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2 Solutions to PDEs

By a classical solution or strong solution to a partial differential equation
we mean a smooth function (i.e. the function and its derivatives are contin-
uous up to a certain order on a common domain) that satisfies the equation.
That is, by plugging in the function and its derivatives in the differential
equation we obtain a true identity. A PDE might have many classical solu-
tions. To solve a PDE is to find all its classical solutions. In the case of
only two independent variables x and y, a classical solution u(x, y) is visu-
alized geometrically as a surface, called a solution surface or an integral
surface1 of the PDE in the (x, y, u) space.
Solving a partial differential equation is finding all the possible solutions.

Example 2.1
Show that u(x, t) = e−λ

2α2t(cosλx − sinλx) is a solution to the equation
ut − α2uxx = 0.

Solution.
Since

ut − α2uxx =− λ2α2e−λ
2α2t(cosλx− sinλx)

−α2e−λ
2α2t(−λ2 cosλx+ λ2 sinλx) = 0,

the given function is a classical solution to the given equation

Example 2.2
The function u(x, y) = x2 − y2 is a solution to Laplace’s equation

uxx + uyy = 0.

Represent this solution graphically.

Solution.
The given integral surface is the hyperbolic paraboloid shown in Figure 2.1.

1The idea behind the name is due to the fact that integration is being used to finding
the solution.
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Figure 2.1

Example 2.3
Find the general solution of uxy = 0.

Solution.
Integrating first we respect to y we find ux(x, y) = f(x), where f is an
arbitrary differentiable function. Integrating ux with respect to x we find
u(x, y) =

∫
f(x)dx+ g(y), where g is an arbitrary differentiable function

Note that u(x, y) =
∫
f(x)dx + g(y) in the previous example represents a

family of classical solutions to the given PDE. Such an expression involves
two arbitrary functions. This is in contrast to the family of solutions of an
ordinary differential equation which involves arbitrary constants.
Usually, a classical solution enjoys properties such as smootheness (i.e. dif-
ferentiability) and continuity. However, in the theory of non-linear pdes,
there are solutions that do not require the smoothness property. Such solu-
tions are called weak solutions or generalized solutions. For example,
u(x, y) = x is a classical solution to the differential equation uux = x. In
contrast, u(x, y) = |x| is a generalized solution since it is not differentiable
at (0,0). In this book, the word solution will refer to a classical solution.

Example 2.4
Show that u(x, t) = t+ 1

2
x2 is a classical solution to the PDE

ut = uxx. (2.1)
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Solution.
Assume that the domain of definition of u is D ⊂ R2. Since u, ut, ux, utx, uxx
exist and are continuous in D(i.e., u is smooth in D) and u satisfies equation
(2.1), we conclude that u is a classical solution to the given PDE

We next consider the structure of solutions to linear partial differential equa-
tions. To this end, consider the linear differential operator L as defined in
the previous section. The defining properties of linearity immediately imply
the key facts concerning homogeneous linear differential equations.

Theorem 2.1
The sum of two solutions to a homogeneous linear differential equation is
again a solution, as is the product of a solution by any constant.

Proof.
Let u1, u2 be solutions, meaning that L[u1] = 0 and L[u2] = 0. Then, thanks
to linearity,

L[u1 + u2] = L[u1] + L[u2] = 0,

and hence their sum u1 +u2 is a solution. Similarly, if α is any constant, and
u is any solution, then

L[αu] = αL[u] = α0 = 0,

and so the scalar multiple αu is also a solution

The following result is known as the superposition principle for homo-
geneous linear equations. It states that from given solutions to the equation
one can create many more solutions.

Theorem 2.2
If u1, · · · , un are solutions to a common homogeneous linear partial differen-
tial equation L[u] = 0, then the linear combination u = c1u1 + · · · + cnun is
a solution for any choice of constants c1, · · · , cn.

