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6 A Review of Multivariable Calculus

In this section, we recall some concepts from vector calculus that we en-
counter later in the book.

6.1 Multiplication of Vectors: The Scalar or Dot Prod-
uct

Is there such thing as multiplying a vector by another vector? The answer
is yes. As a matter of fact there are two types of vector multiplication. The
first one is known as scalar or dot product1 and produces a scalar; the
second is known as the vector or cross product and produces a vector. In
this section we will discuss the former one leaving the latter one for the next
section.
One of the motivation for using the dot product is the physical situation to
which it applies, namely that of computing the work done on an object by a
given force over a given distance, as shown in Figure 6.1.1.

Figure 6.1.1

Indeed, the work W is given by the expression

W = ||~F || ||
−→
PQ|| cos θ

where ||~F || cos θ is the component of ~F in the direction of
−→
PQ.

Thus, we define the dot product of two vectors ~u and ~v to be the number

~u · ~v = ||~u|| ||~v|| cos θ, 0 ≤ θ ≤ π

1Also called inner product.
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where θ is the angle between the two vectors as shown in Figure 6.1.2.

Figure 6.1.2

The above definition is the geometric definition of the dot product. We
next provide an algebraic way for computing the dot product. Indeed, let
~u = u1~i+ u2~j + u3~k and ~v = v1~i+ v2~j + v3~k. Then ~v− ~u = (v1− u1)~i+ (v2−
u2)~j+(v3−u3)~k. Moreover, we have ||~u||2 = u21 +u22 +u23, ||~v||2 = v21 +v22 +v23
and

||~v − ~u||2 =(v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

=v21 − 2v1u1 + u21 + v22 − 2v2u2 + u22 + v23 − 2v3u3 + u23.

Now, applying the Law of Cosines to Figure 6.1.3 we can write

||~v − ~u||2 = ||~u||2 + ||~v||2 − 2||~u|| ||~v|| cos θ.

Thus, by substitution we obtain

v21−2v1u1+u
2
1+v

2
2−2v2u2+u

2
2+v

2
3−2v3u3+u

2
3 = u21+u

2
2+u

2
3+v

2
1+v22+v23−2||~u|| ||~v|| cos θ

or
||~u|| ||~v|| cos θ = u1v1 + u2v2 + u3v3

so that we can define the dot product algebraically by

~u · ~v = u1v1 + u2v2 + u3v3.

Figure 6.1.3
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Example 6.1.1
Compute the dot product of ~u = 1√

2
~i + 1√

2
~j + 1√

2
~k and ~v = 1

2
~i + 1

2
~j + ~k and

the angle between these vectors.

Solution.
We have

~u · ~v =
1√
2
· 1

2
+

1√
2
· 1

2
+

1√
2
· 1 =

1

2
√

2
+

1

2
√

2
+

1√
2

=
√

2.

We also have

||~u||2 =

(
1√
2

)2

+

(
1√
2

)2

+

(
1√
2

)2

=
3

2

||~v||2 =

(
1

2

)2

+

(
1

2

)2

+ 1 =
3

2
.

Thus,

cos θ =
~u · ~v
||~u|| ||~v||

=
2
√

2

3
.

Hence,

θ = cos−1

(
2
√

2

3

)
≈ 0.34 rad ≈ 19.5◦

Remark 6.1.1
The algebraic definition of the dot product extends to vectors with any num-
ber of components.

Next, we discuss few properties of the dot product.

Theorem 6.1.1
For any vectors ~u,~v, and ~w and any scalar λ we have
(i) Commutative law: ~u · ~v = ~v · ~u.
(ii) Distributive law: (~u+ ~v) · ~w = ~u · ~w + ~v · ~w.
(iii) ~u · (λ~v) = (λ~u) · ~v = λ(~u · ~v).
(iv) Magnitude: ||~u||2 = ~u · ~u.
(v) Two nonzero vectors ~u and ~v are orthogonal or perpendicular if and
only if ~u · ~v = 0.
(vi)) Two nonzero vectors ~u and ~v are parallel if and only if ~u·~v = ±||~u|| ||~v||.
(vii) ~0 · ~v = ~0.
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Proof.
Write ~u = u1~i + u2~j + u3~k, ~v = v1~i + v2~j + v3~k, and ~w = w1

