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7 Solvability of Semi-linear First Order PDEs

In this section we discuss the solvability of the semi-linear first order PDE

a(x, y)ux + b(x, y)uy = f(x, y, u) (7.1)

via the method of characteristics.
To solve (7.1), we proceed as follows. Suppose we have found a solution
u(x, y) to (7.1). This solution may be interpreted geometrically as a surface
in (x, y, z) space called the integral surface where z = u(x, y). This integral
surface can be viewed as the level surface of the function

F (x, y, z) = u(x, y)− z = 0.

Then equation (7.1) can be written as the dot product

~v · ~n = 0 (7.2)

where ~v =< a, b, f > is the characteristic direction and ~n = ∇F (x, y, z) =<
ux, uy,−1 > . Note that ~n is normal to the surface F (x, y, z) = 0. Hence, ~n
is normal to ~v and this implies that ~v is tangent to the surface z = u(x, y)
at (x, y, z). So our task to finding a solution to (7.1) is equivalent to finding
a surface S such that at every point on the surface the vector

~v = a~i + b~j + f(x, y, u)~k.

is tangent to the surface. How do we construct such a surface? The idea
is to find the integral curves of the vector field ~v (see Section 6.2) and then
patch all these curves together to obtain the desired surface.
To this end, we start first by constructing a curve Γ parametrized by t such
that at each point of Γ the vector ~v is tangent to Γ. A parametrization of
this curve is given by the vector function

~r(t) = x(t)~i + y(t)~j + u(t)~k.

Then the tangent vector is

~r′(t) =
d

dt
(~r(t)) =

dx

dt
~i +

dy

dt
~j +

du

dt
~k.
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Hence, the vectors ~r′(t) and ~v are parallel so these two vectors are propor-
tional and this leads to the ODE system

dx
dt

a
=

dy
dt

b
=

du
dt

f(x, y, u)
(7.3)

or in differential form
dx

a
=

dy

b
=

du

f(x, y, u)
. (7.4)

By solving the system (7.3) or (7.4), we are assured that the vector ~v is
tangent to the curve Γ which in turn lies in the solution surface S. In our
context, integral curves are called characteristic curves or simply char-
acteristics of the PDE (7.1). We call (7.3) the characteristic equations.
The projection of Γ into the xy−plane is called the projected character-
istic curve.
Once we have found the characteristic curves, the surface S is the union of
these characteristic curves. In summary, by introducing these characteristic
equations, we have reduced our partial differential equation to a system of
ordinary differential equations. We can use ODE theory to solve the charac-
teristic equations, then piece together these characteristic curves to form a
surface. Such a surface will provide us with a solution to our PDE.

Remark 7.1
Solving dy

dx
= b

a
one obtains the general solution h(x, y) = k1 where k1

is constant. Likewise, solving du
dx

= f
a

one obtains the general solution
j(x, y, u) = k2 where k2 is a constant. The constant k2 is a function of
k1. For the sake of discussion, suppose that h(x, y) = k1 can be expressed as
y = g(x, k1). Then, the y in du

dx
= f

a
is being replaced by g(x, k1) so that the

constant in j(x, y, u) = k2 will depend on k1.

Example 7.1
Find the general solution to aux + buy = 0 where a and b are constants with
a 6= 0.

Solution.
From (7.3) we can write dy

dx
= b

a
which yields bx− ay = k1 for some arbitrary

constant k1. From du
dx

= 0 we find u(x, y) = k2 where k2 is a constant. That

is, u(x, y) is constant on Γ. Since (0,−k1
a
, k2) is on Γ, we have

u(x, y) = u(0,−k1
a

) = k2
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which shows that k2 is a function of k1. Hence,

u(x, y) = f(k1) = f(bx− ay)

where f is a differentiable function in one variable

In the next example, we show how the initial value problem for the PDE
determines the function f.

Example 7.2
Find the unique solution to aux + buy = 0, where a and b are constants with
a 6= 0, with the initial condition u(x, 0) = g(x).

