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20 Laplace’s Equations in Circular Regions

In the previous section we solved the Dirichlet problem for Laplace’s equation
on a rectangular region. However, if the domain of the solution is a disc,
an annulus, or a circular wedge, it is useful to study the two-dimensional
Laplace’s equation in polar coordinates.

It is well known in calculus that the cartesian coordinates (z,y) and the polar
coordinates (r,0) of a point are related by the formulas

x=rcosf and y = rsinf
where 7 = (22 + 32)2 and tanf = 4. Using the chain rule we obtain

sin 6

Uy =UpTy + Upl, = cosOu, — U

Ugy =UgrTz + u:ceex

sin 0 sin 0
= { cosOu,, + Uy — Upg | COSO
r

r2
. cos sin 6 sin 6
+ | —sin Ou, + cos Ou,g — Uy — Ugg -
r r r
_ cos 6
Uy =UyTy + Ul = sin Ou, + Ug

Uyy =Uyr Ty + Uyply

. cos cos f .
= | sin Ou,, — ug + Upg | SIn 6
r

r2
. sin 6 cos cos
+ ( cos Ou,. + sin Qu,g — uy + Ugo )
r r r
Substituting these equations into Au = 0 we obtain
1 1
Upp + —Up + —ugg = 0. (20.1)
r r

Example 20.1
Find the solution to

Au=0, 2°+79°<a’
subject to
(i) Boundary condition: u(a,f) = f(0), 0<6 < 2.
(ii) Boundedness at the origin: |u(0,0)| < occ.
(iii) Periodicity: wu(r, 0 + 2m) = u(r,0), 0 <0 < 2.



Solution.

First, note that (iii) implies that u(r,0) = u(r,27) and uy(r,0) = ugy(r, 27).
Next, we will apply the method of separation of variables to (20.1). Suppose
that a solution u(r, 0) of (20.1) can be written in the form u(r, 0) = R(r)©(0).
Substituting in (20.1) we obtain

R/(10(0) + %R’(r)@(&) + T%R(m@"(e) 0

Dividing by RO (under the assumption that RO # 0) we obtain
©"(0) _ LR'(r)  R(r)

o) ~ " R R

The left-hand side is independent of r whereas the right-hand side is inde-
pendent of # so that there is a constant A such that
_9"0) _ LR'(r) | R(r)

6@ ' Rw) R

This results in the following ODEs
0"(0) +X6(0) =0 (20.2)

and
r*R"(r) +rR'(r) — AR(r) = 0. (20.3)

The second equation is known as Euler’s equation. Both of these equations
are easily solvable. To solve (20.2), We only have to add the appropriate
boundary conditions. We have ©(0) = O(27) and ©'(0) = ©'(27). The
periodicity of © implies that A = n? and © must be of the form

0,(0) = Al cosnf + B, sinnf,n=0,1,2---

The equation in R is of Euler type and its solution must be of the form
R(r) = r®. Since A = n?, the corresponding characteristic equation is

ala —1)r* + ar® — n?r* = 0.
Solving this equation we find @ = £n. Hence, we let

R.(r)=Cyr" + D,r " ,n € N.
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For n = 0, R = 1 is a solution. To find a second solution, we solve the

equation
r?R"+rR =0.

This can be done by dividing through by r and using the substitution S = R’
to obtain 7S’ + .S = 0. Solving this by noting that the left-hand side is just
(rS)" we find S = ¢. Hence, R = ¢ and this implies R(r) = C'lnr. Thus,
R =1 and R = Inr form a fundamental set of solutions of (20.3) and so a
general solution is given by

RQ(T) = CO + DO Inr.

By assumption (ii), u(r, #) must be bounded at r = 0, and so does R,,. Since
r~" and Inr are unbounded at » = 0, we must set Dy = D,, = 0. In this case,
the solutions to Euler’s equation are given by

R.(r)=Cyr", n=10,1,2,---.