~i + w2
~j + w3

~k.
Then
(i) ~u · ~v = u1v1 + u2v2 + u2v3 = v1u1 + v2u2 + v3u3 = ~v · ~u since product of
numbers is commutative.
(ii) (~u+ ~v) · ~w = ((u1 + v1)~i+ (u2 + v2)~j + (u2 + v3)~k) · (w1

~i+w2
~j +w3

~k) =
(u1 +v1)w1 +(u2 +v2)w2 +(u3 +v3)w3 = u1w1 +u2w2 +u3w3 +v1w1 +v2w2 +
v3w3 = ~u · ~w + ~v · ~w.
(iii) ~u·(λ~v) = (u1~i+u2~j+u3~k)·(λv1~i+λv2~j+λv3~k) = λu1v1+λu2v2+λu3v3 =
λ(u1v1 + u2v2 + u3v3) = λ(~u · ~v).
(iv) ||~u||2 = ~u · ~u cos 0 = ~u · ~u.
(v) If ~u and ~v are perpendicular then the cosine of their angle is zero and so
the dot product is zero. Conversely, if the dot product of the two vectors is
zero then the cosine of their angle is zero and this happens only when the
two vectors are perpendicular.
(vi) If ~u and ~v are parallel then the cosine of their angle is either 1 or −1.
That is, ~u · ~v = ±||~u|| ||~v||. Conversely, if ~u · ~v = ±||~u|| ||~v|| then cos θ = ±1
and this implies that either θ = 0 or θ = π. In either case, the two vectors
are parallel.
(vii) In 3-D, ~0 =< 0, 0, 0 > and ~v =< a, b, c > so that ~0 · ~v = (0× a)~i+ (0×
b)~j + (0× c)~k = ~0

Remark 6.1.2
Note that the unit vectors ~i,~j,~k associated with the coordinate axes satisfy
the equalities

~i ·~i = ~j ·~j = ~k · ~k = 1 and ~i ·~j = ~j · ~k =~i · ~k = 0.

Example 6.1.2
(a) Show that the vectors ~u = 3~i− 2~j and ~v = 2~i+ 3~j are perpendicular.

(b) Show that the vectors ~u = 2~i+6~j−4~k and ~v = −3~i−9~j+6~k are parallel.

Solution.
(a) We have: ~u · ~v = 3(2)− 2(3) = 0. Hence ~u is perpendicular to ~v.
(b) We have:

cos θ =
~u · ~v
||~u||||~v||

=
2(−3) + (6)(−9)− 4(6)

[
√

22 + (6)2 + (−4)2][
√

(−3)2 + (−9)2 + 62]
= −1.



6 A REVIEW OF MULTIVARIABLE CALCULUS 5

Hence, θ = π so that the two vectors are parallel. Another way to see that
the vectors are parallel is to notice that ~u = −2

3
~v

Projection of a vector onto a line
The orthogonal projection of a vector along a line is obtained by taking a
vector with same length and direction as the given vector but with its tail on
the line and then dropping a perpendicular onto the line from the tip of the
vector. The resulting vector on the line is the vector’s orthogonal projection
or simply its projection. See Figure 6.1.4.

Figure 6.1.4

Now, if ~u is a unit vector along the line of projection and if ~vparallel is the
vector projection of ~v onto ~u then

~vparallel = (||~v|| cos θ)~u = (~v · ~u)~u.

See Figure 6.1.5. Also, the component perpendicular to ~u is given by

~vperpendicular = ~v − ~vparallel.

Figure 6.1.5
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We call Comp~u~v = ~v · ~u the the scalar projection of ~v onto ~u. We call the
vector Proj~u~v = ~vparallel the vector projection of ~v onto ~u.
It follows that the vector ~v can be written in terms of ~vparallel and ~vperpendicular

~v = ~vparallel + ~vperpendicular.

Example 6.1.3
Write the vector ~v = 3~i + 2~j − 6~k as the sum of two vectors, one parallel,
and one perpendicular to ~w = 2~i− 4~j + ~k.

Solution.
Let ~u = ~w

||~w|| = 2√
21
~i− 4√

21
~j + 1√

21
~k. Then,

~vparallel = (~v · ~u)~u =

(
6√
21
− 8√

21
− 6√

21

)
~u = −16

21
~i+

32

21
~j − 8

21
~k.

