)

We call
∫ b
a f(x)dx the definite integral of f from x = a to x = b. We call

a the lower limit and b the upper limit. The function f is called the
integrand.

Example 29.1
(a) On a sketch of y = ln x, represent the left Riemann sum with n = 2
approximating

∫ 2
1 ln xdx. Write out the terms in the sum, but do not evaluate.

(b) On a another sketch of y = ln x, represent the right Riemann sum with
n = 2 approximating

∫ 2
1 ln xdx. Write out the terms in the sum, but do not

evaluate.
(c) Which sum is an underestimate? Which sum is an overestimate?
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Solution.
(a) The left Riemann sum is the sum

L(ln x, 2) = ln 1(0.5) + ln (1.5)(0.5) = 0.5 ln (1.5).

The sum is represented by the rectangle shaded to the left of Figure 52.

Figure 52

(b) The right Riemann sum is the sum

R(ln x, 2) = ln (1.5)(0.5) + ln 2(0.5) = 0.5 ln (2)(1.5) = 0.5 ln 3.

The sum is represented by the rectangles shaded to the right of Figure 52.
(c) L(ln x, 2) <

∫ 2
1 ln xdx < R(ln x, 2).

Definite integrals are used to find areas. That is, a definite integral is the
area under the graph of a function. We will discuss this concept in the next
section.

Example 29.2 (Estimating a Definite Integral from a Table)
Use the table to estimate

∫ 40
0 f(x)dx. What values of n and ∆x did you use?

x 0 10 20 30 40
f(x) 350 410 435 450 460

Solution.
The values of f(x) are spaces 10 units apart so that ∆x = 10 and n = b−a

∆x
=

40−0
10

= 4. Calculating the left-hand sum and right-hand sum to obtain

L(f, 4) = 350 · 10 + 410 · 10 + 435 · 10 + 450 · 10 = 16, 450
R(f, 4) = 410 · 10 + 435 · 10 + 450 · 10 + 460 · 10 = 17, 550.
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Thus, ∫ 40

0
f(x)dx ≈ 16, 450 + 17, 550

2
= 17, 000.

Example 29.3 (Estimating a Definite Integral from a Graph)
The graph of f(x) is given in Figure 53.

Figure 53

Estimate
∫ 28
0 f(x)dx.

Solution.
We approximate the integral using left and right-hand sums with n = 7 and
∆x = 4.

L(f, 7) = 0.75 · 4 + 1.4 · 4 + 2.1 · 4 + 2.8 · 4 + 3.3 · 4 + 3.8 · 4 = 56.6
R(f, 7) = 1.4 · 4 + 2.1 · 4 + 2.8 · 4 + 3.3 · 4 + 3.8 · 4 + 4 · 4 = 69.6.

Thus, ∫ 28

0
f(x)dx ≈ 56.6 + 69.6

2
= 63.1.

Recommended Problems (pp. 231 - 2): 1, 3, 5, 7, 9, 11, 15, 19,
23.
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30 The Definite Integral as Area

In this section, we will see how definite integrals are used to find areas.

Case 1:f(x) ≥ 0
Looking closely to either the left Riemann sum or the right Riemann sum
we see that if f(x) ≥ 0 then a term of the form f(x)∆x represents the area
of a rectangle. As n increases without bound, that is, the width ∆x of the
rectangles approaches zero, the rectangles fit the curve of the graph more
exactly, and the sum of their areas gets closer and closer to the area under
the graph, bounded by the vertical lines x = a and x = b and the x-axis.
Thus, ∫ b

a
f(x)dx = Area under graph of f between a and b.

Figure 54

Example 30.1
Consider the integral

∫ 1
−1

√
1− x2dx.

(a) Interpret the integral as an area, and find its exact value.
(b) Estimate the integral using a calculator.

Solution.
(a) Note that the equation of a circle centered at the origin and with ra-
dius 1 is given by x2 + y2 = 1. Solving for y we find y = ±

√
1− x2. The
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function y =
√

1− x2 corresponds to the upper semicircle and the function
y = −

√
1− x2 corresponds to the lower semicircle. See Figure 55.

