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19 Elliptic Type: Laplace’s Equations in Rect-

angular Domains

Boundary value problems are of great importance in physical applications.
Mathematically, a boundary-value problem consists of finding a function
which satisfies a given partial differential equation and particular bound-
ary conditions. Physically speaking, the problem is independent of time,
involving only space coordinates.
Just as initial-value problems are associated with hyperbolic PDE, bound-
ary value problems are associated with PDE of elliptic type. In contrast to
initial-value problems, boundary-value problems are considerably more diffi-
cult to solve.
The main model example of an elliptic type PDE is the Laplace equation

∆u = uxx + uyy = 0 (19.1)

where the symbol ∆ is referred to as the Laplacian. Solutions of this equa-
tion are called harmonic functions.

Example 19.1
Show that, for all (x, y) 6= (0, 0), u(x, y) = ax2 − ay2 + cx + dy + e is a
harmonic function, where a, b, c, d, and e are constants.

Solution.
We have

ux =2ax+ c

uxx =2a

uy =− 2ay + d

uyy =− 2a.

Plugging these expressions into the equation we find uxx + uyy = 0. Hence,
u(x, y) is harmonic

The Laplace equation is arguably the most important differential equation in
all of applied mathematics. It arises in an astonishing variety of mathemati-
cal and physical systems, ranging through fluid mechanics, electromagnetism,
potential theory, solid mechanics, heat conduction, geometry, probability,
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number theory, and on and on.
There are two main modifications of the Laplace equation: the Poisson
equation (a non-homogeneous Laplace equation):

∆u = f(x, y)

and the eigenvalue problem (the Helmholtz equation):

∆u = λu, λ ∈ R.

Solving Laplace’s Equation (19.1)
Note first that both independent variables are spatial variables and each
variable occurs in a 2nd order derivative and so we will need two boundary
conditions for each variable a total of four boundary conditions.
Consider (19.1) in the rectangle

Ω = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}

with the Dirichlet boundary conditions

u(0, y) = f1(y), u(a, y) = f2(y), u(x, 0) = g1(x), u(x, b) = g2(x)

where 0 ≤ x ≤ a and 0 ≤ y ≤ b.
The separation of variables method is most successful when the boundary
conditions are homogeneous. Thus, solving the Laplace’s equation in Ω re-
quires solving four initial boundary conditions problems, where in each prob-
lem three of the four conditions are homogeneous. The four problems to be
solved are

(I)

 uxx + uyy = 0
u(0, y) = f1(y),

u(a, y) = u(x, 0) = u(x, b) = 0
(II)

 uxx + uyy = 0
u(a, y) = f2(y),

u(0, y) = u(x, 0) = u(x, b) = 0

(III)

 uxx + uyy = 0
u(x, 0) = g1(x),

u(0, y) = u(a, y) = u(x, b) = 0
(IV )

 uxx + uyy = 0
u(x, b) = g2(x),

u(0, y) = u(a, y) = u(x, 0) = 0.

If we let ui(x, y), i = 1, 2, 3, 4, denote the solution of each of the above
problems, then the solution to our original system will be

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).
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In each of the above problems, we will apply separation of variables to (19.1)
and find a product solution that will satisfy the differential equation and the
three homogeneous boundary conditions. Using the Principle of Superposi-
tion we will find a solution to the problem and then apply the final boundary
condition to determine the value of the constant(s) that are left in the prob-
lem. The process is nearly identical in many ways to what we did when we
were solving the heat equation.
We will illustrate how to find u(x, y) = u4(x, y). So let’s assume that the so-
lution can be written in the form u(x, y) = X(x)Y (y). Substituting in (19.1),
we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, that is u is the non-trivial solution. Dividing

for X(x)Y (y) and subtracting Y ′′(y)
Y (y)

from both sides, we find:

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b

u(0, y) = 0 = X(0)Y (y) =⇒ X(0) = 0

u(a, y) = 0 = X(a)Y (y) =⇒ X(a) = 0

u(x, 0) = 0 = X(x)Y (0) =⇒ Y (0) = 0

u(x, b) = g2(x) = X(x)Y (b).