Also,

~vperpendicular =~v − ~vparallel =

(
3 +

16

21

)
~i+

(
2− 32

21

)
~j +

(
−6 +

8

21

)
~k

=
79

21
~i+

10

21
~j − 118

21
~k.

Hence,
~v = ~vparallel + ~vperpendicular

Example 6.1.4
Find the scalar projection and vector projection of ~u =< 1, 1, 2 > onto
~v =< −2, 3, 1 > .

Solution.
We have

comp~v~u =
~u · ~v
||~v||

=
1(−2) + (1)(3) + 2(1)√

(−2)2 + 32 + 12
=

3√
14

Proj~v~u =
~u · ~v
||~v||

~v

||~v||

=
3

14
~v = −2

7
~i+

9

14
~j +

3

14
~k

Applications
As pointed out earlier in the section, scalar products are used in Physics.
For instance, in finding the work done by a force applied on an object.
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Example 6.1.5
A wagon is pulled a distance of 100 m along a horizontal path by a constant
force of 70 N. The handle of the wagon is held at an angle of 35◦ above the
horizontal. Find the work done by the force.

Solution.
The work done is

W = F · d cos 35◦ = 70(100) cos 35◦ ≈ 5734 J
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Practice Problems

Problem 6.1.1
Find ~a ·~b where ~a =< 4, 1, 1

4
> and ~b =< 6,−3,−8 > .

Problem 6.1.2
Find ~a ·~b where ||~a|| = 6, ||~b|| = 5 and the angle between the two vectors is
120◦.

Problem 6.1.3
If ~u is a unit vector, find ~u · ~v and ~u · ~w using the figure below.

Problem 6.1.4
Find the angle between the vectors ~a =< 4, 3 > and ~b =< 2,−1 > .

Problem 6.1.5
Find the angle between the vectors ~a =< 4,−3, 1 > and ~b =< 2, 0,−1 > .

Problem 6.1.6
Determine whether the given vectors are orthogonal, parallel, or neither.
(a) ~a =< −5, 3, 7 > and ~b =< 6,−8, 2 > .

(b) ~a =< 4, 6 > and ~b =< −3, 2 > .

(c) ~a = −~i+ 2~j + ~k and ~b = 3~i+ 4~j − ~k.
(d) ~a = 2~i+ 6~j − 4~k and ~b = −3~i− 9~j + 6~k.

Problem 6.1.7
Use vectors to decide whether the triangle with vertices P (1,−3,−2), Q(2, 0,−4),
and R(6,−2,−5) is right-angled.

Problem 6.1.8
Find a unit vector that is orthogonal to both ~i+~j and ~i+ ~k.
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Problem 6.1.9
Find the acute angle between the lines 2x− y = 3 and 3x+ y = 7.

Problem 6.1.10
Find the scalar and vector projections of the vector ~b =< 1, 2, 3 > onto
~a =< 3, 6,−2 > .

Problem 6.1.11
If ~a =< 3, 0,−1 >, find a vector ~b such that comp~a

~b = 2.

Problem 6.1.12
Find the work done by a force ~F = 8~i− 6~j + 9~k that moves an object from
the point (0, 10, 8) to the point (6, 12, 20) along a straight line. The distance
is measured in meters and the force in newtons.

Problem 6.1.13
A sled is pulled along a level path through snow by a rope. A 30-lb force
acting at an angle of 40◦ above the horizontal moves the sled 80 ft. Find the
work done by the force.
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6.2 Directional Derivatives and the Gradient Vector

Given a function z = f(x, y) and let (x0, y0) be in the domain of f. We wish
to find the rate of change of f at (x0, y0) in the direction of a unit vector
~u =< a, b > . To do this, we consider the vertical plane to the graph S of f
that passes through the point P (x0, y0, z0) in the direction of ~u. This plane
inersects the graph S in a curve C. (See Figure 6.2.1.)

Figure 6.2.1

The slope of the tangent line T to C at the point P is the rate of change
of z in the direction of ~u. Let Q(x, y, z) be an arbitrary point on C and let
P ′(x0, y0, 0) and Q′(x, y, 0) be the orthogonal projection of P and Q respec-

tively onto the xy−plane. Then the vectors
−−→
P ′Q′ =< x−x0, y−y0, 0 > is par-

allel to ~u so that
−−→
P ′Q′ = h~u for some scalar h. Hence, x = x0+ha, y = y0+hb

and
f(x, y)− f(x0, y0)

h
=
f(x0 + ha, y0 + hb)− f(x0, y0)

h
.