Figure 55

It follows that the given integral represents the area of the upper semicircle
and therefore is equal to π

2
. That is,

∫ 1

−1

√
1− x2dx =

π

2
.

(b) Using a TI-83 calculator we find

fnInt(
√

1− x2, x,−1, 1) ≈ 1.571.

Case 2:f(x) ≤ 0
In this case, since each product of the form f(x)∆x is less than or equal to
zero then the area gets counted negatively. That is, the absolute value of the
integral gives the area above the curve between x = a and x = b.

Example 30.2
Find the area above the graph of y = x2 − 1 from x = −1 to x = 1.

Solution.
The graph of y = x2 − 1 is shown in Figure 56.
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Figure 56

The area is given by |
∫ 1
−1(x

2 − 1)dx| ≈ | − 1.33| = 1.33.

Case 3:f changes sign
In this case, the integral is the sum of the areas above the x-axis, counted
positively, and the areas below the x-axis, counted negatively. If the integral
is positive then the region above the x-axis has larger area than the region
below the x-axis. If the integral is negative then the region below the x-axis
has a larger area then the region above the x-axis.

Example 30.3
Find the area between the graph of y = x3 and the x-axis from x = −1 to
x = 1.

Solution.
The area is shown in Figure 57.
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Figure 57

It follows that the area is given by∣∣∣∣∫ 0

−1
x3dx

∣∣∣∣+ ∫ 1

0
x3dx = 0.5.

Area Between Two Curves
Consider the problem of finding the area between two curves as shown in
Figure 58.

Figure 58

Then, the area between the two curves is the area under f minus the area
under g. That is,

Area between f and g =
∫ b

a
(f(x)− g(x))dx.

Example 30.4
Find the area between the graphs of f(x) = x and g(x) = x2.

Solution.
The area is shown in Figure 59.
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Figure 59

Thus, the area is given by the integral

∫ 1

0
(x− x2)dx =

x2

2
− x3

3

∣∣∣∣∣
1

0

=
1

6
.

Recommended Problems (pp. 235 - 7): 1, 3, 5, 7, 11, 13, 17, 19,
22, 25. 27, 30, 31, 32.
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31 Interpretations of the Definite Integral

We start this section by showing that the definite integral of a rate of change
gives the total change of the function. We define the total change of a function
F (t) from t = a to t = b to be the difference F (b)−F (a). Suppose that F (t)
is continuous in [a,b] and differentiable in (a, b). Divide the interval [a, b] into
n equal subintervals each of length ∆t = b−a

n
. Let a = t0, t1, · · · , tn = b be the

partition points of the subdivision. Then on the interval [t0, t1] the change
in F can be estimated by the formula

F ′(t0) ≈
F (t0 + ∆t)− F (t0)

∆t

or
F (t0 + ∆t)− F (t0) ≈ F ′(t0)∆t

that is
F (t1)− F (t0) ≈ F ′(t0)∆t

On the interval [t1, t2] we get the estimation

F (t2)− F (t1) = F ′(t1)∆t

Continuing in this fashion we find that on the interval [tn−1, tn] we have

F (tn−1)− F (tn) ≈ F ′(tn−1)∆t.

Adding all these approximations we find that

F (tn)− F (t0) ≈
n−1∑
i=0

F ′(ti)∆t

Letting n →∞ we see that

F (b)− F (a) =
∫ b

a
F ′(t)dt.

Example 31.1
The amount of waste a company produces, W, in metric tons per week, is
approximated by W = 3.75e−0.008t, where t is in weeks since January 1, 2000.
Waste removal for the company costs $15/ton. How much does the company
pay for waste removal during the year 2000?
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Solution.
The amount of tons produced during the year 2000 is just the definite integral∫ 52
0 W (t)dt. Using a calculator we find that

Total waste during the year =
∫ 52

0
3.75e−0.008tdt ≈ 159 tons

The cost to remove this quantity is 159× 15 = $2385.

Remark 31.1
When using

∫ b
a f(x)dx in applications then its units is the product of the

units of f(x) with the units of x.

Recommended Problems (pp. 240 - 3): 1, 3, 5, 8, 9, 15, 18.
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32 The Fundamental Theorem of Calculus

The following result is considered among the most important result in calcu-
lus.

