9 Solving Quasi-Linear First Order PDE via the Method of Characteristics

In this section we develop a method for finding the general solution of a quasi-linear first order partial differential equation

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{9.1}
\end{equation*}
$$

This method is called the method of characteristics or Lagrange's method. This method consists of transforming the PDE to a system of ODEs which can be solved and the found solution is transformed into a solution for the original PDE.
The method of characteristics relies on a geometrical argument. A visualization of a solution is an integral surface with equation $z=u(x, y)$. An alternative representation of this integral surface is

$$
F(x, y, z)=u(x, y)-z=0 .
$$

That is, an integral surface is a level surface of the function $F(x, y, z)$.
Now, recall from vector calculus that the gradient vector to a level surface at the point (x, y, z) is a normal vector to the surface at that point. That is, the gradient is a vector normal to the tangent plane to the surface at the point (x, y, z). Thus, the normal vector to the surface $F(x, y, z)=0$ is given by

$$
\vec{n}=\nabla F=F_{x} \vec{i}+F_{y} \vec{j}+F_{z} \vec{k}=u_{x} \vec{i}+u_{y} \vec{j}-\vec{k} .
$$

Because of the negative z - component, the vector \vec{n} is pointing downward. Now, equation (9.1) can be written as the dot product

$$
(a(x, y, u), b(x, y, u), c(x, y, u)) \cdot\left(u_{x}, u_{y},-1\right)=0
$$

or

$$
\vec{v} \cdot \vec{n}=0
$$

where $\vec{v}=a(x, y, u) \vec{i}+b(x, y, u) \vec{j}+c(x, y, u) \vec{k}$. Thus, \vec{n} is normal to \vec{v}. Since \vec{n} is normal to the surface $F(x, y, z)=0$, the vector \vec{v} must be tangential to the surface $F(x, y, z)=0$ and hence must lie in the tangent plane to the surface at every point. Thus, to find a solution to (9.1) we need to find an integral surface such that the surface is tangent to the vector \vec{v} at each of its point.

The required surface can be found as the union of integral curves, that is, curves that are tangent to \vec{v} at every point on the curve. If an integral curve has a parametrization

$$
\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+u(t) \vec{k}
$$

then the integral curve (i.e. the characteristic) is a solution to the ODE system

$$
\begin{equation*}
\frac{d x}{d t}=a(x, y, u), \frac{d y}{d t}=b(x, y, u), \frac{d u}{d t}=c(x, y, u) \tag{9.2}
\end{equation*}
$$

or in differential form

$$
\begin{equation*}
\frac{d x}{a(x, y, u)}=\frac{d y}{b(x, y, u)}=\frac{d u}{c(x, y, u)} . \tag{9.3}
\end{equation*}
$$

Equations (9.2) or (9.3) are called characteristic equations. Note that $u(t)=u(x(t), y(t))$ gives the values of u along a characteristic. Thus, along a characteristic, the PDE (9.1) degenerates to an ODE.

Example 9.1

Find the general solution of the PDE $y u u_{x}+x u u_{y}=x y$.

Solution.

The characteristic equations are $\frac{d x}{y u}=\frac{d y}{x u}=\frac{d u}{x y}$. Using the first two fractions we find $x^{2}-y^{2}=k_{1}$. Using the last two fractions we find $u^{2}-y^{2}=f\left(x^{2}-y^{2}\right)$. Hence, the general solution can be written as $u^{2}=y^{2}+f\left(x^{2}-y^{2}\right)$, where f is an arbitrary differentiable single variable function

Example 9.2

Find the general solution of the $\operatorname{PDE} x\left(y^{2}-u^{2}\right) u_{x}-y\left(u^{2}+x^{2}\right) y_{y}=\left(x^{2}+y^{2}\right) u$.

Solution.

The characteristic equations are $\frac{d x}{x\left(y^{2}-u^{2}\right)}=\frac{d y}{-y\left(u^{2}+x^{2}\right)}=\frac{d u}{\left(x^{2}+y^{2}\right) u}$. Using a property of proportions we can write

$$
\frac{x d x+y d y+u d u}{x^{2}\left(y^{2}-u^{2}\right)-y^{2}\left(u^{2}+x^{2}\right)+u^{2}\left(x^{2}+y^{2}\right)}=\frac{d u}{\left(x^{2}+y^{2}\right) u} .
$$

That is

$$
\frac{x d x+y d y+u d u}{0}=\frac{d u}{\left(x^{2}+y^{2}\right) u}
$$

or

$$
x d x+y d y+u d u=0
$$

Hence, we find $x^{2}+y^{2}+u^{2}=k_{1}$. Also,

$$
\frac{\frac{d x}{x}-\frac{d y}{y}}{y^{2}-u^{2}+u^{2}+x^{2}}=\frac{d u}{\left(x^{2}+y^{2}\right) u}
$$

or

$$
\frac{d x}{x}-\frac{d y}{y}=\frac{d u}{u}
$$

Hence, we find $\frac{y u}{x}=k_{2}$. The general solution is given by

$$
u(x, y)=\frac{x}{y} f\left(x^{2}+y^{2}+u^{2}\right)
$$

where f is an arbitrary differentiable single variable function

Practice Problem

Problem 9.1

Find the general solution of the $\mathrm{PDE} \ln (y+u) u_{x}+u_{y}=-1$.
Problem 9.2
Find the general solution of the $\operatorname{PDE} x(y-u) u_{x}+y(u-x) u_{y}=u(x-y)$.
Problem 9.3
Find the general solution of the PDE $u\left(u^{2}+x y\right)\left(x u_{x}-y u_{y}\right)=x^{4}$.
Problem 9.4
Find the general solution of the $\operatorname{PDE}(y+x u) u_{x}-(x+y u) u_{y}=x^{2}-y^{2}$.

Problem 9.5

Find the general solution of the $\operatorname{PDE}\left(y^{2}+u^{2}\right) u_{x}-x y u_{y}+x u=0$.
Problem 9.6
Find the general solution of the $\operatorname{PDE} u_{t}+u u_{x}=x$.

Problem 9.7

Find the general solution of the $\operatorname{PDE}(y-u) u_{x}+(u-x) u_{y}=x-y$.

Problem 9.8

Solve

$$
x\left(y^{2}+u\right) u_{x}-y\left(x^{2}+u\right) u_{y}=\left(x^{2}-y^{2}\right) u
$$

Problem 9.9
Solve

$$
\sqrt{1-x^{2}} u_{x}+u_{y}=0 .
$$

Problem 9.10
Solve

$$
u(x+y) u_{x}+u(x-y) u_{y}=x^{2}+y^{2} .
$$

