8 Linear First Order PDE: The One Dimensional Spatial Transport Equations

Modeling is the process of writing a differential equation to describe a physical situation. In this section we derive the one-dimensional spatial transport equation and use the method of characteristics to solve it.

Linear Transport Equation for Fluid Flows

We shall describe the transport of a dissolved chemical by water that is traveling with uniform velocity c through a long thin tube G with uniform cross section A. (The very same discussion applies to the description of the transport of gas by air moving through a pipe.) We assume the velocity $c>0$ is in the (rightward) positive direction of the x-axis. We will also assume that the concentration of the chemical is constant across the cross section A located at x so that the chemical changes only in the x-direction and thus the term one-dimensional spatial equation. This condition says that the quantity of the chemical in a portion of the tube is the same but it is traveling with time.
Let $u(x, t)$ be a continuously differentiable function denoting the concentration of the chemical (i.e. amount of chemical per unit volume) at position x and time t. Then at time t_{0}, the amount of chemical stored in a section of the tube between positions a and x_{0} (see Figure 8.1) is given by the definite integral

$$
\int_{a}^{x_{0}} A u\left(s, t_{0}\right) d s
$$

Direction of water flow

Figure 8.1

Since the water is flowing at a constant speed c, so at time $t_{0}+h$ the same quantity of chemical will exist in the portion of the tube between $a+c h$ and $x_{0}+c h$. That is,

$$
\int_{a}^{x_{0}} A u\left(s, t_{0}\right) d s=\int_{a+c h}^{x_{0}+c h} A u\left(s, t_{0}+h\right) d s
$$

Taking the derivative of both sides with respect to x_{0} and using the Fundamental Theorem of Calculus, we find

$$
u\left(x_{0}, t_{0}\right)=u\left(x_{0}+c h, t_{0}+h\right)
$$

Now, taking the derivative of this last equation with respect to h and using the chain rule, with $x=x_{0}+c h, t=t_{0}+h$, we find

$$
0=u_{t}\left(x_{0}+c h, t_{0}+h\right)+c u_{x}\left(x_{0}+c h, t_{0}+h\right) .
$$

Taking the limit of this last equation as h approaches 0 and using the fact that u_{t} and u_{x} are continuous, we find

$$
\begin{equation*}
u_{t}\left(x_{0}, t_{0}\right)+c u_{x}\left(x_{0}, t_{0}\right)=0 . \tag{8.1}
\end{equation*}
$$

Since x_{0} and t_{0} are arbitrary, Equation (8.1) is true for all (x, t). This equation is called the transport equation in one-dimensional space. It is a linear, homogeneous first order partial differential equation.
Note that (8.1) can be written in the form

$$
<1, c>\cdot<u_{t}, u_{x}>=0
$$

so that the left-hand side of (8.1) is the directional derivative of $u(t, x)$ at (t, x) in the direction of the vector $\langle 1, c\rangle$.

Solvability via the method of characteristics

We will use the method of characteristics discussed in Chapter 7 to solve (8.1). The characteristic equations are

$$
d t=\frac{d x}{c}=\frac{d u}{0} .
$$

Thus, to solve (8.1), we solve the system of ODEs

$$
\frac{d t}{d x}=\frac{1}{c}, \frac{d u}{d x}=0
$$

Solving the first equation, we find $x-c t=k_{1}$. Solving the second equation we find

$$
u(x, t)=k_{2}=f\left(k_{1}\right)=f(x-c t)
$$

One can check that this is indeed a solution to (8.1). Indeed, by using the chain rule one finds

$$
u_{t}=-c f^{\prime}(x-c t) \quad \text { and } \quad u_{x}=f^{\prime}(x-c t) .
$$

Hence, by substituting these results into the equation one finds

$$
u_{t}+c u_{x}=-c f^{\prime}(x-c t)+c f^{\prime}(x-c t)=0
$$

The solution $u(x, t)=f(x-c t)$ is called the right traveling wave, since the graph of the function $f(x-c t)$ at a given time t is the graph of $f(x)$ shifted to the right by the value $c t$. Thus, with growing time, the function $f(x)$ is moving without changes to the right at the speed c.

An initial value condition determines a unique solution to the transport equation as shown in the next example.

Example 8.1

Find the solution to $u_{t}-3 u_{x}=0, u(x, 0)=e^{-x^{2}}$.