The Fundamental Theorem of Calculus
If f(x) is a continuous function on [a,b] and F ′(x) = f(x) then∫ b

a
f(x)dx = F (b)− F (a)

We call the function F (x) an antiderivative of f(x).

Proof.
Partition the interval [a,b] into n subintervals each of length ∆x = b−a

n
and

let {a = x0, x1, · · · , xn = b} be the partition points. Applying the Mean
Value Theorem on the interval [x0, x1] we can find a number x0 < c1 < x1

such that
F (x1)− F (x0) = F ′(c1)∆x.

Continuing this process on the remaining intervals we find

F (x2)− F (x1) = F ′(c1)∆x
...

F (xn)− F (xn−1) = F ′(cn)∆x

Adding these equalities we find

F (xn)− F (x0) =
n∑

i=1

f(ci)∆x

Letting n →∞ to obtain

F (b)− F (a) =
∫ b

a
f(x)dx

Example 32.1
Use FTC to compute

∫ 2
1 2xdx. Use a calculator to find the answer to the

integral and compare.
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Solution.
Since the derivative of x2 is 2x then F (x) = x2. Thus, by the FTC we have∫ 2

1
2xdx = F (2)− F (1) = 4− 1 = 3.

Using a calculator we find
∫ 2
1 2xdx = 3.

Example 32.2
Let F (t) represent a bacteria population which is 5 million at time t = 0.
After t hours, the population is growing at an instantaneous rate of 2t million
bacteria per hour. Estimate the total increase in the bacteria population
during the first hour, and the population at t = 1.

Solution.
Since total change is the definite integral of F ′(t) = 2t from t = 0 to t = 1
then

Change in population = F (1)− F (0) =
∫ 1

0
2tdt ≈ 1.44 million bacteria

Since F (0) = 5 then

F (1) = F (0) +
∫ 1

0
2tdt ≈ 5 + 1.44 = 6.44 million.

If C(q) is the total cost to produce a quantity q of a certain comodity then we
can use the Fundamental Theorem of Calculus and compute the total cost
of producing b units as follows

C(b)− C(0) =
∫ b

0
C ′(q)dq

or

C(b) = C(0) +
∫ b

0
C ′(q)dq

We call the quantity
∫ b
0 C ′(q)dq the total variable cost.

Example 32.3
The marginal cost function for a company is given by

C ′(q) = q2 − 16q + 70 dollars/unit,

where q is the quantity produced. If C(0) = 500, find the total cost of
producing 20 units. What is the fixed cost and what is the total variable
cost for this quantity?

129



Solution.
We find C(20) as follows:

C(20) = C(0) +
∫ 20

0
C ′(q)dq = 500 +

∫ 20

0
(q2 − 16q + 70)dq.

where C(0) = 500 is the fixed cost.
Using a calculator we find total variable cost to be∫ 20

0
(q2 − 16q + 70)dq ≈ 866.7

Thus, the total cost of producing 20 units is

C(20) ≈ 500 + 866.7 = 1366.7

Recommended Problems (pp. 245 - 6): 2, 3, 5, 7, 9, 11, 16, 17, 20,
25.
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33 The Average Value

We know that the average of n given numbers is just the sum divided by n.
What is the average in the continuous case? That is, what is the average of
a continuous function on a closed interval [a, b]?
Partition the interval into n equal subintervals each of length ∆t = b−a

n
and

let a = t0, t1, t2, · · · , tn be the division points. Then

Average of f(t) on [a, b] ≈ f(t0) + f(t1) + · · ·+ f(tn−1)

n

But n = b−a
∆t

so that

Average of f(t) on [a, b] ≈ 1
b−a

(f(t0) + f(t1) + · · ·+ f(tn−1))∆t

= 1
b−a

∑n−1
i=0 f(ti)∆t

Letting n →∞ we see that

Average of f(t) on [a, b] =
1

b− a

∫ b

a
f(x)dx.

Example 33.1
A bar of metal is cooling from 1000◦C to room temperature, 20◦C. The
temperature, H, of the bar t minutes after it starts cooling is given by

H = 20 + 980e−0.1t.

