
The Laplace Transform
Solutions for PDEs

If in a partial differential equation the time t is one of the independent vari-
ables of the searched-for function, we say that the PDE is an evolution
equation. Examples of evolutions equations are the heat equation and the
wave equation. In contrast, when the equation involves only spatial indepen-
dent variables then the equation is called a stationary equation. Examples
of stationary equations are the Laplace’s equations and Poisson equations.
There are classes of methods that can be used for solving the initial value or
initial boundary problems for evolution equations. We refer to these meth-
ods as the methods of integral transforms. The fundamental ones are the
Laplace and the Fourier transforms. In this chapter we will just consider the
Laplace transform.
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21 Essentials of the Laplace Transform

Laplace transform has been introduced in an ODE course, and is used espe-
cially to solve linear ODEs with constant coefficients, where the equations
are transformed to algebraic equations. This idea can be easily extended
to PDEs, where the transformation leads to the decrease of the number of
independent variables. PDEs in two variables are thus reduced to ODEs. In
this section we review the Laplace transform and its properties.
Laplace transform is yet another operational tool for solving constant coeffi-
cients linear differential equations. The process of solution consists of three
main steps:
• The given “hard” problem is transformed into a “simple” equation.
• This simple equation is solved by purely algebraic manipulations.
• The solution of the simple equation is transformed back to obtain the so-
lution of the given problem.
In this way the Laplace transformation reduces the problem of solving a dif-
ferential equation to an algebraic problem. The third step is made easier by
tables, whose role is similar to that of integral tables in integration.
The above procedure can be summarized by Figure 21.1

Figure 21.1

In this section we introduce the concept of Laplace transform and discuss
some of its properties.
The Laplace transform is defined in the following way. Let f(t) be defined
for t ≥ 0. Then the Laplace transform of f, which is denoted by L[f(t)]
or by F (s), is defined by the following equation

L[f(t)] = F (s) = lim
T→∞

∫ T

0

f(t)e−stdt =

∫ ∞
0

f(t)e−stdt

The integral which defines a Laplace transform is an improper integral. An
improper integral may converge or diverge, depending on the integrand.
When the improper integral is convergent then we say that the function f(t)
possesses a Laplace transform. So what types of functions possess Laplace
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transforms, that is, what type of functions guarantees a convergent improper
integral.

Example 21.1
Find the Laplace transform, if it exists, of each of the following functions

(a) f(t) = eat (b) f(t) = 1 (c) f(t) = t (d) f(t) = et
2

Solution.
(a) Using the definition of Laplace transform we see that

L[eat] =

∫ ∞
0

e−(s−a)tdt = lim
T→∞

∫ T

0

e−(s−a)tdt.

But ∫ T

0

e−(s−a)tdt =

{
T if s = a

1−e−(s−a)T

s−a if s 6= a.

For the improper integral to converge we need s > a. In this case,

L[eat] = F (s) =
1

s− a
, s > a.

(b) In a similar way to what was done in part (a), we find

L[1] =

∫ ∞
0

e−stdt = lim
T→∞

∫ T

0

e−stdt =
1

s
, s > 0.

(c) We have

L[t] =

∫ ∞
0

te−stdt =

[
−te

−st

s
− e−st

s2

]∞
0

=
1

s2
, s > 0.

(d) Again using the definition of Laplace transform we find

L[et
2

] =

∫ ∞
0

et
2−stdt.

If s ≤ 0 then t2−st ≥ 0 so that et
2−st ≥ 1 and this implies that

∫∞
0
et

2−stdt ≥∫∞
0
dt. Since the integral on the right is divergent, by the comparison theo-

rem of improper integrals, the integral on the left is also divergent. Now, if
s > 0 then

∫∞
0
et(t−s)dt ≥

∫∞
s
dt. By the same reasoning the integral on the
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left is divergent. This shows that the function f(t) = et
2

does not possess a
Laplace transform

The above example raises the question of what class or classes of functions
possess a Laplace transform. To answer this question we introduce few math-
ematical concepts.
A function f that satisfies

|f(t)| ≤Meat, t ≥ C (21.1)

is said to be a function with an exponential order at infinity. A function
f is called piecewise continuous on an interval if the interval can be bro-
ken into a finite number of subintervals on which the function is continuous
on each open subinterval (i.e. the subinterval without its endpoints) and
has a finite limit at the endpoints (jump discontinuities and no vertical
asymptotes) of each subinterval. Below is a sketch of a piecewise continuous
function.