Solution.

The characteristic equations lead to the ODEs

$$
\frac{d t}{d x}=-\frac{1}{3}, \frac{d u}{d x}=0
$$

Solving the first equation, we find $3 t+x=k_{1}$. From the second equation, we find $u(x, t)=k_{2}=f\left(k_{1}\right)=f(3 t+x)$. From the initial condition, $u(x, 0)=$ $f(x)=e^{-x^{2}}$. Hence,

$$
u(x, t)=e^{-(3 t+x)^{2}}
$$

Transport Equation with Decay

Recall from ODE that a function u is an exponential decay function if it satisfies the equation

$$
\frac{d u}{d t}=\lambda u, \lambda<0
$$

A transport equation with decay is an equation given by

$$
\begin{equation*}
u_{t}+c u_{x}+\lambda u=f(x, t) \tag{8.2}
\end{equation*}
$$

where $\lambda>0$ and c are constants and f is a given function representing external resources. Note that the decay is characterized by the term λu.
Note that (8.2) is a first order linear partial differential equation that can be solved by the method of characteristics by solving the chracteristic equations

$$
\frac{d x}{c}=\frac{d t}{1}=\frac{d u}{f(x, t)-\lambda u} .
$$

Example 8.2

Find the general solution of the transport equation

$$
u_{t}+u_{x}+u=t .
$$

Solution.

The characteristic equations are

$$
\frac{d x}{1}=\frac{d t}{1}=\frac{d u}{t-u} .
$$

From the equation $d x=d t$ we find $x-t=k_{1}$. Using a property of proportions we can write

$$
\frac{d t}{1}=\frac{d u}{t-u}=\frac{d t-d u}{1-t+u}=-\frac{d(1-t+u)}{1-t+u} .
$$

Thus, $1-t+u=k_{2} e^{-t}=f(x-t) e^{-t}$ or $u(x, t)=t-1+f(x-t) e^{-t}$ where f is a differentiable function of one variable

Practice Problems

Problem 8.1

Find the solution to $u_{t}+3 u_{x}=0, u(x, 0)=\sin x$.

Problem 8.2

Solve the equation $a u_{x}+b u_{y}+c u=0$.

Problem 8.3

Solve the equation $u_{x}+2 u_{y}=\cos (y-2 x)$ with the initial condition $u(0, y)=$ $f(y)$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given function.

Problem 8.4

Show that the initial value problem $u_{t}+u_{x}=x, u(x, x)=1$ has no solution.

Problem 8.5

Solve the transport equation $u_{t}+2 u_{x}=-3 u$ with initial condition $u(x, 0)=$ $\frac{1}{1+x^{2}}$.

Problem 8.6

Solve $u_{t}+u_{x}-3 u=t$ with initial condition $u(x, 0)=x^{2}$.

Problem 8.7

Show that the decay term λu in the transport equation with decay

$$
u_{t}+c u_{x}+\lambda u=0
$$

can be eliminated by the substitution $w=u e^{\lambda t}$.
Problem 8.8 (Well-Posed)
Let u be the unique solution to the IVP

$$
\begin{gathered}
u_{t}+c u_{x}=0 \\
u(x, 0)=f(x)
\end{gathered}
$$

and v be the unique solution to the IVP

$$
\begin{gathered}
u_{t}+c u_{x}=0 \\
u(x, 0)=g(x)
\end{gathered}
$$

where f and g are continuously differentiable functions.
(a) Show that $w(x, t)=u(x, t)-v(x, t)$ is the unique solution to the IVP

$$
\begin{gathered}
u_{t}+c u_{x}=0 \\
u(x, 0)=f(x)-g(x)
\end{gathered}
$$

(b) Write an explicit formula for w in terms of f and g.
(c) Use (b) to conclude that the transport problem is well-posed. That is, a small change in the initial data leads to a small change in the solution.

Problem 8.9

Solve the initial boundary value problem

$$
\begin{gathered}
u_{t}+c u_{x}=-\lambda u, x>0, t>0 \\
u(x, 0)=0, u(0, t)=g(t), t>0
\end{gathered}
$$

Problem 8.10

Solve the first-order equation $2 u_{t}+3 u_{x}=0$ with the initial condition $u(x, 0)=$ $\sin x$.

Problem 8.11

Solve the PDE $u_{x}+u_{y}=1$.