Solution.
From the previous example, we found u(x, y) = f(bx−ay) for some differen-
tiable function f. Since u(x, 0) = g(x), we find g(x) = f(bx) or f(x) = g

(
x
b

)
assuming that b 6= 0. Thus,

u(x, y) = g
(
x− a

b
y
)

Example 7.3
Find the solution to −3ux + uy = 0, u(x, 0) = e−x

2
.

Solution.
We have a = −3, b = 1 and g(x) = e−x

2
. The unique solution is given by

u(x, y) = e−(x+3y)2

Example 7.4
Find the general solution of the equation

xux + yuy = xe−u, x > 0.

Solution.
We have a(x, y) = x, b(x, y) = y, and f(x, y, u) = xe−u. So we have to solve
the system

dy

dx
=

y

x
,
du

dx
= e−u.
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From the first equation, we can use the separation of variables method to find
y = k1x for some constant k1. Solving the second equation by the method of
separation of variables, we find

eu − x = k2.

But k2 = g(k1) so that

eu − x = g(k1) = g
(y
x

)
where g is a differentiable function of one variable

Example 7.5
Find the general solution of the equation

ux + uy − u = y.

Solution.
The characteristic equations are

dx

1
=

dy

1
=

du

u + y
=

d(u + y + 1)

u + y + 1
.

Solving the equation dy
dx

= 1 we find y − x = k1. Solving the equation dx =
d(u+y+1)
u+y+1

, we find u + y + 1 = k2e
x = f(y − x)ex, where f is a differentiable

function of one variable. Hence,

u = −(1 + y) + f(y − x)ex

Example 7.6
Find the general solution to x2ux + y2uy = (x + y)u.

Solution.
Using properties of proportions1 we have

dx

x2
=

dy

y2
=

du

(x + y)u
=

dx− dy

x2 − y2
.

1If ab = c
d then a±b

b = c±d
d . Also, ab = c

d = e
f = αa+βc+γe

αb+βd+γf .
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Solving dy
dx

= y2

x2 by the method of separation of variables we find 1
x
− 1

y
= k1.

From the equation du
(x+y)u

= d(x−y)
x2−y2 we find

du

u
=

d(x− y)

x− y

which implies

u = k2(x− y) = f

(
1

x
− 1

y

)
(x− y)

Example 7.7
Find the solution satisfying yux + xuy = x2 + y2 subject to the conditions
u(x, 0) = 1 + x2 and u(0, y) = 1 + y2.

Solution.
Solving the equation dy

dx
= x

y
we find x2 − y2 = k1. On the other hand, we

have

du =y−1(x2 + y2)dx

=ydx + x2y−1dx

=ydx + x2y−1
(y
x
dy

)
=ydx + xdy = d(xy).

Hence,
u(x, y) = xy + f(x2 − y2).

From u(x, 0) = 1 + x2 we find f(x) = 1 + x, x ≥ 0. From u(0, y) = 1 + y2 we
find f(y) = 1− y, y ≤ 0. Hence, f(x) = 1 + |x| and

u(x, y) = xy + |x2 − y2|

Remark 7.2
The method of characteristics discussed in this section applies as well to any
quasi-linear first order PDE. See Chapter 9.
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Practice Problems

Problem 7.1
Solve ux + yuy = y2 with the initial condition u(0, y) = sin y.

Problem 7.2
Solve ux + yuy = u2 with the initial condition u(0, y) = sin y.

Problem 7.3
Find the general solution of yux − xuy = 2xyu.

Problem 7.4
Find the integral surface of the IVP: xux + yuy = u, u(x, 1) = 2 + e−|x|.

Problem 7.5
Find the unique solution to 4ux + uy = u2, u(x, 0) = 1

1+x2 .

Problem 7.6
Find the unique solution to e2yux + xuy = xu2, u(x, 0) = ex

2
.

Problem 7.7
Find the unique solution to xux + uy = 3x− u, u(x, 0) = tan−1 x.

Problem 7.8
Solve: xux − yuy = 0, u(x, x) = x4.

Problem 7.9
Find the general solution of yux − 3x2yuy = 3x2u.

Problem 7.10
Find u(x, y) that satisfies yux + xuy = 4xy3 subject to the boundary condi-
tions u(x, 0) = −x4 and u(0, y) = 0.
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