Note that a piecewise continuous function is a function that has a finite
number of breaks in it and doesn’t blow up to infinity anywhere. A func-
tion defined for t ≥ 0 is said to be piecewise continuous on the infinite
interval if it is piecewise continuous on 0 ≤ t ≤ T for all T > 0.

Example 21.2
Show that the following functions are piecewise continuous and of exponential
order at infinity for t ≥ 0

(a) f(t) = tn (b) f(t) = tn sin at

Solution.
(a) Since et =

∑∞
n=0

tn

n!
≥ tn

n!
, tn ≤ n!et. Hence, tn is piecewise continuous and

of exponential order at infinity.
(b) Since |tn sin at| ≤ n!et, tn sin at is piecewise continuous and of exponential
order at infinity
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The following is an existence result of Laplace transform.

Theorem 21.1
Suppose that f(t) is piecewise continuous on t ≥ 0 and has an exponential
order at infinity with |f(t)| ≤Meat for t ≥ C. Then the Laplace transform

F (s) =

∫ ∞
0

f(t)e−stdt

exists as long as s > a. Note that the two conditions above are sufficient, but
not necessary, for F (s) to exist.

In what follows, we will denote the class of all piecewise continuous functions
with exponential order at infinity by PE . The next theorem shows that any
linear combination of functions in PE is also in PE . The same is true for the
product of two functions in PE .

Theorem 21.2
Suppose that f(t) and g(t) are two elements of PE with

|f(t)| ≤M1e
a1t, t ≥ C1 and |g(t)| ≤M2e

a1t, t ≥ C2.

(i) For any constants α and β the function αf(t) +βg(t) is also a member of
PE . Moreover

L[αf(t) + βg(t)] = αL[f(t)] + βL[g(t)].

(ii) The function h(t) = f(t)g(t) is an element of PE .

We next discuss the problem of how to determine the function f(t) if F (s)
is given. That is, how do we invert the transform. The following result on
uniqueness provides a possible answer. This result establishes a one-to-one
correspondence between the set PE and its Laplace transforms. Alterna-
tively, the following theorem asserts that the Laplace transform of a member
in PE is unique.

Theorem 21.3
Let f(t) and g(t) be two elements in PE with Laplace transforms F (s) and
G(s) such that F (s) = G(s) for some s > a. Then f(t) = g(t) for all t ≥ 0
where both functions are continuous.
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With the above theorem, we can now officially define the inverse Laplace
transform as follows: For a piecewise continuous function f of exponential
order at infinity whose Laplace transform is F, we call f the inverse Laplace
transform of F and write f = L−1[F (s)]. Symbolically

f(t) = L−1[F (s)]⇐⇒ F (s) = L[f(t)].

Example 21.3
Find L−1

(
1
s−1

)
, s > 1.

Solution.
From Example 21.1(a), we have that L[eat] = 1

s−a , s > a. In particular, for

a = 1 we find that L[et] = 1
s−1 , s > 1. Hence, L−1

(
1
s−1

)
= et, t ≥ 0 .

The above theorem states that if f(t) is continuous and has a Laplace trans-
form F (s), then there is no other function that has the same Laplace trans-
form. To find L−1[F (s)], we can inspect tables of Laplace transforms of
known functions to find a particular f(t) that yields the given F (s).
When the function f(t) is not continuous, the uniqueness of the inverse
Laplace transform is not assured. The following example addresses the
uniqueness issue.

Example 21.4
Consider the two functions f(t) = H(t)H(3− t) and g(t) = H(t)−H(t− 3),
where H is the Heaviside function defined by

H(t) =

{
1, t ≥ 0
0, t < 0

(a) Are the two functions identical?
(b) Show that L[f(t)] = L[g(t).

Solution.
(a) We have

f(t) =

{
1, 0 ≤ t ≤ 3
0, t > 3

and

g(t) =

{
1, 0 ≤ t < 3
0, t ≥ 3
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Since f(3) = 1 and g(3) = 0, f and g are not identical.
(b) We have

L[f(t)] = L[g(t)] =

∫ 3

0

e−stdt =
1− e−3s

s
, s > 0.

Thus, both functions f(t) and g(t) have the same Laplace transform even
though they are not identical. However, they are equal on the interval(s)
where they are both continuous

The inverse Laplace transform possesses a linear property as indicated in
the following result.

Theorem 21.4
Given two Laplace transforms F (s) and G(s) then

L−1[aF (s) + bG(s)] = aL−1[F (s)] + bL−1[G(s)]

for any constants a and b.