Proof.
The key fact is that, thanks to the linearity of L, for any sufficiently smooth
functions u1, · · · , un and any constants c1, · · · , cn,

L[u] =L[c1u1 + · · ·+ cnun] = L[c1u1 + · · ·+ cn−1un−1] + L[cnun]

= · · · = L[c1u1] + · · ·+ L[cnun] = c1L[u1] + · · ·+ cnL[un].
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Since L[u1] = 0, · · · , L[un] = 0, then the right hand side of the above equa-
tion vanishes, proving that u is also a solution to the homogeneous equation
L[u] = 0

As you have noticed by the above discussion, one or more solutions of a
linear homogeneous PDE leads to the creation of lots of solutions according
to the Principle of Superposition. In contrast, the Principle of Superposi-
tion does not apply to non-homogeneous linear PDEs as shown in the next
example.

Example 2.5
Consider the differential equation ux = 1.
(a) Show that the functions u1(x, y) = x and u2(x, y) = x + 1 are solutions
to the given differentail equation.
(b) Show that the function u(x, y) = u1(x, y) + u2(x, y) = 2x + 1 is not a
solution.

Solution.
(a) By simple differentiation we find ∂u1

∂x
= ∂u2

∂x
= 1.

(b) Since ∂u
∂x

= 2 6= 1, the function u(x, y) is not a solution

In physical applications, homogeneous linear equations model unforced sys-
tems that are subject to their own internal constraints. External forcing
is represented by an additional term that does not involve the dependent
variable. This results in the non-homogeneous equation

L[u] = f

where L is a linear partial differential operator, u is the dependent variable,
and f is a given non-zero function of the independent variables alone.
You already learned the basic philosophy for solving non-homogeneous linear
equations in your study of elementary ordinary differential equations. Step
one is to determine the general solution to the homogeneous equation. Step
two is to find a particular solution to the non-homogeneous version. The
general solution to the non-homogeneous equation is then obtained by adding
the two together. Here is the general version of this procedure.

Theorem 2.3
Let up be a particular solution to the non-homogeneous linear equation
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L[u] = f. Then any solution u to the non-homogenous equation can be
written as the sum of up + uh where uh is a solution to the homogenous
equation.

Proof.
Let us first show that u = up +uh is also a solution to L[u] = f. By linearity,

L[u] = L[up + uh] = L[up] + L[uh] = f + 0 = f.

To show that every solution to the non-homogeneous equation can be ex-
pressed in this manner, suppose u satisfies L[u] = f. Set w = u− up. Then,
by linearity,

L[w] = L[u− up] = L[u]− L[up] = 0,

and hence w is a solution to the homogeneous differential equation. Thus,
u = up + w

PDEs with Constraints
Also, as observed above, a linear partial differential equation has infinitely
many solutions described by the family of solutions. In most applications, the
family of solutions is of little use since it has to satisfy other supplementary
conditions, usually called initial or boundary conditions. These conditions
determine the unique solution of interest.
A boundary value problem is a partial differential equation where either
the unknown function or its derivatives have values assigned on the physical
boundary of the domain in which the problem is specified. These conditions
are called boundary conditions. For example, the domain of the following
problem is the square [0, 1]× [0, 1] with boundaries defined by x = 0, x = 1
for all 0 ≤ y ≤ 1 and y = 0, y = 1 for all 0 ≤ x ≤ 1.

uxx + uyy =0 if 0 < x, y < 1

u(x, 0) = u(x, 1) =0 if 0 ≤ x ≤ 1

ux(0, y) = ux(1, y) =0 if 0 ≤ y ≤ 1.

There are three types of boundary conditions which arise frequently in for-
mulating physical problems:

1. Dirichlet Boundary Conditions: In this case, the dependent func-
tion u is prescribed on the boundary of the bounded domain. For example, if
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the bounded domain is the rectangular plate 0 ≤ x ≤ L1 and 0 ≤ y ≤ L2, the
boundary conditions u(0, y), u(L1, y), u(x, 0), and u(x, L2) are prescribed.
The boundary conditions are called homogeneous if the dependent variable
is zero at any point on the boundary, otherwise the boundary conditions are
called non-homogeneous.

2. Neumann Boundary Conditions: In this case, first partial deriva-
tives are prescribed on the boundary of the bounded domain. For example,
the Neumann boundary conditions for a rod of length L, where 0 ≤ x ≤ L,
are of the form ux(0, t) = α and ux(L, t) = β, where α and β are constants.