Find the average temperature over the first hour.

Solution.
The average temperature is given by

Average temperature for the first hour =
1

60

∫ 60

0
(20+980e−0.1t)dt ≈ 183◦C.

Example 33.2
Suppose that C(t) represent the daily cost of heating your house, in dollars
per day, where t is time in days and t = 0 corresponds to January 1, 2002.
Interpret the quantities

∫ 90
0 C(t)dt and 1

90−0

∫ 90
0 C(t)dt.

Solution.
The integral

∫ 90
0 C(t)dt represents the total cost in dollars to heat your house

for the first 90 days of 2002. The second expression represents the average
cost per day to heat your house during the first 90 days of 2002.
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Remark 33.1
From the definition of the average value we can write

(average value of f)× (b− a) =
∫ b

a
f(x)dx

Geometrically, this says that the area of the rectangle of dimensions (average value of f)×
(b− a) is equal to the area under the graph of f(x) from x = a to x = b. See
Figure 60.

Figure 60

Recommended Problems (pp. 258 - 9): 1, 4, 5, 9, 11, 14, 18.
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34 Consumer and Producer Surplus

The definitions of demand and supply must be remembered:

Demand tells us the price that consumers would be willing to pay for each dif-
ferent quantity. According to the law of demand, when the price increases the
demand decreases and when the price decreases the demand increases. The
graphical representation of the relationship between the quantity demanded
of a good and the price of the good is known as the demand curve.
Supply tells us the price that producers would be willing to charge in order
to sell the different quantities. The law of supply asserts that as the price
of a good rises, teh quantity supplied rises, and as the price of a good falls
the quantity supplied falls. The graphical representation of the relationship
between the quantity supplied of a good and the price of the good is known
as the supply curve.
The demand and supply curve intersects at the point of equilibrium
(q∗, p∗). We call p∗ the equilibrium price and the q∗ the equilibrium
quantity. See Figure 61.

Figure 61
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Consumers’ Surplus
At the equilibrium level, the consumers’ surplus is the difference between
what consumers are willing to pay and their actual expenditure: It therefore
represents the total amount saved by consumers who were willing to pay
more than p∗ per unit.
To calculate the consumers’ surplus, we first calculate the consumers’ total
expenditure. Divide the interval [0, q∗] into n equal pieces each of length ∆q.
According to Figure 62, the consumers’ total expenditure is given by the sum

D(q1)∆q + D(q2)∆q + · · ·+ D(qn)∆q =
n∑

i=1

D(qi)∆q.

Letting ∆q → 0 to obtain (See Figure 62)

Total Expenditure =
∫ q∗

0
D(q)dq.

Figure 62

Thus,

Consumers′ Surplus =
∫ q∗

0
(D(q)− p∗)dq.

Graphically, it is the area between demand curve and the horizontal line at
p∗. See Figure 63.
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Figure 63

Producers’ Surplus
The producers’ surplus is the extra amount earned by producers who were
willing to charge less than the selling price of p∗ per unit, and is given by

Producers′ Surplus =
∫ q∗

0
(p∗ − S(q))dq.

Graphically, it is the area between suuply curve and the horizontal line at
p∗. See Figure 64.

Figure 64

Example 34.1
The demand and supply equations are given by D(q) = 60− q2

10
and S(q) =

30+ q2

5
. Find the consumers’ and producers’ surplus at the equilibrium price.
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Solution.
To find the Consumers and Producers surplus under equilibrium we first need
to find the equilibrium point by setting supply=demand and solving for q:

30 +
q2

5
= 60− q2

10
implies q∗ = 10.