Convolution integrals are useful when finding the inverse Laplace transform
of products. They are defined as follows: The convolution of two scalar
piecewise continuous functions f(t) and g(t) defined for t ≥ 0 is the integral

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds.

Example 21.5
Find f ∗ g where f(t) = e−t and g(t) = sin t.

Solution.
Using integration by parts twice we arrive at

(f ∗ g)(t) =

∫ t

0

e−(t−s) sin sds

=
1

2

[
e−(t−s)(sin s− cos s)

]t
0

=
e−t

2
+

1

2
(sin t− cos t) (21.2)

Next, we state several properties of convolution product, which resemble
those of ordinary product.
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Theorem 21.5
Let f(t), g(t), and k(t) be three piecewise continuous scalar functions defined
for t ≥ 0 and c1 and c2 are arbitrary constants. Then
(i) f ∗ g = g ∗ f (Commutative Law)
(ii) (f ∗ g) ∗ k = f ∗ (g ∗ k) (Associative Law)
(iii) f ∗ (c1g + c2k) = c1f ∗ g + c2f ∗ k (Distributive Law)

Example 21.6
Express the solution to the initial value problem y′ + αy = g(t), y(0) = y0
in terms of a convolution integral.

Solution.
Solving this initial value problem by the method of integrating factor we find

y(t) = e−αty0 +

∫ t

0

e−α(t−s)g(s)ds = e−αty0 + (e−αt ∗ g)(t)

The following theorem, known as the Convolution Theorem, provides a way
for finding the Laplace transform of a convolution integral and also finding
the inverse Laplace transform of a product.

Theorem 21.6
If f(t) and g(t) are piecewise continuous for t ≥ 0, and of exponential order
at infinity then

L[(f ∗ g)(t)] = L[f(t)]L[g(t)] = F (s)G(s).

Thus, (f ∗ g)(t) = L−1[F (s)G(s)].

Example 21.7
Use the convolution theorem to find the inverse Laplace transform of

P (s) =
1

(s2 + a2)2
.

Solution.
Note that

P (s) =

(
1

s2 + a2

)(
1

s2 + a2

)
.

So, in this case we have, F (s) = G(s) = 1
s2+a2

so that f(t) = g(t) = 1
a

sin (at).
Thus,

(f ∗ g)(t) =
1

a2

∫ t

0

sin (at− as) sin (as)ds =
1

2a3
(sin (at)− at cos (at))
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Example 21.8
Solve the initial value problem

4y′′ + y = g(t), y(0) = 3, y′(0) = −7

Solution.
Take the Laplace transform of all the terms and plug in the initial conditions
to obtain

4(s2Y (s)− 3s+ 7) + Y (s) = G(s)

or
(4s2 + 1)Y (s)− 12s+ 28 = G(s).

Solving for Y (s) we find

Y (s) =
12s− 28

4
(
s2 + 1

4

) +
G(s)

4
(
s2 + 1

4

)
=

3s

s2 +
(
(1
2

)2 − 7

(
1
2

)2
s2 +

(
1
2

)2 +
1

4
G(s)

(
1
2

)2
s2 +

(
1
2

)2
Hence,

y(t) = 3 cos

(
t

2

)
− 7 sin

(
t

2

)
+

1

2

∫ t

0

sin
(s

2

)
g(t− s)ds.

So, once we decide on a g(t) all we need to do is to evaluate the integral and
we’ll have the solution

We conclude this section with the following table of Laplace transform pairs
where H is the Heaviside function defined by H(t) = 1 for t ≥ 0 and 0
otherwise.
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f(t) F(s)

H(t) =

{
1, t ≥ 0
0, t < 0

1
s , s > 0

tn, n = 1, 2, · · · n!
sn+1 , s > 0

eαt 1
s−α , s > α

sin (ωt) ω
s2+ω2 , s > 0

cos (ωt) s
s2+ω2 , s > 0

sinh (ωt) ω
s2−ω2 , s > |ω|

cosh (ωt) s
s2−ω2 , s > |ω|

eαtf(t), with |f(t)| ≤Meat F (s− α), s > α+ a
eαtH(t) 1

s−α , s > α

eαttn, n = 1, 2, · · · n!
(s−α)n+1 , s > α

eαt sin (ωt) ω
(s−α)2+ω2 , s > α

eαt cos (ωt) s−α
(s−α)2+ω2 , s > α

f(t− α)H(t− α), α ≥ 0 e−αsF (s), s > a
with |f(t)| ≤Meat

H(t− α), α ≥ 0 e−αs

s , s > 0
tf(t) -F ′(s)
t
2ω sinωt s

(s2+ω2)2
, s > 0

1
2ω3 [sinωt− ωt cosωt] 1

(s2+ω2)2
, s > 0

f ′(t), with f(t) continuous sF (s)− f(0)
and |f ′(t)| ≤Meat s > max{a, 0}+ 1

f ′′(t), with f ′(t) continuous s2F (s)− sf(0)− f ′(0)
and |f ′′(t)| ≤Meat s > max{a, 0}+ 1

