Statistics 98/198: Actuarial Exam 1/P Preparatory Course, Fall 2014

Facilitator: Daniel Lee, lee.daniel707@gmail.com
Assistant: Tim Wang, t3wang@gmail.com
Sponsoring Faculty: Professor David Brillinger
Time and Location: Monday 5:00PM–7:00PM, 3 Evans
Office Hours: TBD
Prerequisites: Math 53; Stat 134 strongly recommended, but not required
Grade & Units: P/NP, 2

Overview:
This course is intended for students exploring the actuarial career, and is designed to prepare students for the Actuarial Exam 1/P, administered by the SOA and CAS. This course will cover topics listed in the exam syllabus provided by the SOA, including general probability, univariate and multivariate probability distributions, and more.

Course Text:
A Probability Course for the Actuaries: A Preparation for Exam P/1 by Marcel B. Finan (will be distributed via email)

Course Website:
We will be using Piazza as our course website. Everyone is encouraged to ask questions and answer questions on Piazza. Answering three or more questions will result in an extra 10% on the final exam.
piazza.com/berkeley/fall2014/exam1p/home

General Class Structure:
5:10–5:20: Warm-up questions and Q&A of homework due that day
5:20–7:00: Interactive lecture with examples and practice problems

Group Competition:
There will be two group competitions throughout the semester. Students will be divided into five different groups, and each group will compete against each other in a problem solving competition. In each round, one student from each team will be given one problem to solve, and the first one to present the correct solution will earn points for the team. The winning team will be determined by the amount of points earned by the end of the competition. The goal of this competition is to prepare students for solving exam-level problems under time pressure.

Midterm and Final:
There will be one midterm and one final for this course.
Midterm: 90 minutes, 15 questions
Final: 120 minutes, 20 questions
Attendance:
Students are allowed to have at most two absences throughout the semester, except on the days of the group competition, midterm, and final. Having three or more absences will result in a NP in the course.

Homework:
No late homework is accepted, but students are allowed to drop 2 homework assignments. Homework will be graded on the following scale:
2: Attempted every problem with detailed solution
1: Attempted at least half of the homework with detailed solution to the attempted problems
0: Otherwise

Grading Scale:
In order to pass the course, students must have all of the below:
1) No more than 2 absences and no absence on days of group competition and exams
2) No more than 2 missed or no-credit (0) homework
3) At least 60% on the final or at least 50% on the midterm and 50% on the final

Course Outline (Tentative):

<table>
<thead>
<tr>
<th>Date</th>
<th>Class #</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/8</td>
<td>Class 1</td>
<td>Introduction, Exam Logistics, Q&A, Basic Probability Laws, Conditional Probability</td>
</tr>
<tr>
<td>9/15</td>
<td>Class 2</td>
<td>Insurance Terms, Random Variable, Counting</td>
</tr>
<tr>
<td>9/22</td>
<td>Class 3</td>
<td>Discrete Distributions: Uniform, Binomial, Poisson, Geometric, Negative Binomial, Hypergeometric</td>
</tr>
<tr>
<td>9/29</td>
<td>Class 4</td>
<td>Continuous Distributions: PDF, CDF, Uniform, Normal, Exponential, Gamma</td>
</tr>
<tr>
<td>10/6</td>
<td>Class 5</td>
<td>Group Competition</td>
</tr>
<tr>
<td>10/13</td>
<td>Class 6</td>
<td>Midterm</td>
</tr>
<tr>
<td>10/20</td>
<td>Class 7</td>
<td>Joint/Marginal Distributions</td>
</tr>
<tr>
<td>10/27</td>
<td>Class 8</td>
<td>Conditional Expectation/Variancee, Covariance, Correlation</td>
</tr>
<tr>
<td>11/3</td>
<td>Class 9</td>
<td>Transformations</td>
</tr>
<tr>
<td>11/10</td>
<td>Class 10</td>
<td>Moment Generating Functions</td>
</tr>
<tr>
<td>11/17</td>
<td>Class 11</td>
<td>Final Review</td>
</tr>
<tr>
<td>11/24</td>
<td>Class 12</td>
<td>Group Competition</td>
</tr>
<tr>
<td>12/1</td>
<td>Class 13</td>
<td>Final</td>
</tr>
</tbody>
</table>