3. Robin Boundary Conditions: This is a specification of a linear com-
bination of the values of a function and the values of its derivative on the
boundary of the domain. For example, if the physical domain if the inter-
val 0 ≤ x ≤ L then an example of a Robin boundary condition could be
ux(L, t) + αu(L, t) = 0.

An initial value problem is a partial differential equation together with
a set of additional conditions on the unknown function or its derivatives at
points in the given domain of the solution. These conditions are called initial
value conditions. For example, the transport equation

ut(x, t) + cux(x, t) =0

u(x, 0) =f(x).

It can be shown that initial conditions for a linear PDE are sufficient for the
existence of a unique solution.

We say that an initial and/or boundary value problem associated with a
PDE is well-posed if it has a solution which is unique and depends con-
tinuously on the data given in the problem. The last condition, namely the
continuous dependence is important in physical problems. This condition
means that the solution changes by a small amount when the conditions
change a little. Such solutions are said to be stable.
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Example 2.6
For x ∈ R and t > 0 we consider the initial value problem

utt − uxx =0

u(x, 0) = ut(x, 0) =0.

Clearly, u(x, t) = 0 is a solution to this problem.
(a) Let 0 < ε << 1 be a very small number. Show that the function uε(x, t) =
ε2 sin

(
x
ε

)
sin
(
t
ε

)
is a solution to the initial value problem

utt − uxx =0

u(x, 0) =0

ut(x, 0) =ε sin
(x
ε

)
.

(b) Show that sup{|uε(x, t) − u(x, t)| : x ∈ R, t > 0} = ε2. Thus, a small
change in the initial data leads to a small change in the solution. Hence, the
initial value problem is well-posed.

Solution.
(a) We have

∂uε
∂t

=ε sin
(x
ε

)
cos

(
t

ε

)
∂2uε
∂t2

=− sin
(x
ε

)
sin

(
t

ε

)
∂uε
∂x

=ε cos
(x
ε

)
sin

(
t

ε

)
∂2uε
∂x2

=− sin
(x
ε

)
sin

(
t

ε

)
.

Thus, ∂2uε
∂t2
− ∂2uε

∂x2
= 0. Moreover, uε(x, 0) = 0 and ∂

∂t
uε(x, 0) = ε sin

(
x
ε

)
.

(b) We have

sup{|uε(x, t)− u(x, t)| : x ∈ R, t > 0} =ε2 sup{
∣∣∣∣sin(xε ) sin

(
t

ε

)∣∣∣∣ : x ∈ R, t > 0}

=ε2

A problem that is not well-posed is referred to as an ill-posed problem. We
illustrate this concept in the next example.
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Example 2.7
For x ∈ R and t > 0 we consider the initial value problem

utt + uxx =0

u(x, 0) = ut(x, 0) =0.

Clearly, u(x, t) = 0 is a solution to this problem.
(a) Let 0 < ε << 1 be a very small number. Show that the function uε(x, t) =
ε2 sin

(
x
ε

)
sinh

(
t
ε

)
, where

sinhx =
ex − e−x

2
is a solution to the problem

utt + uxx =0

u(x, 0) =0

ut(x, 0) =ε sin
(x
ε

)
.

(b) Show that sup{|uε(x, t)− u(x, t)| : x ∈ R} = ε2
∣∣sinh

(
t
ε

)∣∣ .
(c) Find limt→∞ sup{|uε(x, t)− u(x, t)| : x ∈ R}.

Solution.
(a) We have

∂uε
∂t

=ε sin
(x
ε

)
cosh

(
t

ε

)
∂2uε
∂t2

= sin
(x
ε

)
sinh

(
t

ε

)
∂uε
∂x

=ε cos
(x
ε

)
sinh

(
t

ε

)
∂2uε
∂x2

=− sin
(x
ε

)
sinh

(
t

ε

)
.

Thus, ∂2uε
∂t2

+ ∂2uε
∂x2

= 0. Moreover, uε(x, 0) = 0 and ∂
∂t
uε(x, 0) = ε sin

(
x
ε

)
.