f (n)(t), with f (n−1)(t) continuous snF (s)− sn−1f(0)− · · ·
and |f (n)(t)| ≤Meat -sf (n−2)(0)− f (n−1)(0)

s > max{a, 0}+ 1

2
2
√
π

∫∞
α

2
√
t

e−u
2
du e−α

√
s

s

∫ t
0 f(u)du, with |f(t)| ≤Meat F (s)

s , s > max{a, 0}+ 1

Table L
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Practice Problems

Problem 21.1
Determine whether the integral

∫∞
0

1
1+t2

dt converges. If the integral con-
verges, give its value.

Problem 21.2
Determine whether the integral

∫∞
0

t
1+t2

dt converges. If the integral con-
verges, give its value.

Problem 21.3
Determine whether the integral

∫∞
0
e−t cos (e−t)dt converges. If the integral

converges, give its value.

Problem 21.4
Using the definition, find L[e3t], if it exists. If the Laplace transform exists
then find the domain of F (s).

Problem 21.5
Using the definition, find L[t− 5], if it exists. If the Laplace transform exists
then find the domain of F (s).

Problem 21.6
Using the definition, find L[e(t−1)

2
], if it exists. If the Laplace transform

exists then find the domain of F (s).

Problem 21.7
Using the definition, find L[(t − 2)2], if it exists. If the Laplace transform
exists then find the domain of F (s).

Problem 21.8
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =

{
0, 0 ≤ t < 1

t− 1, t ≥ 1
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Problem 21.9
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =


0, 0 ≤ t < 1

t− 1, 1 ≤ t < 2
0, t ≥ 2.

Problem 21.10
Let n be a positive integer. Using integration by parts establish the reduction
formula ∫

tne−stdt = −t
ne−st

s
+
n

s

∫
tn−1e−stdt, s > 0.

Problem 21.11
For s > 0 and n a positive integer evaluate the limits

(a) limt→0 t
ne−st (b) limt→∞ t

ne−st

Problem 21.12
Use the linearity property of Laplace transform to find L[5e−7t + t + 2e2t].
Find the domain of F (s).

Problem 21.13
Find L−1

(
3
s−2

)
.

Problem 21.14
Find L−1

(
− 2
s2

+ 1
s+1

)
.

Problem 21.15
Find L−1

(
2
s+2

+ 2
s−2

)
.

Problem 21.16
Use Table L to find L[2et + 5].

Problem 21.17
Use Table L to find L[e3t−3H(t− 1)].

Problem 21.18
Use Table L to find L[sin2 ωt].
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Problem 21.19
Use Table L to find L[sin 3t cos 3t].

Problem 21.20
Use Table L to find L[e2t cos 3t].

Problem 21.21
Use Table L to find L[e4t(t2 + 3t+ 5)].

Problem 21.22
Use Table L to find L−1[ 10

s2+25
+ 4

s−3 ].

Problem 21.23
Use Table L to find L−1[ 5

(s−3)4 ].

Problem 21.24
Use Table L to find L−1[ e−2s

s−9 ].

Problem 21.25
Using the partial fraction decomposition find L−1

[
12

(s−3)(s+1)

]
.

Problem 21.26
Using the partial fraction decomposition find L−1

[
24e−5s

s2−9

]
.

Problem 21.27
Use Laplace transform technique to solve the initial value problem

y′ + 4y = g(t), y(0) = 2

where

g(t) =


0, 0 ≤ t < 1
12, 1 ≤ t < 3
0, t ≥ 3

Problem 21.28
Use Laplace transform technique to solve the initial value problem

y′′ − 4y = e3t, y(0) = 0, y′(0) = 0.
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Problem 21.29
Consider the functions f(t) = et and g(t) = e−2t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Problem 21.30
Consider the functions f(t) = sin t and g(t) = cos t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Problem 21.31
Compute t ∗ t ∗ t.

Problem 21.32
Compute H(t) ∗ e−t ∗ e−2t.

Problem 21.33
Compute t ∗ e−t ∗ et.
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