If we take the limit of the above average rate as h → 0, we obtain the rate
of change of z(with respect to distance) in the direction of ~u, which is called
the directional derivative of f at (x0, y0) in the direction of ~u. We write

f~u(x0, y0) = lim
h→0

f(x0 + ah, y0 + bh)− f(x0, y0)

h
.
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Notice that if ~u = ~i then a = 1 and b = 0 so that f~u(x0, y0) = fx(x0, y0).
That is, fx is the rate of change of f in the x− direction. Likewise, if ~u = ~j
then a = 0 and b = 1 so that f~u(x0, y0) = fy(x0, y0).
The following theorem provides a formula for computing the directional
derivative.

Theorem 6.2.1
If f is a differentiable function of x and y, then f has a directional derivative
in the direction of any unit vector ~u =< a, b > and

f~u(x, y) = fx(x, y)a+ fy(x, y)b.

Proof.
Fix a point (x0, y0) in the domain of f and consider the single variable func-
tion g(h) = f(x0 + ha, y0 + hb). Then

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f(x0 + ah, y0 + bh)− f(x, y)

h
= f~u(x0, y0).

Let x = x0 + ah and y = y0 + bh. Using the Chain Rule, we find

g′(h) =
∂f

∂x

dx

dh
+
∂f

∂y

dy

dh
= fx(x, y)a+ fy(x, y)b.

Letting h = 0 in the above expression, we find

f~u(x0, y0) = g′(0) = fx(x0, y0)a+ fy(x0, y0)b (6.2.1)

Example 6.2.1

Find u~v(4, 0) if u(x, y) = x+ y2 and ~v =
〈

1
2
,
√
3
2

〉
.

Solution.
We have

u~v(4, 0) = ux(4, 0)

(
1

2

)
+ uy(4, 0)

(√
3

2

)
=

1

2

The Gradient Vector
The gradient is a generalization of the usual concept of derivative of a
function of one variable to functions of several variables. For a function
u(x, y) or u(x, y, z), the gradient are, respectively,
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∇u(x, y) = ux~i+ uy~j and ∇u(x, y, z) = ux~i+ uy~j + uz~k.

Example 6.2.2
Let F (x, y, z) = u(x, y)− z. Find ∇F (x, y, z).

Solution.
We have

∇F (x, y, z) = ux~i+ uy~j − ~k

Example 6.2.3
Find the gradient vector of f(x, y, z) = (2x− 3y + 5z)5.

Solution.
We have

fx(x, y, z) =10(2x− 3y + 5z)4

fy(x, y, z) =− 15(2x− 3y + 5z)4

fz(x, y, z) =25(2x− 3y + 5z)4.

Thus,
∇f(x, y, z) = 5(2x− 3y + 5z)4[2~i− 3~j + 5~k]

With the notation for the gradient vector, we can rewrite the expression
(6.2.1) for the directional derivative as

f~u(x0, y0) = ∇f(x0, y0) · ~u.

This expresses the directional derivative in the direction of ~u as the scalar
projection of the gradient vector onto ~u.

Maximizing the Directional Derivative
Suppose we have a function of two or three variables and we consider all
possible directional derivatives of f at a given point. These give the rates
of change of f in all possible directions. We can then ask the questions: In
which of these directions does f change fastest and what is the maximum
rate of change? The answers are provided by the following theorem.

Theorem 6.2.2
The maximum value of the directional derivative of a function f(x, y) or
f(x, y, z) at a point (x, y) or (x, y, z) is ||∇f || and it occurs in the direction
of the gradient of f at that point.
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Proof.
We have

f~u(x, y) = ∇f · ~u = ||∇f ||||~u|| cos θ = ||∇f || cos θ,

where θ is the angle between ∇f and ~u. The maximum value of cos θ is 1 and
this occurs when θ = 0. Therefore the maximum value of f~u is ||∇f || and it
occurs when θ = 0, that is, when ~u has the same direction as ∇f

Example 6.2.4
Find the maximum rate of change of the function u(x, y) = 50− x2 − 2y2 at
the point (1,−1).

Solution.
The maximum rate of change occurs in the direction of the gradient vector:

∇u(1,−1) = ux(1,−1)~i+ uy(1,−1)~j = −2~i+ 4~j.

