7 Solvability of Semi-linear First Order PDEs

In this section we discuss the solvability of the semi-linear first order PDE

$$a(x,y)u_x + b(x,y)u_y = f(x,y,u)$$
(7.1)

via the **method of characteristics**.

To solve (7.1), we proceed as follows. Suppose we have found a solution u(x, y) to (7.1). This solution may be interpreted geometrically as a surface in (x, y, z) space called the **integral surface** where z = u(x, y). This integral surface can be viewed as the level surface of the function

$$F(x, y, z) = u(x, y) - z = 0.$$

Then equation (7.1) can be written as the dot product

$$\vec{v} \cdot \vec{n} = 0 \tag{7.2}$$

where $\vec{v} = \langle a, b, f \rangle$ is the **characteristic direction** and $\vec{n} = \nabla F(x, y, z) = \langle u_x, u_y, -1 \rangle$. Note that \vec{n} is normal to the surface F(x, y, z) = 0. Hence, \vec{n} is normal to \vec{v} and this implies that \vec{v} is tangent to the surface z = u(x, y) at (x, y, z). So our task to finding a solution to (7.1) is equivalent to finding a surface \mathcal{S} such that at every point on the surface the vector

$$\vec{v} = a\vec{i} + b\vec{j} + f(x, y, u)\vec{k}.$$

is tangent to the surface. How do we construct such a surface? The idea is to find the integral curves of the vector field \vec{v} (see Section 6.2) and then patch all these curves together to obtain the desired surface.

To this end, we start first by constructing a curve Γ parametrized by t such that at each point of Γ the vector \vec{v} is tangent to Γ . A parametrization of this curve is given by the vector function

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + u(t)\vec{k}.$$

Then the tangent vector is

$$\vec{r'}(t) = \frac{d}{dt}(\vec{r}(t)) = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{du}{dt}\vec{k}.$$

Hence, the vectors $\vec{r'}(t)$ and \vec{v} are parallel so these two vectors are proportional and this leads to the ODE system

$$\frac{\frac{dx}{dt}}{a} = \frac{\frac{dy}{dt}}{b} = \frac{\frac{du}{dt}}{f(x, y, u)}$$
(7.3)

or in differential form

$$\frac{dx}{a} = \frac{dy}{b} = \frac{du}{f(x, y, u)}.$$
(7.4)

By solving the system (7.3) or (7.4), we are assured that the vector \vec{v} is tangent to the curve Γ which in turn lies in the solution surface S. In our context, integral curves are called **characteristic curves** or simply **characteristics** of the PDE (7.1). We call (7.3) the **characteristic equations**. The projection of Γ into the xy-plane is called the **projected characteristic curve**.

Once we have found the characteristic curves, the surface S is the union of these characteristic curves. In summary, by introducing these characteristic equations, we have reduced our partial differential equation to a system of ordinary differential equations. We can use ODE theory to solve the characteristic equations, then piece together these characteristic curves to form a surface. Such a surface will provide us with a solution to our PDE.

Remark 7.1

Solving $\frac{dy}{dx} = \frac{b}{a}$ one obtains the general solution $h(x, y) = k_1$ where k_1 is constant. Likewise, solving $\frac{du}{dx} = \frac{f}{a}$ one obtains the general solution $j(x, y, u) = k_2$ where k_2 is a constant. The constant k_2 is a function of k_1 . For the sake of discussion, suppose that $h(x, y) = k_1$ can be expressed as $y = g(x, k_1)$. Then, the y in $\frac{du}{dx} = \frac{f}{a}$ is being replaced by $g(x, k_1)$ so that the constant in $j(x, y, u) = k_2$ will depend on k_1 .

Example 7.1

Find the general solution to $au_x + bu_y = 0$ where a and b are constants with $a \neq 0$.

Solution.

From (7.3) we can write $\frac{dy}{dx} = \frac{b}{a}$ which yields $bx - ay = k_1$ for some arbitrary constant k_1 . From $\frac{du}{dx} = 0$ we find $u(x, y) = k_2$ where k_2 is a constant. That is, u(x, y) is constant on Γ . Since $(0, -\frac{k_1}{a}, k_2)$ is on Γ , we have

$$u(x,y) = u(0, -\frac{k_1}{a}) = k_2$$

which shows that k_2 is a function of k_1 . Hence,

$$u(x,y) = f(k_1) = f(bx - ay)$$

where f is a differentiable function in one variable

In the next example, we show how the initial value problem for the PDE determines the function f.

Example 7.2

Find the unique solution to $au_x + bu_y = 0$, where a and b are constants with $a \neq 0$, with the initial condition u(x, 0) = g(x).

Solution.

From the previous example, we found u(x, y) = f(bx - ay) for some differentiable function f. Since u(x, 0) = g(x), we find g(x) = f(bx) or $f(x) = g\left(\frac{x}{b}\right)$ assuming that $b \neq 0$. Thus,

$$u(x,y) = g\left(x - \frac{a}{b}y\right) \blacksquare$$

Example 7.3

Find the solution to $-3u_x + u_y = 0$, $u(x, 0) = e^{-x^2}$.