Using the superposition principle, and combining the results obtained above,
we find

u(r,0) = Co + Z r" (A, cosnb + B, sinnf).

n=1

Now, using the boundary condition u(a, ) = f(0) we can write

f(0)=Co+ Z(a"An cosnf + a" By, sinnd)

n=1

which is usually written in a more convenient equivalent form by
ap - .
0)=—+ a, cosnf + b, sinnb).
10 =3+ + by sinnf)

It is obvious that a,, and b,, are the Fourier coefficients, and therefore can be
determined by the formulas

1 27
p = — f(0) cosnbdd, n=0,1,---
™ Jo
and
1 27
b, = — f(0)sinnddd, n=1,2,---

™ Jo



Finally, the general solution to our problem is given by

u(r,0) = Co + Z r"(Ay, cosnb + B, sinnf)

n=1

where

1 27

a, 1 21
A, =— = — f(0)cosnbdd, n=1,2,---
am™ a"m Jo

bn 1 2m ‘
B,=—=— f(0)sinnddd, n=1,2---

a™ a'm Jy
Example 20.2
Solve

Au=0,0<0<2m, 1<r<2

subject to

u(1,0) = u(2,0) =sinf, 0 <0 < 2.
Solution.

Use separation of variables. First, solving for ©(f), we see that in order to
ensure that the solution is 2r—periodic in 6, the eigenvalues are A = n?.
When solving the equation for R(r), we do NOT need to throw out solutions
which are not bounded as r — 0. This is because we are working in the
annulus where r is bounded away from 0 and oco. Therefore, we obtain the

general solution

u(r,0) = (Co+Cilnr)+ Z[(C’nr" + D,r~") cosnf+ (A,r" + B,r~") sin nd].

n=1

But -
Co + Z[(Cn + D,,) cosnb + (A, + B,,) sinnf] = sin 6
n=1

and

Co + Z[(Qﬂn + D, 27")cosnf + (A,2" + B,27")sinnf] = sin 6

n=1
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Hence, comparing coefficients we must have

Co =0
Cn+ D, =
A+ B, =0 (n#1)
A+ B =1

C,2" + D,27" =0
A2" +B,27" =0 (n#1)
24, +271B; =1.

Solving these equations we find Cy = C,, = D, = 0,A4; = %,Bl = %, and
A, = B, =0 for n # 1. Hence, the solution to the problem is
1 2
u(r,0) = 3 (7’—i— ;) sinf m

Example 20.3
Solve Laplace’s equation inside a 60° wedge of radius a subject to the bound-
ary conditions

T 1

1
ug(r,0) =0, ug(r,=) =0, u(a,d) = = cos90 — — cos 36.
3 3 9
You may assume that the solution remains bounded as r — 0.

Solution.
Separating the variables we obtain the eigenvalue problem

©"(6) + \O(h) = 0

0'(0) = & (g) —0.
As above, because of periodicity we expect the solution to be of the form

O(6) = Acos VA + Bsin V.

The condition ©'(0) = 0 implies B = 0. The condition ©' (3) = 0 implies
An = (3n)%, n=0,1,2,--- . Thus, the angular solution is

0,(0) = A,cos3nf, n=0,1,2,---



The corresponding solutions of the radial problem are
Rn(r) = Br*™ + Cpr™>", n=0,1,--- .
To obtain a solution that remains bounded as r — 0 we take C),, = 0. Hence,

u(r,0) = Z D,r*"cos3nb, n=0,1,2,---

n=0

Using the boundary condition

1 1
u(a,0) = 3 €8 96 — g cos 36

we obtain Dja® = —% and Dsa’ = % and 0 otherwise. Thus,

u(r,0) = % <£>gcos 96 — % (C>3cos 30m

a a
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Practice Problems

Problem 20.1
Solve the Laplace’s equation as in Example 20.1 in the unit disk with u(1,0) =
3sin 5.

Problem 20.2
Solve the Laplace’s equation in the upper half of the unit disk with u(1,6) =
T —0.

Problem 20.3
Solve the Laplace’s equation in the unit disk with w,(1,6) = 2 cos 26.