(b) We have

sup{|uε(x, t)− u(x, t)| : x ∈ R} =ε2 sup{
∣∣∣∣sinh

(
t

ε

)
sin
(x
ε

)∣∣∣∣ : x ∈ R}

=ε2
∣∣∣∣sinh

(
t

ε

)∣∣∣∣ .
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(c) We have

lim
t→∞

sup{|uε(x, t)− u(x, t)| : x ∈ R} = lim
t→∞

ε2
∣∣∣∣sinh

(
t

ε

)∣∣∣∣ =∞.

Thus, a small change in the initial data leads to a catastrophically change in
the solution. Hence, the given problem is ill-posed
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Practice Problems

Problem 2.1
Determine a and b so that u(x, y) = eax+by is a solution to the equation

uxxxx + uyyyy + 2uxxyy = 0.

Problem 2.2
Consider the following differential equation

tuxx − ut = 0.

Suppose u(t, x) = X(x)T (t). Show that there is a constant λ such that
X ′′ = λX and T ′ = λtT.

Problem 2.3
Consider the initial value problem

xux + (x+ 1)yuy = 0, x, y > 1

u(1, 1) = e.

Show that u(x, y) = xex

y
is the solution to this problem.

Problem 2.4
Show that u(x, y) = e−2y sin (x− y) is the solution to the initial value prob-
lem {

ux + uy + 2u = 0 for x, y > 1
u(x, 0) = sin x.

Problem 2.5
Solve each of the following differential equations:
(a) du

dx
= 0 where u = u(x).

(b) ∂u
∂x

= 0 where u = u(x, y).

Problem 2.6
Solve each of the following differential equations:
(a) d2u

dx2
= 0 where u = u(x).

(b) ∂2u
∂x∂y

= 0 where u = u(x, y).
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Problem 2.7
Show that u(x, y) = f(y+ 2x) +xg(y+ 2x), where f and g are two arbitrary
twice differentiable functions, satisfy the equation

uxx − 4uxy + 4uyy = 0.

Problem 2.8
Find the differential equation whose general solution is given by u(x, t) =
f(x−ct)+g(x+ct), where f and g are arbitrary twice differentiable functions
in one variable.

Problem 2.9
Let p : R→ R be a differentiable function in one variable. Prove that

ut = p(u)ux

has a solution satisfying u(x, t) = f(x + p(u)t), where f is an arbitrary
differentiable function. Then find the general solution to ut = (sinu)ux.

Problem 2.10
Find the general solution to the pde

uxx + 2uxy + uyy = 0.

Hint: See Problem 1.2.

Problem 2.11
Let u(x, t) be a function such that uxx exists and u(0, t) = u(L, t) = 0 for all
t ∈ R. Prove that ∫ L

0

uxx(x, t)u(x, t)dx ≤ 0.

Problem 2.12
Consider the initial value problem

ut + uxx = 0, x ∈ R, t > 0

u(x, 0) = 1.

(a) Show that u(x, t) ≡ 1 is a solution to this problem.

(b) Show that un(x, t) = 1 + en
2t

n
sinnx is a solution to the initial value

problem
ut + uxx = 0, x ∈ R, t > 0
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u(x, 0) = 1 +
sinnx

n
.

(c) Find sup{|un(x, 0)− 1| : x ∈ R}.
(d) Find sup{|un(x, t)− 1| : x ∈ R}.
(e) Show that the problem is ill-posed.

Problem 2.13
Find the general solution of each of the following PDEs by means of direct
integration.
(a) ux = 3x2 + y2, u = u(x, y).
(b) uxy = x2y, u = u(x, y).
(c) uxyz = 0, u = u(x, y, z).
(d) uxtt = e2x+3t, u = u(x, t).

Problem 2.14
Consider the second-order PDE

uxx + 4uxy + 4uyy = 0.

(a) Use the change of variables v(x, y) = y − 2x and w(x, y) = x to show
that uww = 0.
(b) Find the general solution to the given PDE.

Problem 2.15
Derive the general solution to the PDE

utt = c2uxx

by using the change of variables v = x+ ct and w = x− ct.
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