The maximum rate of change at (1,−1) is

||∇u(1,−1)|| =
√

(−2)2 + 42 = 2
√

5

Significance of the Gradient Vector
Suppose that a curve in 3-D is defined parametrically by the equations x =
x(t), y = y(t), z = z(t), where t is a parameter. This curve can be described
by the vector function

~r(t) = x(t)~i+ y(t)~j + z(t)~k.

Its derivative is the tangent vector to the curve (See Figure 6.2.2) and is
given by

d

dt
(~r(t)) =

dx

dt
~i+

dy

dt
~j +

dz

dt
~k.
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Figure 6.2.2

Now, for a function in two variables u(x, y), the equation u(x, y) = C is
called a level curve of u( a level surface of u(x, y, z)). The level curves
u(x, y) = C are just the traces of the graph of u(x, y) in the horizontal plane
z = C projected down to the xy−plane.
An important property of the gradient of u is that it is normal to a level
surface of u at every point. To see this, let S be the level surface f(x, y, z) = k
and P0(x0, y0, z0) be a point on S. Let C be any curve on S that passes
through P0. We can describe C in parametric form x = x(t), y = y(t), and
z = z(t). Any point on C satisfies f(x(t), y(t), z(t)) = k. Differentiating both
sides of this equation with respect to t we find by means of the Chain Rule

fx(x, y, z)x′(t) + fy(x, y, z)y′(t) + fz(x, y, z)z′(t) = 0

which can be written as∇f · ~r′(t) = 0. This means that the gradient is normal
to a level surface (respectively a level curve). See Figure 6.2.3.

Figure 6.2.3
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If we consider a topographical map of a hill and let f(x, y) represent the
height above sea level at a point with coordinates (x, y), then a curve of
steepest ascent can be drawn as in Figure 6.2.4 by making it perpendicular
to all of the contour lines.

Figure 6.2.4

Vector Fields and Integral Curves

In vector calculus, a vector field is a function ~F (x, y) (or ~F (x, y, z) in 3-D
space) that assigns a vector to each point of its domain as shown in Figure
6.2.5.

Figure 6.2.5
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Creating vector fields manually is very tedious. Thus, vector fields are gen-
erally generated using computer softwares such as Mathematica, Maple, or
Mathlab.

Example 6.2.5
The gradient vector of a function is an example of a vector field called the
gradient vector field. Sketch the gradient vector field of the function

u(x, y) = x2 + y2.

Describe the level curves of u(x, y).

Solution.
The gradient vector field of the given function is

∇u(x, y) = 2x~i+ 2y~j.

A level curve is defined by the equation

x2 + y2 = C, C ≥ 0.

Thus, level curves are circles centered at the origin. Figure 6.2.6 shows the
gradient vector field as well as some of the level curves.

Figure 6.2.6
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For example, at the point (1, 2), the corresponding vector in the vector field
is the vector with tail (1, 2) and tip (2, 4)

An integral curve of a vector field is a smooth curve2 Γ such that ~F (x, y)
assigns a tangent vector at each point of Γ. For example, the integral curves
of the vector field ~F (x, y) = y~i − x~j are circles centered at the origin. See
Figure 6.2.7.

Figure 6.2.7

2If ~r(t) is a parametrization of Γ then ~r′(t) is continuous and ~r′(t) 6= ~0.
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Practice Problems

Problem 6.2.1
Find the gradient of the function

F (x, y, z) = exyz + sin (xy).

Problem 6.2.2
Find the gradient of the function

F (x, y, z) = x cos
(y
z

)
.

Problem 6.2.3
Describe the level surfaces of the function f(x, y, z) = (x− 2)2 + (y − 3)2 +
(z + 5)2.

Problem 6.2.4
Find the directional derivative of u(x, y) = 4x2 + y2 in the direction of ~a =
~i+ 2~j at the point (1, 1).

Problem 6.2.5
Find the directional derivative of u(x, y, z) = x2z+y3z2−xyz in the direction

of ~a = −~i+ 3~k at the point (x, y, z).

Problem 6.2.6
Find the maximum rate of change of the function u(x, y) = yexy at the point
(0, 2) and the direction in which this maximum occurs.

Problem 6.2.7
Find the gradient vector field for the function u(x, y, z) = ez − ln (x2 + y2).
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