16 Fourier Sines Series and Fourier Cosines Series

In this section we discuss some important properties of Fourier series when the underlying function f is either even or odd.
A function f is odd if it satisfies $f(-x)=-f(x)$ for all x in the domain of f whereas f is even if it satisfies $f(-x)=f(x)$ for all x in the domain of f.

Example 16.1

Show the following
(a) If f and g are either both even or both odd then $f g$ is even.
(b) If f is odd and g is even then $f g$ is odd.

Solution.

(a) Suppose that both f and g are even. Then $(f g)(-x)=f(-x) g(-x)=$ $f(x) g(x)=(f g)(x)$. That is, $f g$ is even. Now, suppose that both f and g are odd. Then $(f g)(-x)=f(-x) g(-x)=[-f(x)][-g(x)]=(f g)(x)$. That is, $f g$ is even.
(b) f is odd and g is even. Then $(f g)(-x)=f(-x) g(-x)=-f(x) g(x)=$ $-(f g)(x)$. That is, $f g$ is odd

Example 16.2

(a) Show that for any even function $f(x)$ defined on the interval $[-L, L]$, we have

$$
\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x
$$

(b) Show that for any odd function $f(x)$ defined on the interval $[-L, L]$, we have

$$
\int_{-L}^{L} f(x) d x=0
$$

Solution.

(a) Since $f(x)$ is even, we have $f(-x)=f(x)$ for all x in $[-L, L]$. Thus,

$$
\int_{-L}^{0} f(x) d x=\int_{-L}^{0} f(-x) d x=-\int_{L}^{0} f(u) d u=\int_{0}^{L} f(x) d x
$$

For this, it follows that

$$
\int_{-L}^{L} f(x) d x=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x
$$

(b) Since $f(x)$ is odd, we have $f(-x)=-f(x)$ for all x in $[-L, L]$. Thus,

$$
\int_{-L}^{0} f(x) d x=\int_{-L}^{0}[-f(-x)] d x=\int_{L}^{0} f(u) d u=-\int_{0}^{L} f(x) d x .
$$

Hence,

$$
0=\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x=\int_{-L}^{L} f(x) d x
$$

Example 16.3

(a) Find the value of the integral $\int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x$ when f is even.
(b) Find the value of the integral $\int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x$ when f is odd.

Solution.

(a) Since the function $\sin \left(\frac{n \pi}{L} x\right)$ is odd and f is even, we have that $f(x) \sin \left(\frac{n \pi}{L} x\right)$ is odd so that

$$
\int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x=0 .
$$

(b) Since the function $\cos \left(\frac{n \pi}{L} x\right)$ is even and f is odd, we have that $f(x) \cos \left(\frac{n \pi}{L} x\right)$ is odd so that

$$
\int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x=0
$$

Even and Odd Extensions

Let $f:(0, L) \rightarrow \mathbb{R}$ be a piecewise smooth function. We define the odd extension of this function on the interval $-L<x<L$ by

$$
f_{\text {odd }}(x)=\left\{\begin{array}{cc}
f(x) & 0<x<L \\
-f(-x) & -L<x<0 .
\end{array}\right.
$$

This function will be odd on the interval $(-L, L)$, and will be equal to $f(x)$ on the interval $(0, L)$. We can then further extend this function to the entire real line by defining it to be $2 L$ periodic. Let $\bar{f}_{\text {odd }}$ denote this extension. We note that $\bar{f}_{\text {odd }}$ is an odd function and piecewise smooth so that by Theorem 15.2 it possesses a Fourier series expansion, and from the fact that it is odd all of the a_{n}^{\prime} s are zero. Moreover, in the interval $(0, L)$ we have

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} x\right) . \tag{16.1}
\end{equation*}
$$

We call (16.1) the Fourier sine series of f.
The coefficients b_{n} are given by the formula

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{L} \bar{f}_{\text {odd }} \sin \left(\frac{n \pi}{L} x\right) d x=\frac{2}{L} \int_{0}^{L} \bar{f}_{\text {odd }} \sin \left(\frac{n \pi}{L} x\right) d x \\
& =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{aligned}
$$

since $\bar{f}_{\text {odd }} \sin \left(\frac{n \pi}{L} x\right)$ is an even function.
Likewise, we can define the even extension of f on the interval $-L<x<L$ by

$$
f_{\text {even }}(x)=\left\{\begin{array}{cc}
f(x) & 0<x<L \\
f(-x) & -L<x<0 .
\end{array}\right.
$$

We can then further extend this function to the entire real line by defining it to be $2 L$ periodic. Let $\bar{f}_{\text {even }}$ denote this extension. Again, we note that $\bar{f}_{\text {even }}$ is equal to the original function $f(x)$ on the interval upon which $f(x)$ is defined. Since $\bar{f}_{\text {even }}$ is piecewise smooth, by Theorem 15.2 it possesses a Fourier series expansion, and from the fact that it is even all of the $b_{n}^{\prime} \mathrm{s}$ are zero. Moreover, in the interval $(0, L)$ we have

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right) \tag{16.2}
\end{equation*}
$$

We call (16.2) the Fourier cosine series of f. The coefficients a_{n} are given by

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x, n=0,1,2, \cdots .
$$

Example 16.4

Graph the odd and even extensions of the function $f(x)=x, 0 \leq x \leq 1$.

Solution.

