7 Solvability of Semi-linear First Order PDEs

In this section we discuss the solvability of the semi-linear first order PDE

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}=f(x, y, u) \tag{7.1}
\end{equation*}
$$

via the method of characteristics.
To solve (7.1), we proceed as follows. Suppose we have found a solution $u(x, y)$ to (7.1). This solution may be interpreted geometrically as a surface in (x, y, z) space called the integral surface where $z=u(x, y)$. This integral surface can be viewed as the level surface of the function

$$
F(x, y, z)=u(x, y)-z=0 .
$$

Then equation (7.1) can be written as the dot product

$$
\begin{equation*}
\vec{v} \cdot \vec{n}=0 \tag{7.2}
\end{equation*}
$$

where $\vec{v}=<a, b, f>$ is the characteristic direction and $\vec{n}=\nabla F(x, y, z)=<$ $u_{x}, u_{y},-1>$. Note that \vec{n} is normal to the surface $F(x, y, z)=0$. Hence, \vec{n} is normal to \vec{v} and this implies that \vec{v} is tangent to the surface $z=u(x, y)$ at (x, y, z). So our task to finding a solution to (7.1) is equivalent to finding a surface \mathcal{S} such that at every point on the surface the vector

$$
\vec{v}=a \vec{i}+b \vec{j}+f(x, y, u) \vec{k} .
$$

is tangent to the surface. How do we construct such a surface? The idea is to find the integral curves of the vector field \vec{v} (see Section 6.2) and then patch all these curves together to obtain the desired surface.
To this end, we start first by constructing a curve Γ parametrized by t such that at each point of Γ the vector \vec{v} is tangent to Γ. A parametrization of this curve is given by the vector function

$$
\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+u(t) \vec{k} .
$$

Then the tangent vector is

$$
\overrightarrow{r^{\prime}}(t)=\frac{d}{d t}(\vec{r}(t))=\frac{d x}{d t} \vec{i}+\frac{d y}{d t} \vec{j}+\frac{d u}{d t} \vec{k} .
$$

Hence, the vectors $\overrightarrow{r^{\prime}}(t)$ and \vec{v} are parallel so these two vectors are proportional and this leads to the ODE system

$$
\begin{equation*}
\frac{\frac{d x}{d t}}{a}=\frac{\frac{d y}{d t}}{b}=\frac{\frac{d u}{d t}}{f(x, y, u)} \tag{7.3}
\end{equation*}
$$

or in differential form

$$
\begin{equation*}
\frac{d x}{a}=\frac{d y}{b}=\frac{d u}{f(x, y, u)} \tag{7.4}
\end{equation*}
$$

By solving the system (7.3) or (7.4), we are assured that the vector \vec{v} is tangent to the curve Γ which in turn lies in the solution surface \mathcal{S}. In our context, integral curves are called characteristic curves or simply characteristics of the PDE (7.1). We call (7.3) the characteristic equations. The projection of Γ into the $x y$-plane is called the projected characteristic curve.
Once we have found the characteristic curves, the surface \mathcal{S} is the union of these characteristic curves. In summary, by introducing these characteristic equations, we have reduced our partial differential equation to a system of ordinary differential equations. We can use ODE theory to solve the characteristic equations, then piece together these characteristic curves to form a surface. Such a surface will provide us with a solution to our PDE.

Remark 7.1

Solving $\frac{d y}{d x}=\frac{b}{a}$ one obtains the general solution $h(x, y)=k_{1}$ where k_{1} is constant. Likewise, solving $\frac{d u}{d x}=\frac{f}{a}$ one obtains the general solution $j(x, y, u)=k_{2}$ where k_{2} is a constant. The constant k_{2} is a function of k_{1}. For the sake of discussion, suppose that $h(x, y)=k_{1}$ can be expressed as $y=g\left(x, k_{1}\right)$. Then, the y in $\frac{d u}{d x}=\frac{f}{a}$ is being replaced by $g\left(x, k_{1}\right)$ so that the constant in $j(x, y, u)=k_{2}$ will depend on k_{1}.

Example 7.1

Find the general solution to $a u_{x}+b u_{y}=0$ where a and b are constants with $a \neq 0$.

Solution.

From (7.3) we can write $\frac{d y}{d x}=\frac{b}{a}$ which yields $b x-a y=k_{1}$ for some arbitrary constant k_{1}. From $\frac{d u}{d x}=0$ we find $u(x, y)=k_{2}$ where k_{2} is a constant. That is, $u(x, y)$ is constant on Γ. Since $\left(0,-\frac{k_{1}}{a}, k_{2}\right)$ is on Γ, we have

$$
u(x, y)=u\left(0,-\frac{k_{1}}{a}\right)=k_{2}
$$

which shows that k_{2} is a function of k_{1}. Hence,

$$
u(x, y)=f\left(k_{1}\right)=f(b x-a y)
$$

where f is a differentiable function in one variable
In the next example, we show how the initial value problem for the PDE determines the function f.

Example 7.2

Find the unique solution to $a u_{x}+b u_{y}=0$, where a and b are constants with $a \neq 0$, with the initial condition $u(x, 0)=g(x)$.

Solution.

From the previous example, we found $u(x, y)=f(b x-a y)$ for some differentiable function f. Since $u(x, 0)=g(x)$, we find $g(x)=f(b x)$ or $f(x)=g\left(\frac{x}{b}\right)$ assuming that $b \neq 0$. Thus,

$$
u(x, y)=g\left(x-\frac{a}{b} y\right)
$$

Example 7.3

Find the solution to $-3 u_{x}+u_{y}=0, u(x, 0)=e^{-x^{2}}$.