Solution.

We have a = -3, b = 1 and $g(x) = e^{-x^2}$. The unique solution is given by

$$u(x,y) = e^{-(x+3y)^2} \blacksquare$$

Example 7.4

Find the general solution of the equation

$$xu_x + yu_y = xe^{-u}, \ x > 0.$$

Solution.

We have a(x, y) = x, b(x, y) = y, and $f(x, y, u) = xe^{-u}$. So we have to solve the system

$$\frac{dy}{dx} = \frac{y}{x}, \ \frac{du}{dx} = e^{-u}.$$

From the first equation, we can use the separation of variables method to find $y = k_1 x$ for some constant k_1 . Solving the second equation by the method of separation of variables, we find

$$e^u - x = k_2.$$

But $k_2 = g(k_1)$ so that

$$e^u - x = g(k_1) = g\left(\frac{y}{x}\right)$$

where g is a differentiable function of one variable

Example 7.5

Find the general solution of the equation

$$u_x + u_y - u = y.$$

Solution.

The characteristic equations are

$$\frac{dx}{1} = \frac{dy}{1} = \frac{du}{u+y} = \frac{d(u+y+1)}{u+y+1}.$$

Solving the equation $\frac{dy}{dx} = 1$ we find $y - x = k_1$. Solving the equation $dx = \frac{d(u+y+1)}{u+y+1}$, we find $u + y + 1 = k_2 e^x = f(y - x)e^x$, where f is a differentiable function of one variable. Hence,

$$u = -(1+y) + f(y-x)e^x \blacksquare$$

Example 7.6

Find the general solution to $x^2u_x + y^2u_y = (x+y)u$.

Solution.

Using properties of proportions¹ we have

$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{du}{(x+y)u} = \frac{dx - dy}{x^2 - y^2}.$$

¹If
$$\frac{a}{b} = \frac{c}{d}$$
 then $\frac{a\pm b}{b} = \frac{c\pm d}{d}$. Also, $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{\alpha a + \beta c + \gamma e}{\alpha b + \beta d + \gamma f}$

Solving $\frac{dy}{dx} = \frac{y^2}{x^2}$ by the method of separation of variables we find $\frac{1}{x} - \frac{1}{y} = k_1$. From the equation $\frac{du}{(x+y)u} = \frac{d(x-y)}{x^2-y^2}$ we find

$$\frac{du}{u} = \frac{d(x-y)}{x-y}$$

which implies

$$u = k_2(x - y) = f\left(\frac{1}{x} - \frac{1}{y}\right)(x - y) \blacksquare$$

Example 7.7

Find the solution satisfying $yu_x + xu_y = x^2 + y^2$ subject to the conditions $u(x,0) = 1 + x^2$ and $u(0,y) = 1 + y^2$.

Solution.

Solving the equation $\frac{dy}{dx} = \frac{x}{y}$ we find $x^2 - y^2 = k_1$. On the other hand, we have

$$du = y^{-1}(x^2 + y^2)dx$$

= $ydx + x^2y^{-1}dx$
= $ydx + x^2y^{-1}\left(\frac{y}{x}dy\right)$
= $ydx + xdy = d(xy).$

Hence,

$$u(x,y) = xy + f(x^2 - y^2).$$

From $u(x,0) = 1 + x^2$ we find f(x) = 1 + x, $x \ge 0$. From $u(0,y) = 1 + y^2$ we find f(y) = 1 - y, $y \le 0$. Hence, f(x) = 1 + |x| and

$$u(x,y) = xy + |x^2 - y^2| \blacksquare$$

Remark 7.2

The method of characteristics discussed in this section applies as well to any quasi-linear first order PDE. See Chapter 9.

Practice Problems

Problem 7.1 Solve $u_x + yu_y = y^2$ with the initial condition $u(0, y) = \sin y$.

Problem 7.2 Solve $u_x + yu_y = u^2$ with the initial condition $u(0, y) = \sin y$.

Problem 7.3 Find the general solution of $yu_x - xu_y = 2xyu$.

Problem 7.4 Find the integral surface of the IVP: $xu_x + yu_y = u$, $u(x, 1) = 2 + e^{-|x|}$.

Problem 7.5 Find the unique solution to $4u_x + u_y = u^2$, $u(x, 0) = \frac{1}{1+x^2}$.

Problem 7.6 Find the unique solution to $e^{2y}u_x + xu_y = xu^2$, $u(x, 0) = e^{x^2}$.

Problem 7.7 Find the unique solution to $xu_x + u_y = 3x - u$, $u(x, 0) = \tan^{-1} x$.

Problem 7.8 Solve: $xu_x - yu_y = 0$, $u(x, x) = x^4$.

Problem 7.9 Find the general solution of $yu_x - 3x^2yu_y = 3x^2u$.

Problem 7.10

Find u(x, y) that satisfies $yu_x + xu_y = 4xy^3$ subject to the boundary conditions $u(x, 0) = -x^4$ and u(0, y) = 0.

6