Substituting this into the supply (or demand) equation we find the equilib-
rium price p∗ = 50. Now we use formulas of the Consumers and Producers
surplus:

Consumers′ Surplus :
∫ 10
0

[(
60− q2

10

)
− 50

]
dq = 10q − q3

30

∣∣∣10
0
≈ 66.67

Producers′ Surplus :
∫ 10
0

[
50−

(
30 + q2

5

)]
dq = 20q − q3

15

∣∣∣10
0
≈ 133.33

Recommended Problems (p. 264): 1, 3, 4, 5, 6.
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35 Present and Future Value of a Continuous

Income Stream

When an income stream flows into an investment, the investment grows be-
cause of the continuous flows of money and the interest compounded on the
money invested. Thus, two functions are required: a function defining the
flow of money, and a function defining a function multiplier.
In Section 7, we discussed the case of a discrete income stream. In this
section, we cover the case of a continuous income stream. We will find the
present value and the future value of a continuous income stream.
Let S(t) be the flow rate in dollars per year. To find the present value of a
continuous income stream over a period of M years we divide the interval
[0, M ] into n equal subintervals each of length ∆t = M

n
and with division

points 0 = t0 < t1 < · · · < tn = M. That is, over each time interval we
are assuming a single payment is made. Assuming interest r is compounded
continuously, the present value of the total money deposited is approximated
by the following Riemann sum:

PV ≈ S(t1)e
−rt1∆t + S(t2)e

−rt2∆t + · · ·S(tn)e−rtn∆t =
n∑

i=1

S(ti)e
−rti∆t.

Letting ∆t → 0, i.e. n →∞, we obtain

PV =
∫ M

0
S(t)e−rtdt.

The future value is given by

FV = erM
∫ M

0
S(t)e−rtdt.

Example 35.1
An investor is investing $3.3 million a year in an account returning 9.4%
APR. Assuming a continuous income stream and continuous compounding
of interest, how much will these investments be worth 10 years from now?

Solution.
Using the formula for the future value defined above we find

FV = e.94
∫ 10

0
3.3e−0.094tdt ≈ $54.8million.
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Example 35.2
At what canstant, continuous rate must money be deposited into an account
if the account contain $20,000 in 5 years? The account earns 6% interest
compounded continuously.

Solution.
Given FV = $20, 000, M = 5, r = 0.06. Since S is assumed to be constant
then we have

20, 000 = S
∫ 5

0
e−0.06tdt.

Solving for S we find

S =
20, 000∫ 5

0 e−0.06tdt
≈ $4, 630 per year.

Recommended Problems (p. 267): 1, 2, 3, 4, 5, 7, 8, 9.
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36 Constructing Antiderivatives Analytically

In this section we will find analytical expressions of antiderivatives. Recall
that a function F is an antiderivative of a function f if F ′(x) = f(x).
However, for any constant C, F (x) + C is also an antiderivative of f. That
is, there are infinitely many antiderivatives of a given function f(x). They
all differ by a constant and the family of antiderivatives is represented by
F (x) + C. The notation of the general antiderivative is called an indefinite
integral and is written ∫

f(x)dx = F (x) + C.

The symbol
∫

is the symbol of integration, f(x) is called the integrand and
C is called the constant of integration. Keep in mind the relationship
between f(x) and F (x) which is given by F ′(x) = f(x).

Warning: The indefinite integral is a short-hand notation for a family of
functions F (x) + C with the property F ′(x) = f(x) for all x. It is not to be
confused with the definite integral

∫ b
a f(x)dx which is a real number.

Example 36.1
Show that

∫
0dx = C.

Solution.
Since the derivative of a constant function is always zero then∫

0dx = C.

Example 36.2
Show that

∫
kdx = kx + C where k is a constant.

Solution.
Since the derivative of kx is just k then∫

kdx = kx + C.

Example 36.3
Show that

∫
xndx = xn+1

n+1
+ C for n 6= −1.
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Solution.
By the power rule, if F (x) = xn+1

n+1
then F ′(x) = xn. Thus,

∫
xndx =

xn+1

n + 1
+ C.

Note that this formula is valid only if n 6= −1 for if n = −1 we would have x0

0

which doesn’t make sense. The case n = −1 is treated in the next problem.

Example 36.4
Show that ∫ dx

x
= ln |x|+ C.

Solution.
Suppose first that x > 0 so that ln |x| = ln x. Then (ln |x|)′ = (ln x)′ =
1
x
. Now, if x < 0 then ln |x| = ln (−x) and by the chain rule (ln |x|)′ =

(ln (−x))′ = −1
−x

= 1
x
. Thus, in both cases (ln |x|)′ = 1

x
.