Problem 20.4

Consider .
u(r,0) = Co + Z r"(A, cosnb + B, sinnh)
n=1
with
==L 7 fo)a
°T2 T or ),
a, 1 2m
An = = f(¢)COS7”L¢d¢, 77’21727"'
a™ a"m Jg
by,

B, =

1 [ .
—52%/0 f(@)sinngdp, n=1,2,---

Using the trigonometric identity

cosacosb+ sinasinb = cos (a — b)

show that
1 2 o r\n
u(r,0) = %/0 f(o) |1+2 ; (5) cosn(f — (b)] do

Problem 20.5
(a) Using Euler’s formula from complex analysis e = cost+i sin ¢ show that

1 . )
cost = E(e’t +e ),



where 1 = /—1.
(b) Show that

1+22(>c08n0 ¢_1+Z(> 9¢+Z<> o—in(0—9)

(c) Let ¢ = 299 and ¢, = Ze~®=9) It is defined in complex analysis that

the absolute Value of a cornplex number z = x+iy is given by |2 = (22+y?)2.
Using these concepts, show that |¢;| < 1 and |go| < 1.

Problem 20.6

(a)Show that
i(0—9)

f: < > zn(@ ) re
a — ret(0=9)

n=1

and
—i(0—9)

S (f)" oin(o-g) — € T 7
— \a a— re-i0-¢)

Hint: Each sum is a geoemtric series with a ratio less than 1 in absolute
value so that these series converges.
(b) Show that

o 2 2

T\ a’—r
1+2Z(5> Cosn(0_¢):a2—2arcos(0—gb)+r2'

n=1

Problem 20.7

Show that
a2 — 2 [ f(®)
p— d )
u(r,0) o /0 a? — 2ar cos (6 — ¢) +1r? i

This is known as the Poisson formula in polar coordinates.

Problem 20.8
Solve

Upy + Uy =0, 2°+y*> <1

subject to
u(l,0) =0, —7<60<m.
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Problem 20.9

The vibrations of a symmetric circular membrane where the displacement
u(r,t) depends on r and ¢ only can be describe by the one-dimensional wave
equation in polar coordinates

1
Uy = (U +~1u,), 0<r<a, t>0

r

with initial condition
u(a,t) =0, t>0
and boundary conditions
u(r,0) = f(r), w(r,0)=g(r), 0<r<a

(a) Show that the assumption u(r,t) = R(r)T(t) leads to the equation

1™ 1., 1R
il LA T
(b) Show that A < 0.

Problem 20.10
Cartesian coordinates and cylindrical coordinates are shown in Figure 20.1
below.

z
[x,y,z:l = [r,é?,z:l
*
2
g et |
x e

Figure 20.1
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(a) Show that x = rcosf, y =rsinf, z=z.
(b) Show that

Uz + Uy + Uy = Upyp + ;ur + ﬁu%' + Uy,

Problem 20.11

An important result about harmonic functions is the so-called the maximum
principle which states: Any harmonic function u(z,y) defined in a domain
() satisfies the inequality

i ) <u(x,y) < y), Y(x,y) € QUIN
(Igl)lergQU(:v y) <u(r,y) < (x{g)aé>§QU(w y), V(x,y)

where 0€) denotes the boundary of €.
Let u be harmonic in Q = {(z,y) : * + y* < 1} and satisfies u(z,y) =2 — =z
for all (z,y) € 092. Show that u(z,y) > 0 for all (z,y) € .

Problem 20.12

Let u be harmonic in Q = {(z,y) : 22 +y* < 1} and satisfies u(x,y) = 1+ 3z
for all (z,y) € 0. Determine

(i) max(zy)eo u(r, y)

(i) mingy)eou(z,y)

without solving Au = 0.

Problem 20.13
Let uy(z,y) and ug(z,y) be harmonic functions on a smooth domain €2 such
that

U1|aQ = 91(5373/) and Uzyan = 93(1’,9)

where ¢g; and gy are continuous functions satisfying

a JY) < i ,Y).
Joax g1(z,y) oin g1(z,y)

Prove that u;(z,y) < us(z,y) for all (x,y) € QU K.

Problem 20.14
Show that 7™ cos (nf) and " sin (nf) satisfy Laplace’s equation in polar co-
ordinates.
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Problem 20.15
Solve the Dirichlet problem

Au=0, 0<r<a, —nw<60<m
u(a, ) = sin?6.

Problem 20.16
Solve Laplace’s equation
Uy + Uyy = 0

outside a circular disk (r > a) subject to the boundary condition
u(a,d) =12+ 4cos 36.

You may assume that the solution remains bounded as r — oo.



	20 Laplace's Equations in Circular Regions

