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20 Laplace’s Equations in Circular Regions

In the previous section we solved the Dirichlet problem for Laplace’s equation
on a rectangular region. However, if the domain of the solution is a disc,
an annulus, or a circular wedge, it is useful to study the two-dimensional
Laplace’s equation in polar coordinates.
It is well known in calculus that the cartesian coordinates (x, y) and the polar
coordinates (r, θ) of a point are related by the formulas

x = r cos θ and y = r sin θ

where r = (x2 + y2)
1
2 and tan θ = y

x
. Using the chain rule we obtain

ux =urrx + uθθx = cos θur −
sin θ

r
uθ

uxx =uxrrx + uxθθx

=

(
cos θurr +

sin θ

r2
uθ −

sin θ

r
urθ

)
cos θ

+

(
− sin θur + cos θurθ −

cos θ

r
uθ −

sin θ

r
uθθ

)(
−sin θ

r

)
uy =urry + uθθy = sin θur +

cos θ

r
uθ

uyy =uyrry + uyθθy

=

(
sin θurr −

cos θ

r2
uθ +

cos θ

r
urθ

)
sin θ

+

(
cos θur + sin θurθ −

sin θ

r
uθ +

cos θ

r
uθθ

)(
cos θ

r

)
.

Substituting these equations into ∆u = 0 we obtain

urr +
1

r
ur +

1

r2
uθθ = 0. (20.1)

Example 20.1
Find the solution to

∆u = 0, x2 + y2 < a2

subject to
(i) Boundary condition: u(a, θ) = f(θ), 0 ≤ θ ≤ 2π.
(ii) Boundedness at the origin: |u(0, θ)| <∞.
(iii) Periodicity: u(r, θ + 2π) = u(r, θ), 0 ≤ θ ≤ 2π.
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Solution.
First, note that (iii) implies that u(r, 0) = u(r, 2π) and uθ(r, 0) = uθ(r, 2π).
Next, we will apply the method of separation of variables to (20.1). Suppose
that a solution u(r, θ) of (20.1) can be written in the form u(r, θ) = R(r)Θ(θ).
Substituting in (20.1) we obtain

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0.

Dividing by RΘ (under the assumption that RΘ 6= 0) we obtain

Θ′′(θ)

Θ(θ)
= −r2R

′′(r)

R(r)
− rR

′(r)

R(r)
.

The left-hand side is independent of r whereas the right-hand side is inde-
pendent of θ so that there is a constant λ such that

−Θ′′(θ)

Θ(θ)
= r2R

′′(r)

R(r)
+ r

R′(r)

R(r)
= λ.

This results in the following ODEs

Θ′′(θ) + λΘ(θ) = 0 (20.2)

and
r2R′′(r) + rR′(r)− λR(r) = 0. (20.3)

The second equation is known as Euler’s equation. Both of these equations
are easily solvable. To solve (20.2), We only have to add the appropriate
boundary conditions. We have Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π). The
periodicity of Θ implies that λ = n2 and Θ must be of the form

Θn(θ) = A′n cosnθ +B′n sinnθ, n = 0, 1, 2 · · ·

The equation in R is of Euler type and its solution must be of the form
R(r) = rα. Since λ = n2, the corresponding characteristic equation is

α(α− 1)rα + αrα − n2rα = 0.

Solving this equation we find α = ±n. Hence, we let

Rn(r) = Cnr
n +Dnr

−n, n ∈ N.
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For n = 0, R = 1 is a solution. To find a second solution, we solve the
equation

r2R′′ + rR′ = 0.

This can be done by dividing through by r and using the substitution S = R′

to obtain rS ′ + S = 0. Solving this by noting that the left-hand side is just
(rS)′ we find S = c

r
. Hence, R′ = c

r
and this implies R(r) = C ln r. Thus,

R = 1 and R = ln r form a fundamental set of solutions of (20.3) and so a
general solution is given by

R0(r) = C0 +D0 ln r.

By assumption (ii), u(r, θ) must be bounded at r = 0, and so does Rn. Since
r−n and ln r are unbounded at r = 0, we must set D0 = Dn = 0. In this case,
the solutions to Euler’s equation are given by

Rn(r) = Cnr
n, n = 0, 1, 2, · · · .

Using the superposition principle, and combining the results obtained above,
we find

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ).

Now, using the boundary condition u(a, θ) = f(θ) we can write

f(θ) = C0 +
∞∑
n=1

(anAn cosnθ + anBn sinnθ)

which is usually written in a more convenient equivalent form by

f(θ) =
a0

2
+
∞∑
n=1

(an cosnθ + bn sinnθ).

