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18 Solutions of the Heat Equation by the Sep-

aration of Variables Method

In this section we apply the method of separation of variables in solving the
one spatial dimension of the heat equation.

The Heat Equation with Dirichlet Boundary Conditions
Consider the problem of finding all nontrivial solutions to the heat equation
ut = kuxx that satisfies the initial time condition u(x, 0) = f(x) and the
Dirichlet boundary conditions u(0, t) = u(L, t) = 0 (that is, the endpoints
are assumed to be at zero temperature) with u not the trivial solution. Let’s
assume that the solution can be written in the form u(x, t) = X(x)T (t).
Substituting into the heat equation we obtain

X ′′

X
=

T ′

kT
.

Since the LHS only depends on x and the RHS only depends on t, there must
be a constant λ such that

X′′

X
= λ and T ′

kT
= λ.

This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.

As far as the boundary conditions, we have

u(0, t) = 0 = X(0)T (t) =⇒ X(0) = 0

and
u(L, t) = 0 = X(L)T (t) =⇒ X(L) = 0.

Note that T is not the zero function for otherwise u ≡ 0 and this contradicts
our assumption that u is the non-trivial solution.
Next, we consider the three cases of the sign of λ.
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Case 1: λ = 0
In this case, X ′′ = 0. Solving this equation we find X(x) = ax + b. Since
X(0) = 0 we find b = 0. Since X(L) = 0 we find a = 0. Hence, X ≡ 0 and
u(x, t) ≡ 0. That is, u is the trivial solution.

Case 2: λ > 0
In this case, X(x) = Ae

√
λx+Be−

√
λx. Again, the conditions X(0) = X(L) =

0 imply A = B = 0 and hence the solution is the trivial solution.

Case 3: λ < 0
In this case, X(x) = A cos

√
−λx + B sin

√
−λx. The condition X(0) = 0

implies A = 0. The condition X(L) = 0 implies B sin
√
−λL = 0. We must

have B 6= 0 otherwise X(x) = 0 and this leads to the trivial solution. Since
B 6= 0, we obtain sin

√
−λL = 0 or

√
−λL = nπ where n ∈ N. Solving for λ

we find λ = −n2π2

L2 . Thus, we obtain infinitely many solutions given by

Xn(x) = An sin
nπ

L
x, n = 1, 2, · · · .

Now, solving the equation
T ′ − λkT = 0

by the method of separation of variables we obtain

Tn(t) = Bne
−n

2π2

L2 kt, n = 1, 2, · · ·

Hence, the functions

un(x, t) = Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt, n = 1, 2, · · ·

satisfy ut = kuxx and the boundary conditions u(0, t) = u(L, t) = 0.
Now, in order for these solutions to satisfy the initial value condition u(x, 0) =
f(x), we invoke the superposition principle of linear PDE to write

u(x, t) =
∞∑
n=1

Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt. (18.1)

To determine the unknown constants Cn we use the initial condition u(x, 0) =
f(x) in (18.1) to obtain

f(x) =
∞∑
n=1

Cn sin
(nπ
L
x
)
.
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Since the right-hand side is the Fourier sine series of f on the interval [0, L],
the coefficients Cn are given by

Cn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx. (18.2)

Thus, the solution to the heat equation is given by (18.1) with the C ′ns cal-
culated from (18.2).

The Heat Equation with Neumann Boundary Conditions
When both ends of the bar are insulated, that is, there is no heat flow out
of them, we use the boundary conditions

ux(0, t) = ux(L, t) = 0.

In this case, the general form of the heat equation initial boundary value
problem is to find u(x, t) satisfying

ut(x, t) =kuxx(x, t), 0 ≤ x ≤ L, t > 0

u(x, 0) =f(x), 0 ≤ x ≤ L

ux(0, t) =ux(L, t) = 0, t > 0.

Since 0 = ux(0, t) = X ′(0)T (t) we obtain X ′(0) = 0. Likewise, 0 = ux(L, t) =
X ′(L)T (t) implies X ′(L) = 0. We again consider the following three cases:
• If λ = 0 then X(x) = A + Bx. Since X ′(0) = 0, we find B = 0. Thus,
X(x) = A and T (t) = constant so that u(x, t) = constant which is impossible
if f(x) is not the constant function.
• If λ > 0 then a simple calculation shows that u(x, t) is the trivial solution.
Again, because of the condition u(x, 0) = f(x), this solution is discarded.
• If λ < 0 then X(x) = A cos

√
−λx + B sin

√
−λx and upon differentiation

with respect to x we find

X ′(x) = −
√
−λA sin

√
−λx+

√
−λB cos

√
−λx.