Example 36.5
Show that for a 6= 0,

∫
eaxdx = eax

a
+ C.

Solution.
If a is a nonzero constant and F (x) = eax

a
then F ′(x) = eax. This shows that

∫
eaxdx =

eax

a
+ C.

Example 36.6
Show that

∫
cos (ax)dx = sin (ax)

a
+ C where a 6= 0.

Solution.
If a is a nonzero constant and F (x) = sin (ax)

a
then F ′(x) = cos (ax). This

shows that ∫
cos (ax)dx =

sin (ax)

a
+ C.

Example 36.7
Show that

∫
sin (ax)dx = − cos (ax)

a
+ C where a 6= 0.
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Solution.
If a is a nonzero constant and F (x) = − cos (ax)

a
then F ′(x) = sin (ax). This

shows that ∫
sin (ax)dx = −cos (ax)

a
+ C.

Example 36.8
Show that

∫ 1√
1−x2 dx = arcsin x + C.

Solution.
Let F (x) = arcsin x. Then F ′(x) = 1√

1−x2 . Thus,∫ 1√
1− x2

dx = arcsin x + C.

Example 36.9
Show that

∫ 1
1+x2 dx = arctan x + C.

Solution.
Let F (x) = arctan x. Then F ′(x) = 1

1+x2 . Thus,∫ 1

1 + x2
dx = arctan x + C.

Properties of Indefinite Integrals∫
[f(x)± g(x)]dx =

∫
f(x)dx±

∫
g(x)dx.

To see why this property is true, let F (x) be an antiderivative of f(x) and
G(x) be an antiderivative of g(x). The result follows from the fact that
d
dx

[F (x)±G(x)] = f(x)± g(x).∫
cf(x)dx = c

∫
f(x)dx.

To see this, suppose that F (x) is an antiderivative of f(x). Then
∫

f(x)dx =
F (x)+C. But d

dx
(cF (x)) = cf(x) so that cF (x) is an antiderivative of cf(x),

that is,
∫

cf(x)dx = cF (x) + C ′. This implies∫
cf(x)dx = cF (x)+C ′ = c(

∫
f(x)dx−C)+C ′ = c

∫
f(x)dx−cC+C ′ = c

∫
f(x)dx.

Note that the constant −cC + C ′ is ignored since a constant of integration
will result from

∫
f(x)dx.
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Example 36.10
Find ∫

(sin (2x)− e−3x +
3

x
− 5

x3
)dx.

Solution.
Using the linearity property of indefinite integrals together with the formulas
of integration obtained above we have∫

(sin (2x)− e−3x + 3
x
− 5

x3 )dx =
∫

sin (2x)dx−
∫

e−3xdx + 3
∫ dx

x
− 5

∫
x−3dx

= − cos (2x)
2

+ e−3x

3
+ 3 ln |x|+ 5

2x2 + C

Once we have found an antiderivative of f(x), computing definite integrals
is easy by the Fundamental Theorem of Calculus.

Example 36.11
Compute

∫ 2
1 3x2dx.

Solution.
Since F (x) = x3 is an antiderivative of f(x) = 3x2, then by FTC∫ 2

1
3x2dx = x3|21 = 23 − 13 = 7.

Recommended Problems (pp. 281 - 2): 6, 8, 10, 13, 15, 22, 24, 32,
36, 38, 40,41, 48.
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37 Integration by Substitution

The purpose of this section is to evaluate the integral∫
f ′(g(x))g′(x)dx. (4)

This is done, by letting u = g(x). Then we define du = g′(x)dx. Hence, we
have the following∫

f ′(g(x))g′(x)dx =
∫

f ′(u)du = f(u) + C = f(g(x)) + C (5)

The above procedure is referred to as the method of integration by sub-
stitution. Thus, when the integrand looks like a compound function times
the derivative of the inside then try using substitution to integrate. Note
also that this method of antidifferentiation reverses the chain rule of differ-
entiation.
The following examples illustrate the use of this method.

Example 37.1
Find

∫
3x2 cos x3dx.