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the first equation: since X ′′ − λX = 0 the solution depends on the
sign of λ. If λ = 0 thenX(x) = Ax+B. Now, the conditionsX(0) = X(a) = 0
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imply A = B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ > 0 then
X(x) = Ae

√
λx + Be−

√
λx. Now, the conditions X(0) = X(a) = 0, λ 6= 0

imply A = B = 0 and hence the solution is the trivial solution. Hence, in
order to have a nontrivial solution we must have λ < 0. In this case,

X(x) = A cos
√
−λx+B sin

√
−λx.

The condition X(0) = 0 implies A = 0. The condition X(a) = 0 implies
B sin

√
−λa = 0. We must have B 6= 0 otherwise X(x) = 0 and this leads to

the trivial solution. Since B 6= 0, we obtain sin
√
−λa = 0 or

√
−λa = nπ

where n ∈ N. Solving for λ we find λn = −n2π2

a2
. Thus, we obtain infinitely

many solutions given by

Xn(x) = sin
nπ

a
x, n ∈ N.

Now, solving the equation
Y ′′ + λY = 0

we obtain

Yn(y) = ane
√
−λny + bne

−
√
−λny = An cosh

√
−λny +Bn sinh

√
−λny, n ∈ N.

Using the boundary condition Y (0) = 0 we obtain An = 0 for all n ∈ N.
Hence, the functions

un(x, y) = Bn sin
(nπ
a
x
)

sinh
(nπ
a
y
)
, n ∈ N

satisfy (19.1) and the boundary conditions u(0, y) = u(a, y) = u(x, 0) = 0.
Now, in order for these solutions to satisfy the boundary value condition
u(x, b) = g2(x), we invoke the superposition principle of linear PDE to write

u(x, y) =
∞∑
n=1

Bn sin
(nπ
a
x
)

sinh
(nπ
a
y
)
. (19.2)

To determine the unknown constants Bn we use the boundary condition
u(x, b) = g2(x) in (19.2) to obtain

g2(x) =
∞∑
n=1

(
Bn sinh

(nπ
a
b
))

sin
(nπ
a
x
)
.
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Since the right-hand side is the Fourier sine series of g2(x) on the interval
[0, a], the coefficients Bn are given by

Bn =

[
2

a

∫ a

0

g2(x) sin
(nπ
a
x
)
dx

]
[sinh

(nπ
a
b
)

]−1. (19.3)

Thus, the solution to the Laplace’s equation is given by (19.2) with the B′ns
calculated from (19.3).

Example 19.2
Solve 

uxx + uyy = 0
u(0, y) = f1(y),

u(a, y) = u(x, 0) = u(x, b) = 0.

Solution.
Assume that the solution can be written in the form u(x, y) = X(x)Y (y).
Substituting in (19.1), we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y)

from both sides, we find:

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b

u(0, y) = f1(y) = X(0)Y (y)

u(a, y) = 0 = X(a)Y (y) =⇒ X(a) = 0
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u(x, 0) = 0 = X(x)Y (0) =⇒ Y (0) = 0

u(x, b) = 0 = X(x)Y (b) =⇒ Y (b) = 0.

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the second equation: since Y ′′+λY = 0 the solution depends on the
sign of λ. If λ = 0 then Y (y) = Ay+B. Now, the conditions Y (0) = Y (b) = 0
imply A = B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ < 0 then
Y (y) = Ae

√
−λy + Be−

√
−λy. Now, the condition Y (0) = Y (b) = 0 imply

A = B = 0 and hence the solution is the trivial solution. Hence, in order to
have a nontrivial solution we must have λ > 0. In this case,

Y (y) = A cos
√
λy +B sin

√
λy.