Solution.

We have $a=-3, b=1$ and $g(x)=e^{-x^{2}}$. The unique solution is given by

$$
u(x, y)=e^{-(x+3 y)^{2}} \square
$$

Example 7.4

Find the general solution of the equation

$$
x u_{x}+y u_{y}=x e^{-u}, x>0 .
$$

Solution.

We have $a(x, y)=x, b(x, y)=y$, and $f(x, y, u)=x e^{-u}$. So we have to solve the system

$$
\frac{d y}{d x}=\frac{y}{x}, \frac{d u}{d x}=e^{-u}
$$

From the first equation, we can use the separation of variables method to find $y=k_{1} x$ for some constant k_{1}. Solving the second equation by the method of separation of variables, we find

$$
e^{u}-x=k_{2}
$$

But $k_{2}=g\left(k_{1}\right)$ so that

$$
e^{u}-x=g\left(k_{1}\right)=g\left(\frac{y}{x}\right)
$$

where g is a differentiable function of one variable

Example 7.5

Find the general solution of the equation

$$
u_{x}+u_{y}-u=y
$$

Solution.

The characteristic equations are

$$
\frac{d x}{1}=\frac{d y}{1}=\frac{d u}{u+y}=\frac{d(u+y+1)}{u+y+1} .
$$

Solving the equation $\frac{d y}{d x}=1$ we find $y-x=k_{1}$. Solving the equation $d x=$ $\frac{d(u+y+1)}{u+y+1}$, we find $u+y+1=k_{2} e^{x}=f(y-x) e^{x}$, where f is a differentiable function of one variable. Hence,

$$
u=-(1+y)+f(y-x) e^{x}
$$

Example 7.6

Find the general solution to $x^{2} u_{x}+y^{2} u_{y}=(x+y) u$.

Solution.

Using properties of proportions ${ }^{1}$ we have

$$
\frac{d x}{x^{2}}=\frac{d y}{y^{2}}=\frac{d u}{(x+y) u}=\frac{d x-d y}{x^{2}-y^{2}} .
$$

[^0]Solving $\frac{d y}{d x}=\frac{y^{2}}{x^{2}}$ by the method of separation of variables we find $\frac{1}{x}-\frac{1}{y}=k_{1}$. From the equation $\frac{d u}{(x+y) u}=\frac{d(x-y)}{x^{2}-y^{2}}$ we find

$$
\frac{d u}{u}=\frac{d(x-y)}{x-y}
$$

which implies

$$
u=k_{2}(x-y)=f\left(\frac{1}{x}-\frac{1}{y}\right)(x-y)
$$

Example 7.7

Find the solution satisfying $y u_{x}+x u_{y}=x^{2}+y^{2}$ subject to the conditions $u(x, 0)=1+x^{2}$ and $u(0, y)=1+y^{2}$.

Solution.

Solving the equation $\frac{d y}{d x}=\frac{x}{y}$ we find $x^{2}-y^{2}=k_{1}$. On the other hand, we have

$$
\begin{aligned}
d u & =y^{-1}\left(x^{2}+y^{2}\right) d x \\
& =y d x+x^{2} y^{-1} d x \\
& =y d x+x^{2} y^{-1}\left(\frac{y}{x} d y\right) \\
& =y d x+x d y=d(x y) .
\end{aligned}
$$

Hence,

$$
u(x, y)=x y+f\left(x^{2}-y^{2}\right)
$$

From $u(x, 0)=1+x^{2}$ we find $f(x)=1+x, x \geq 0$. From $u(0, y)=1+y^{2}$ we find $f(y)=1-y, y \leq 0$. Hence, $f(x)=1+|x|$ and

$$
u(x, y)=x y+\left|x^{2}-y^{2}\right|
$$

Remark 7.2

The method of characteristics discussed in this section applies as well to any quasi-linear first order PDE. See Chapter 9.

Practice Problems

Problem 7.1

Solve $u_{x}+y u_{y}=y^{2}$ with the initial condition $u(0, y)=\sin y$.
Problem 7.2
Solve $u_{x}+y u_{y}=u^{2}$ with the initial condition $u(0, y)=\sin y$.

Problem 7.3

Find the general solution of $y u_{x}-x u_{y}=2 x y u$.
Problem 7.4
Find the integral surface of the IVP: $x u_{x}+y u_{y}=u, u(x, 1)=2+e^{-|x|}$.

Problem 7.5

Find the unique solution to $4 u_{x}+u_{y}=u^{2}, u(x, 0)=\frac{1}{1+x^{2}}$.
Problem 7.6
Find the unique solution to $e^{2 y} u_{x}+x u_{y}=x u^{2}, u(x, 0)=e^{x^{2}}$.

Problem 7.7

Find the unique solution to $x u_{x}+u_{y}=3 x-u, u(x, 0)=\tan ^{-1} x$.

Problem 7.8

Solve: $x u_{x}-y u_{y}=0, u(x, x)=x^{4}$.
Problem 7.9
Find the general solution of $y u_{x}-3 x^{2} y u_{y}=3 x^{2} u$.
Problem 7.10
Find $u(x, y)$ that satisfies $y u_{x}+x u_{y}=4 x y^{3}$ subject to the boundary conditions $u(x, 0)=-x^{4}$ and $u(0, y)=0$.

[^0]: ${ }^{1}$ If $\frac{a}{b}=\frac{c}{d}$ then $\frac{a \pm b}{b}=\frac{c \pm d}{d}$. Also, $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{\alpha a+\beta c+\gamma e}{\alpha b+\beta d+\gamma f}$.