Solution.
Let u(x) = x3. Then du = 3x2dx and therefore∫

3x2 cos x3dx =
∫

cos udu = sin u + C = sin x3 + C.

The method of substitution works even when the derivative of the inside is
missing a constant factor as shown in the next example.

Example 37.2
Find

∫
xex2+1dx.

Solution.
Letting u(x) = x2 + 1 then du = 2xdx. Thus,∫

xex2+1dx = 1
2

∫
2xex2+1dx

= 1
2

∫
eudu = eu

2
+ C

= ex2+1

2
+ C

You may wonder why 1
2

∫
eudu = 1

2
eu + C and not 1

2

∫
eudu = 1

2
(eu + C) =

eu

2
+ C

2
. The convention is always to add C to whatever antiderivative we

have calculated.
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Example 37.3
Find

∫
x3
√

x4 + 5dx.

Solution.
Let u = x4 + 5. Then du = 4x3dx. Thus,∫

x3
√

x4 + 5dx = 1
4

∫
4x3

√
x4 + 5dx

= 1
4

∫ √
udu = 1

4
· u

3
2
3
2

+ C

= 1
6
(x4 + 5)

3
2 + C

Example 37.4
Find

∫ ex

ex+1
dx.

Solution.
Let u = ex + 1. Then du = exdx. Thus,∫ ex

ex+1
dx =

∫ du
u

= ln |u|+ C

= ln |ex + 1|+ C.

Notice the pattern in the previous example: having a function in the denom-
inator and its derivative in the numerator leads to a natural logarithm.

Example 37.5

Find
∫ √

1 +
√

xdx.

Solution.
Let u = 1 +

√
x. Then du = dx

2
√

x
= dx

2(u−1)
or dx = 2(u− 1)du. Thus,

∫ √
1 +

√
xdx =

∫ √
u2(u− 1)du =

∫
(2u
√

u− 2
√

u)du

=
∫
(2u

3
2 − 2u

1
2 )du

= 2u
5
2
5
2

− 2u
3
2
3
2

+ C

= 4
5
(1 +

√
x)

5
2 − 4

3
(1 +

√
x)

3
2 + C

Recommended Problems (pp. 285 - 6): 1, 2, 3, 4, 6, 11, 13, 17, 19,
23, 26, 29, 31, 35.
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38 Using the Fundamental Theorem to Find

Definite Integrals

Recall the Fundamental Theorem of Calculus (abbreviated by FTC): If F ′(x) =
f(x) then

∫ b
a f(x)dx = F (b)− F (a). In particular, we have∫ b

a
F ′(x)dx = F (b)− F (a).

Once we have found an antiderivative of f(x), computing definite integrals
is easy by the Fundamental Theorem of Calculus.

Example 38.1
Compute

∫ 2
1 3x2dx.

Solution.
Since F (x) = x3 is an antiderivative of f(x) = 3x2, then by FTC∫ 2

1
3x2dx = x3|21 = 23 − 13 = 7.

Example 38.2
Write a definite integral to represent the area under the graph of f(t) = e0.5t

between t = 0 and t = 4. Use the Fundamental Theorem of Calculus to
calculate the area.

Solution.
An antiderivative of f(t) is 2e0.5t. Thus,

Area =
∫ 4

0
e0.5tdt = 2e0.5t

∣∣∣4
0

= 2e2 − 2 ≈ 12.778.

Next, we discuss the evaluation of a definite integral using the technique
of substitution. From ( 5) we have that f(g(x)) is an antiderivative of the
function f ′(g(x))g′(x). Applying the Fundamental Theorem of Calculus we
can write ∫ b

a
f ′(g(x))g′(x)dx = f(g(x))|ba = f(g(b))− f(g(a)).
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If we let u = g(x) then the previous formula reduces to

∫ b

a
f ′(g(x))g′(x)dx = f(g(b))− f(g(a)) =

∫ g(b)

g(a)
f ′(u)du.

Warning: When evaluating definite integrals, there is no constant of inte-
gration in the final answer.

Example 38.3
Compute

∫ 2
0 xex2

dx.