The condition Y (0) = 0 implies A = 0. The condition Y (b) = 0 implies
B sin

√
λb = 0. We must have B 6= 0 otherwise Y (y) = 0 and this leads to

the trivial solution. Since B 6= 0, we obtain sin
√
λb = 0 or

√
λb = nπ where

n ∈ N. Solving for λ we find λn = n2π2

b2
. Thus, we obtain infinitely many

solutions given by

Yn(y) = sin
(nπ
b
y
)
, n ∈ N.

Now, solving the equation

X ′′ − λX = 0, λ > 0

we obtain

Xn(x) = ane
√
λnx + bne

−
√
λnx = An cosh

(nπ
b
x
)

+Bn sinh
(nπ
b
x
)
, n ∈ N.

However, this is not really suited for dealing with the boundary condition
X(a) = 0. So, let’s also notice that the following is also a solution.

Xn(x) = An cosh
(nπ
b

(x− a)
)

+Bn sinh
(nπ
b

(x− a)
)
, n ∈ N.

Now, using the boundary condition X(a) = 0 we obtain An = 0 for all n ∈ N.
Hence, the functions

un(x, y) = Bn sin
(nπ
b
y
)

sinh
(nπ
b

(x− a)
)
, n ∈ N
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satisfy (19.1) and the boundary conditions u(a, y) = u(x, 0) = u(x, b) = 0.
Now, in order for these solutions to satisfy the boundary value condition
u(0, y) = f1(y), we invoke the superposition principle of linear PDE to write

u(x, y) =
∞∑
n=1

Bn sin
(nπ
b
y
)

sinh
(nπ
b

(x− a)
)
. (19.4)

To determine the unknown constants Bn we use the boundary condition
u(0, y) = f1(y) in (19.4) to obtain

f1(y) =
∞∑
n=1

(
Bn sinh

(
−nπ
b
a
))

sin
(nπ
b
y
)
.

Since the right-hand side is the Fourier sine series of f1(y) on the interval
[0, b], the coefficients Bn are given by

Bn =

[
2

b

∫ b

0

f1(y) sin
(nπ
b
y
)
dy

] [
sinh

(
−nπ
b
a
)]−1

. (19.5)

Thus, the solution to the Laplace’s equation is given by (19.4) with the B′ns
calculated from (19.5)

Example 19.3
Solve

uxx + uyy = 0, 0 < x < L, 0 < y < H

u(0, y) = u(L, y) = 0, 0 < y < H

u(x, 0) = uy(x, 0), u(x,H) = f(x), 0 < x < L.

Solution.
Using separation of variables we find

X ′′

X
= −Y

′′

Y
= λ.

We first solve {
X ′′ − λX = 0 0 < x < L

X(0) = X(L) = 0.

We find λn = −n2π2

L2 and

Xn(x) = sin
nπ

L
x, n ∈ N.
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Next we need to solve{
Y ′′ + λY = 0 0 < y < H

Y (0)− Y ′(0) = 0.

The solution of the ODE is

Yn(y) = An cosh
(nπ
L
y
)

+Bn sinh
(nπ
L
y
)
, n ∈ N.

The boundary condition Y (0)− Y ′(0) = 0 implies

An −Bn
nπ

L
= 0.

Hence,

Yn = Bn
nπ

L
cosh

(nπ
L
y
)

+Bn sinh
(nπ
L
y
)
, n ∈ N.

Using the superposition principle and the results above we have

u(x, y) =
∞∑
n=1

Bn sin
nπ

L
x
[nπ
L

cosh
(nπ
L
y
)

+ sinh
(nπ
L
y
)]
.

Substituting in the condition u(x,H) = f(x) we find

f(x) =
∞∑
n=1

Bn sin
nπ

L
x
[nπ
L

cosh
(nπ
L
H
)

+ sinh
(nπ
L
H
)]
.

Recall the Fourier sine series of f on [0, L] given by

f(x) =
∞∑
n=1

An sin
nπ

L
x

where

An =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx.