It is obvious that an and bn are the Fourier coefficients, and therefore can be
determined by the formulas

an =
1

π

∫ 2π

0

f(θ) cosnθdθ, n = 0, 1, · · ·

and

bn =
1

π

∫ 2π

0

f(θ) sinnθdθ, n = 1, 2, · · · .
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Finally, the general solution to our problem is given by

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

where

C0 =
a0

2
=

1

2π

∫ 2π

0

f(θ)dθ

An =
an
an

=
1

anπ

∫ 2π

0

f(θ) cosnθdθ, n = 1, 2, · · ·

Bn =
bn
an

=
1

anπ

∫ 2π

0

f(θ) sinnθdθ, n = 1, 2, · · ·

Example 20.2
Solve

∆u = 0, 0 ≤ θ < 2π, 1 ≤ r ≤ 2

subject to
u(1, θ) = u(2, θ) = sin θ, 0 ≤ θ < 2π.

Solution.
Use separation of variables. First, solving for Θ(θ), we see that in order to
ensure that the solution is 2π−periodic in θ, the eigenvalues are λ = n2.
When solving the equation for R(r), we do NOT need to throw out solutions
which are not bounded as r → 0. This is because we are working in the
annulus where r is bounded away from 0 and ∞. Therefore, we obtain the
general solution

u(r, θ) = (C0 +C1 ln r)+
∞∑
n=1

[(Cnr
n+Dnr

−n) cosnθ+(Anr
n+Bnr

−n) sinnθ].

But

C0 +
∞∑
n=1

[(Cn +Dn) cosnθ + (An +Bn) sinnθ] = sin θ

and

C0 +
∞∑
n=1

[(Cn2n +Dn2−n) cosnθ + (An2n +Bn2−n) sinnθ] = sin θ
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Hence, comparing coefficients we must have

C0 =0

Cn +Dn =0

An +Bn =0 (n 6= 1)

A1 +B1 =1

Cn2n +Dn2−n =0

An2n +Bn2−n =0 (n 6= 1)

2A1 + 2−1B1 =1.

Solving these equations we find C0 = Cn = Dn = 0, A1 = 1
3
, B1 = 2

3
, and

An = Bn = 0 for n 6= 1. Hence, the solution to the problem is

u(r, θ) =
1

3

(
r +

2

r

)
sin θ

Example 20.3
Solve Laplace’s equation inside a 60◦ wedge of radius a subject to the bound-
ary conditions

uθ(r, θ) = 0, uθ(r,
π

3
) = 0, u(a, θ) =

1

3
cos 9θ − 1

9
cos 3θ.

You may assume that the solution remains bounded as r → 0.

Solution.
Separating the variables we obtain the eigenvalue problem

Θ′′(θ) + λΘ(θ) = 0

Θ′(0) = Θ′
(π

3

)
= 0.

As above, because of periodicity we expect the solution to be of the form

Θ(θ) = A cos
√
λθ +B sin

√
λθ.

The condition Θ′(0) = 0 implies B = 0. The condition Θ′
(
π
3

)
= 0 implies

λn = (3n)2, n = 0, 1, 2, · · · . Thus, the angular solution is

Θn(θ) = An cos 3nθ, n = 0, 1, 2, · · ·
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The corresponding solutions of the radial problem are

Rn(r) = Bnr
3n + Cnr

−3n, n = 0, 1, · · · .

To obtain a solution that remains bounded as r → 0 we take Cn = 0. Hence,

u(r, θ) =
∞∑
n=0

Dnr
3n cos 3nθ, n = 0, 1, 2, · · ·

Using the boundary condition

u(a, θ) =
1

3
cos 9θ − 1

9
cos 3θ

we obtain D1a
3 = −1

9
and D3a

9 = 1
3

and 0 otherwise. Thus,

u(r, θ) =
1

3

(r
a

)9

cos 9θ − 1

9

(r
a

)3

cos 3θ
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Practice Problems

Problem 20.1
Solve the Laplace’s equation as in Example 20.1 in the unit disk with u(1, θ) =
3 sin 5θ.

Problem 20.2
Solve the Laplace’s equation in the upper half of the unit disk with u(1, θ) =
π − θ.

Problem 20.3
Solve the Laplace’s equation in the unit disk with ur(1, θ) = 2 cos 2θ.

Problem 20.4
Consider

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

with

C0 =
a0

2
=

1

2π

∫ 2π

0

f(φ)dφ

An =
an
an

=
1

anπ

∫ 2π

0

f(φ) cosnφdφ, n = 1, 2, · · ·

Bn =
bn
an

=
1

anπ

∫ 2π

0

f(φ) sinnφdφ, n = 1, 2, · · ·

Using the trigonometric identity

cos a cos b+ sin a sin b = cos (a− b)

show that

u(r, θ) =
1

2π

∫ 2π

0

f(φ)

[
1 + 2

∞∑
n=1

(r
a

)n
cosn(θ − φ)

]
dφ.