Solution.
Let u(x) = x2. Then du = 2xdx, u(0) = 0, and u(2) = 4. Thus,∫ 2

0
xex2

dx =
1

2

∫ 4

0
eudu =

eu

2
|40 =

1

2
(e4 − 1).

Example 38.4

Compute
∫ π

4
0

tan3 x
cos2 x

dx.

Solution.
Let u = tan x. Then du = dx

cos2 x
, u(0) = 0, and u(π

4
) = 1. Thus,

∫ π
4

0

tan3 x

cos2 x
dx =

∫ 1

0
u3du =

u4

4
|10 =

1

4
.

Recommended Problems (pp. 289 - 90): 1, 3, 5, 11, 13, 15, 17, 24,
25, 27, 28.
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39 Finding Antiderivatives Graphically and

Numerically

In this section we want to see how to reconstruct the graph of f given the
graph of its derivative f ′.

Example 39.1
The graph of f ′(x) is given in Figure 65.

Figure 65

Sketch a graph of the function f(x) satisfying f(0) = 1.

Solution.
Note that since f ′(x) is always increasing then f ′′(x) > 0 so that the graph of
f(x) is always concave up. Since f ′(x) < 0 for x < 0 then f(x) is decreasing
there. Similarly, since f ′(x) > 0 for x > 0 then f(x) is increasing there.
Since f ′(0) = 0 and f(x) is decreasing and then increasing we conclude that
x = 0 is a minimum. A graph of f(x) is given in Figure 66.
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Figure 66

Example 39.2
The graph of f ′(x) = e−x2

is given in Figure 67.

Figure 67

Sketch the graph of f(x) satisfying f(0) = 0.

Solution.
Since f ′(x) is always positive then the graph of f(x) is always increasing.
Now, for x < 0, f ′(x) is increasing so that f ′′(x) > 0 and therefore f(x) is
concave up. For x > 0 the function f ′(x) is decreasing and so f ′′(x) < 0.
That is, f(x) is concave down there. Thus, x = 0 is a point of inflection.
Finally, since limx→±∞ f ′(x) = 0 then the graph of f(x) levels off at both
ends. See Figure 68.

Figure 68
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Next, we will reconstruct numerically the antiderivative f by using the Fun-
damental Theorem of Calculus: If F ′(x) = f(x) then

∫ b
a f(x)dx = F (b) −

F (a). In particular, we have∫ b

a
f ′(x)dx = f(b)− f(a).

Example 39.3
Suppose that f ′(t) = t cos t and f(0) = 2. Find f(0.3).

Solution.
Let a = 0 in the FTC to obtain

f(b)− f(0) =
∫ b

0
t cos tdt.

But f(0) = 2 so the previous equation becomes

f(b) = 2 +
∫ b

0
t cos tdt.

Thus,

f(0.3) = 2 +
∫ 0.3

0
t cos tdt.

Using the TI83 command fnInt(x∗cosx, x, 0, 0.3) we find that
∫ 0.3
0 t cos tdt ≈

0.044 so that f(0.3) ≈ 2.044.

Now, recall that for f(x) ≥ 0 the definite integral
∫ b
a f(x)dx represents the

area under the graph of f(x) between the lines x = a and x = b. If the region
is below the x-axis then

∫ b
a f(x)dx is the negative of the area of that region.

Example 39.4
Figure 69 shows the graph of f ′(x). Suppose that f(−1) = −2. Find f(0), f(1),
and f(3).
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Figure 69

Solution.
By the FTC we have

f(b) = f(−1) +
∫ b

−1
f ′(x)dx.

Thus,
f(0) = f(−1) +

∫ 0
−1 f ′(x)dx

= −2 + 1
2
(1 · 2) = −1

f(1) = f(0) +
∫ 1
0 f ′(x)dx

= −1 + 1 · 2 = 1
f(3) = f(1) +

∫ 3
1 f ′(x)dx = 1 + 1

2
(2 · 2) = 3

where we compute
∫ t
a f ′(x)dx by determining the area between f ′ and the

horizontal axis for a ≤ x ≤ t.

Recommended Problems (pp. 294 - 6): 1, 3, 5, 9, 11, 17, 21,
22, 23, 24, 25.
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