The conditionsX ′(0) = X ′(L) = 0 imply
√
−λB = 0 and

√
−λA sin

√
−λL =

0. Hence, B = 0 and λ = −n2π2

L2 and

Xn(x) = An cos
(nπ
L
x
)
, n = 1, 2, · · ·
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and

un(x, t) = Cn cos
(nπ
L
x
)
e−

n2π2

L2 kt.

By the superposition principle, the required solution to the heat equation
with Neumann boundary conditions is given by

u(x, t) =
∞∑
n=1

Cn cos
(nπ
L
x
)
e−

n2π2

L2 kt.

In order to satisfy the initial condition u(x, 0) = f(x), we let

u(x, t) =
C0

2
+
∞∑
n=1

Cn cos
(nπ
L
x
)
e−

n2π2

L2 kt

where

Cn =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx, n = 0, 1, 2, · · · .
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Practice Problems

Problem 18.1
Find the temperature in a bar of length 2 whose ends are kept at zero
and lateral surface insulated if the initial temperature is f(x) = sin

(
π
2
x
)

+
3 sin

(
5π
2
x
)
.

Problem 18.2
Find the temperature in a homogeneous bar of heat conducting material of
length L with its end points kept at zero and initial temperature distribution
given by f(x) = xd

L2 (L− x), 0 ≤ x ≤ L.

Problem 18.3
Find the temperature in a thin metal rod of length L, with both ends insu-
lated (so that there is no passage of heat through the ends) and with initial
temperature in the rod f(x) = sin

(
π
L
x
)
.

Problem 18.4
Solve the following heat equation with Dirichlet boundary conditions

ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) =

{
1 0 ≤ x < L

2

2 L
2
≤ x ≤ L.

Problem 18.5
Solve

ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) = 6 sin

(
9π

L
x

)
.

Problem 18.6
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) =

{
0 0 ≤ x < L

2

1 L
2
≤ x ≤ L.
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Problem 18.7
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) = 6 + 4 cos

(
3π

L
x

)
.

Problem 18.8
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) = −3 cos

(
8π

L
x

)
.

Problem 18.9
Find the general solution u(x, t) of

ut = uxx − u, 0 < x < L, t > 0

ux(0, t) = 0 = ux(L, t), t > 0.

Briefly describe its behavior as t→∞.

Problem 18.10 (Energy method)
Let u1 and u2 be two solutions to the Neumann boundary value problem

ut = uxx − u, 0 < x < 1, t > 0

ux(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = g(x), 0 < x < 1

Define w(x, t) = u1(x, t)− u2(x, t).
(a) Show that w satisfies the initial value problem

wt = wxx − w, 0 < x < 1, t > 0

wx(0, t) = wx(1, t) = w(x, 0) = 0, 0 < x < 1, t > 0

(b) Define E(t) =
∫ 1

0
w2(x, t)dx ≥ 0 for all t ≥ 0. Show that E ′(t) ≤ 0.

Hence, 0 ≤ E(t) ≤ E(0) for all t > 0.
(c) Show that E(t) = 0, w(x, t) = 0. Hence, conclude that u1 = u2.
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Problem 18.11
Consider the heat induction in a bar where the left end temperature is main-
tained at 0, and the right end is perfectly insulated. We assume k = 1 and
L = 1.
(a) Derive the boundary conditions of the temperature at the endpoints.
(b) Following the separation of variables approach, derive the ODEs for X
and T.
(c) Consider the equation in X(x). What are the values of X(0) and X ′(1)?
Show that solutions of the form X(x) = sin

√
−λx satisfy the ODE and one

of the boundary conditions. Can you choose a value of λ so that the other
boundary condition is also satisfied?

Problem 18.12
Using the method of separation of variables find the solution of the heat
equation

ut = kuxx

satisfying the following boundary and initial conditions:
(a) u(0, t) = u(L, t) = 0, u(x, 0) = 6 sin

(
9πx
L

)
(b) u(0, t) = u(L, t) = 0, u(x, 0) = 3 sin

(
πx
L

)
− sin

(
3πx
L

)
Problem 18.13
Using the method of separation of variables find the solution of the heat
equation

ut = kuxx

satisfying the following boundary and initial conditions:
(a) ux(0, t) = ux(L, t) = 0, u(x, 0) = cos

(
πx
L

)
+ 4 cos

(
5πx
L

)
.

(b) ux(0, t) = ux(L, t) = 0, u(x, 0) = 5.

Problem 18.14
Find the solution of the following heat conduction partial differential equation

ut = 8uxx, 0 < x < 4π, t > 0

u(0, t) = u(4π, t) = 0, t > 0

u(x, 0) = 6 sinx, 0 < x < 4π.
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