We have $f_{\text {odd }}(x)=x$ for $-1 \leq x \leq 1$. The odd extension of f is shown in Figure 16.1(a). Likewise,

$$
f_{\text {even }}(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq 1 \\
-x & -1 \leq x<0 .
\end{array}\right.
$$

The even extension is shown in Figure 16.1(b)

(a)

(b)

Figure 16.1

Example 16.5

Find the Fourier sine series of the function

$$
f(x)=\left\{\begin{array}{cc}
x, & 0 \leq x \leq \frac{\pi}{2} \\
\pi-x, & \frac{\pi}{2} \leq x \leq \pi
\end{array}\right.
$$

Solution.

We have

$$
b_{n}=\frac{2}{\pi}\left[\int_{0}^{\frac{\pi}{2}} x \sin n x d x+\int_{\frac{\pi}{2}}^{\pi}(\pi-x) \sin n x d x\right]
$$

Using integration by parts we find

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} x \sin n x d x & =\left[-\frac{x}{n} \cos n x\right]_{0}^{\frac{\pi}{2}}+\frac{1}{n} \int_{0}^{\frac{\pi}{2}} \cos n x d x \\
& =-\frac{\pi \cos (n \pi / 2)}{2 n}+\frac{1}{n^{2}}[\sin n x]_{0}^{\frac{\pi}{2}} \\
& =-\frac{\pi \cos (n \pi / 2)}{2 n}+\frac{\sin (n \pi / 2)}{n^{2}}
\end{aligned}
$$

while

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{\pi}(\pi-x) \sin n x d x & =\left[-\frac{(\pi-x)}{n} \cos n x\right]_{\frac{\pi}{2}}^{\pi}-\frac{1}{n} \int_{\frac{\pi}{2}}^{\pi} \cos n x d x \\
& =\frac{\pi \cos (n \pi / 2)}{2 n}-\frac{1}{n^{2}}[\sin n x]_{\frac{\pi}{2}}^{\pi} \\
& =\frac{\pi \cos (n \pi / 2)}{2 n}+\frac{\sin (n \pi / 2)}{n^{2}}
\end{aligned}
$$

Thus,

$$
b_{n}=\frac{4 \sin (n \pi / 2)}{\pi n^{2}}
$$

and the Fourier sine series of $f(x)$ is

$$
f(x)=\sum_{n=1}^{\infty} \frac{4 \sin (n \pi / 2)}{\pi n^{2}} \sin n x=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{\pi(2 n-1)^{2}} \sin (2 n-1) x
$$

Practice Problems

Problem 16.1

Give an example of a function that is both even and odd.

Problem 16.2

Graph the odd and even extensions of the function $f(x)=1,0 \leq x \leq 1$.

Problem 16.3

Graph the odd and even extensions of the function $f(x)=L-x$ for $0 \leq x \leq$ L.

Problem 16.4
Graph the odd and even extensions of the function $f(x)=1+x^{2}$ for $0 \leq$ $x \leq L$.

Problem 16.5
Find the Fourier cosine series of the function

$$
f(x)=\left\{\begin{array}{cc}
x, & 0 \leq x \leq \frac{\pi}{2} \\
\pi-x, & \frac{\pi}{2} \leq x \leq \pi
\end{array}\right.
$$

Problem 16.6

Find the Fourier cosine series of $f(x)=x$ on the interval $[0, \pi]$.

Problem 16.7

Find the Fourier sine series of $f(x)=1$ on the interval $[0, \pi]$.

Problem 16.8

Find the Fourier sine series of $f(x)=\cos x$ on the interval $[0, \pi]$.
Problem 16.9
Find the Fourier cosine series of $f(x)=e^{2 x}$ on the interval $[0,1]$.
Problem 16.10
For the following functions on the interval $[0, L]$, find the coefficients b_{n} of the Fourier sine expansion.
(a) $f(x)=\sin \left(\frac{2 \pi}{L} x\right)$.
(b) $f(x)=1$
(c) $f(x)=\cos \left(\frac{\pi}{L} x\right)$.

Problem 16.11

For the following functions on the interval $[0, L]$, find the coefficients a_{n} of the Fourier cosine expansion.
(a) $f(x)=5+\cos \left(\frac{\pi}{L} x\right)$.
(b) $f(x)=x$
(c)

$$
f(x)= \begin{cases}1 & 0<x \leq \frac{L}{2} \\ 0 & \frac{L}{2}<x \leq L\end{cases}
$$

Problem 16.12

Consider a function $f(x)$, defined on $0 \leq x \leq L$, which is even (symmetric) around $x=\frac{L}{2}$. Show that the even coefficients (n even) of the Fourier sine series are zero.

Problem 16.13

Consider a function $f(x)$, defined on $0 \leq x \leq L$, which is odd around $x=\frac{L}{2}$. Show that the even coefficients (n even) of the Fourier cosine series are zero.

Problem 16.14

The Fourier sine series of $f(x)=\cos \left(\frac{\pi x}{L}\right)$ for $0 \leq x \leq L$ is given by

$$
\cos \left(\frac{\pi x}{L}\right)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right), \quad n \in \mathbb{N}
$$

where

$$
b_{1}=0, \quad b_{n}=\frac{2 n}{\left(n^{2}-1\right) \pi}\left[1+(-1)^{n}\right]
$$

Using term-by-term integration, find the Fourier cosine series of $\sin \left(\frac{\pi x}{L}\right)$.

Problem 16.15

Consider the function

$$
f(x)= \begin{cases}1 & 0 \leq x<1 \\ 2 & 1 \leq x<2\end{cases}
$$

(a) Sketch the even extension of f.
(b) Find a_{0} in the Fourier series for the even extension of f.
(c) Find $a_{n}(n=1,2, \cdots)$ in the Fourier series for the even extension of f.
(d) Find b_{n} in the Fourier series for the even extension of f.
(e) Write the Fourier series for the even extension of f.