Thus, the general solution is given by

u(x, y) =
∞∑
n=1

Bn sin
nπ

L
x
[nπ
L

cosh
(nπ
L
y
)

+ sinh
(nπ
L
y
)]
.

with the Bn satisfying

Bn

[nπ
L

cosh
(nπ
L
H
)

+ sinh
(nπ
L
H
)]

=
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx
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Practice Problems
Problem 19.1
Solve 

uxx + uyy = 0
u(a, y) = f2(y),

u(0, y) = u(x, 0) = u(x, b) = 0.

Problem 19.2
Solve 

uxx + uyy = 0
u(x, 0) = g1(x),

u(0, y) = u(a, y) = u(x, b) = 0.

Problem 19.3
Solve 

uxx + uyy = 0
u(x, 0) = u(0, y) = 0,

u(1, y) = 2y, u(x, 1) = 3 sin πx+ 2x

where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Hint: Define U(x, y) = u(x, y)− 2xy.

Problem 19.4
Show that u(x, y) = x2 − y2 and u(x, y) = 2xy are harmonic functions.

Problem 19.5
Solve

uxx + uyy = 0, 0 ≤ x ≤ L, − H

2
≤ y ≤ H

2
subject to

u(0, y) = u(L, y) = 0, − H

2
< y <

H

2

u(x,−H
2

) = f1(x), u(x,
H

2
) = f2(x), 0 ≤ x ≤ L.

Problem 19.6
Consider a complex valued function f(z) = u(x, y)+ iv(x, y) where i =

√
−1.

We say that f is holomorphic or analytic if and only if f can be expressed
as a power series in z, i.e.

u(x, y) + iv(x, y) =
∞∑
n=0

anz
n.

(a) By differentiating with respect to x and y show that
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ux = vy and uy = −vx

These are known as the Cauchy-Riemann equations.
(b) Show that ∆u = 0 and ∆v = 0.

Problem 19.7
Show that Laplace’s equation in polar coordinates is given by

urr +
1

r
ur +

1

r2
uθθ = 0.

Problem 19.8
Solve

uxx + uyy = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

subject to

u(x, 0) = 0, u(x, 3) =
x

2

u(0, y) = sin

(
4π

3
y

)
, u(2, y) = 7.

Problem 19.9
Solve

uxx + uyy = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H

subject to

uy(x, 0) = 0, u(x,H) = 0

u(0, y) = u(L, y) = 4 cos
( πy

2H

)
.

Problem 19.10
Solve

uxx + uyy = 0, x > 0, 0 ≤ y ≤ H

subject to

u(0, y) = f(y), |u(x, 0)| <∞

uy(x, 0) = uy(x,H) = 0.
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Problem 19.11
Consider Laplace’s equation inside a rectangle

uxx + uyy = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H

subject to the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0)−uy(x, 0) = 0, u(x,H) = 20 sin
(πx
L

)
−5 sin

(
3πx

L

)
.

Find the solution u(x, y).

Problem 19.12
Solve Laplace’e equation uxx + uyy = 0 in the rectangle 0 < x, y < 1 subject
to the conditions

u(0, y) = u(1, y) = 0, 0 < y < 1

u(x, 0) = sin (2πx), uy(x, 0) = −2π sin (2πx), 0 < x < 1.

Problem 19.13
Find the solution to Laplace’s equation on the rectangle 0 < x < 1, 0 < y < 1
with boundary conditions

u(x, 0) = 0, u(x, 1) = 1

ux(0, y) = ux(1, y) = 0.

Problem 19.14
Solve Laplace’s equation on the rectangle 0 < x < a, 0 < y < b with the
boundary conditions

ux(0, y) = −a, ux(a, y) = 0

uy(x, 0) = b, uy(x, b) = 0.

Problem 19.15
Solve Laplace’s equation on the rectangle 0 < x < π, 0 < y < 2 with the
boundary conditions

u(0, y) = u(π, y) = 0

uy(x, 0) = 0, uy(x, 2) = 2 sin 3x− 5 sin 10x.
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