Problem 20.5
(a) Using Euler’s formula from complex analysis eit = cos t+ i sin t show that

cos t =
1

2
(eit + e−it),
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where i =
√
−1.

(b) Show that

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) = 1 +

∞∑
n=1

(r
a

)n
ein(θ−φ) +

∞∑
n=1

(r
a

)n
e−in(θ−φ).

(c) Let q1 = r
a
ei(θ−φ) and q2 = r

a
e−i(θ−φ). It is defined in complex analysis that

the absolute value of a complex number z = x+iy is given by |z| = (x2+y2)
1
2 .

Using these concepts, show that |q1| < 1 and |q2| < 1.

Problem 20.6
(a)Show that

∞∑
n=1

(r
a

)n
ein(θ−φ) =

rei(θ−φ)

a− rei(θ−φ)

and
∞∑
n=1

(r
a

)n
e−in(θ−φ) =

re−i(θ−φ)

a− re−i(θ−φ)

Hint: Each sum is a geoemtric series with a ratio less than 1 in absolute
value so that these series converges.
(b) Show that

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) =

a2 − r2

a2 − 2ar cos (θ − φ) + r2
.

Problem 20.7
Show that

u(r, θ) =
a2 − r2

2π

∫ 2π

0

f(φ)

a2 − 2ar cos (θ − φ) + r2
dφ.

This is known as the Poisson formula in polar coordinates.

Problem 20.8
Solve

uxx + uyy = 0, x2 + y2 < 1

subject to
u(1, θ) = θ, − π ≤ θ ≤ π.
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Problem 20.9
The vibrations of a symmetric circular membrane where the displacement
u(r, t) depends on r and t only can be describe by the one-dimensional wave
equation in polar coordinates

utt = c2(urr +
1

r
ur), 0 < r < a, t > 0

with initial condition
u(a, t) = 0, t > 0

and boundary conditions

u(r, 0) = f(r), ut(r, 0) = g(r), 0 < r < a.

(a) Show that the assumption u(r, t) = R(r)T (t) leads to the equation

1

c2

T ′′

T
=

1

R
R′′ +

1

r

R′

R
= λ.

(b) Show that λ < 0.

Problem 20.10
Cartesian coordinates and cylindrical coordinates are shown in Figure 20.1
below.

Figure 20.1
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(a) Show that x = r cos θ, y = r sin θ, z = z.
(b) Show that

uxx + uyy + uzz = urr +
1

r
ur +

1

r2
uθθ + uzz.

Problem 20.11
An important result about harmonic functions is the so-called the maximum
principle which states: Any harmonic function u(x, y) defined in a domain
Ω satisfies the inequality

min
(x,y)∈∂Ω

u(x, y) ≤ u(x, y) ≤ max
(x,y)∈∂Ω

u(x, y), ∀(x, y) ∈ Ω ∪ ∂Ω

where ∂Ω denotes the boundary of Ω.
Let u be harmonic in Ω = {(x, y) : x2 + y2 < 1} and satisfies u(x, y) = 2− x
for all (x, y) ∈ ∂Ω. Show that u(x, y) > 0 for all (x, y) ∈ Ω.

Problem 20.12
Let u be harmonic in Ω = {(x, y) : x2 +y2 < 1} and satisfies u(x, y) = 1 + 3x
for all (x, y) ∈ ∂Ω. Determine
(i) max(x,y)∈Ω u(x, y)
(ii) min(x,y)∈Ω u(x, y)
without solving ∆u = 0.

Problem 20.13
Let u1(x, y) and u2(x, y) be harmonic functions on a smooth domain Ω such
that

u1|∂Ω = g1(x, y) and u2|∂Ω = g3(x, y)

where g1 and g2 are continuous functions satisfying

max
(x,y)∈∂Ω

g1(x, y) < min
(x,y)∈∂Ω

g1(x, y).

Prove that u1(x, y) < u2(x, y) for all (x, y) ∈ Ω ∪ ∂Ω.

Problem 20.14
Show that rn cos (nθ) and rn sin (nθ) satisfy Laplace’s equation in polar co-
ordinates.
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Problem 20.15
Solve the Dirichlet problem

∆u = 0, 0 ≤ r < a, − π ≤ θ ≤ π

u(a, θ) = sin2 θ.

Problem 20.16
Solve Laplace’s equation

uxx + uyy = 0

outside a circular disk (r ≥ a) subject to the boundary condition

u(a, θ) = ln 2 + 4 cos 3θ.

You may assume that the solution remains bounded as r →∞.
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