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15 An Introduction to Fourier Series

In this and the next section we will have a brief look to the subject of Fourier
series. The point here is to do just enough to allow us to do some basic so-
lutions to partial differential equations later in the book.
Motivation: In Calculus we have seen that certain functions may be repre-
sented as power series by means of the Taylor expansions. These functions
must have infinitely many derivatives, and the series provide a good approx-
imation only in some (often small) vicinity of a reference point.
Fourier series constructed of trigonometric rather than power functions, and
can be used for functions not only not differentiable, but even discontinuous
at some points. The main limitation of Fourier series is that the underlying
function should be periodic.
Recall from calculus that a function series is a series where the summands
are functions. Examples of function series include power series, Laurent se-
ries, Fourier series, etc.
Unlike series of numbers, there exist many types of convergence of series of
functions, namely, pointwise, uniform, etc. We say that a series of functions∑∞

n=1 fn(x) converges pointwise to a function f if and only if the sequence
of partial sums

Sn(x) = f1(x) + f2(x) + · · ·+ fn(x)

converges pointwise to f. We write

∞∑
n=1

fn(x) = lim
n→∞

Sn(x) = f(x).

Example 15.1
Show that

∑∞
n=0 x

n converges pointwise to a function to be determined for
all −1 < x < 1.

Solution.
The nth term of the sequence of partial sums is given by

Sn(x) = 1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x
.

Since
lim
n→∞

xn+1 = 0, − 1 < x < 1,
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the partial sums converge pointwise to the function 1
1−x . Thus,

∞∑
n=0

xn =
1

1− x

Likewise, we say that a series of functions
∑∞

n=1 fn(x) converges uniformly
to a function f if and only if the sequence of partial sums {Sn}∞n=1 converges
uniformly to f.
The following theorem provide a tool for uniform convergence of series of
functions.

Theorem 15.1 (Weierstrass M-test)
Suppose that for each x in an interval I the series

∑∞
n=1 fn(x) is well-defined.

Suppose further that
|fn(x)| ≤Mn, ∀x ∈ I.

If
∑∞

n=1Mn (a scalar series) is convergent then the series
∑∞

n=1 fn(x) is uni-
formly convergent.

Example 15.2
Show that

∑∞
n=1

sin (nx)
n2 is uniformly convergent.

Solution.
For all x ∈ R, we have ∣∣∣∣sin (nx)

n2

∣∣∣∣ ≤ | sin (nx)|
n2

≤ 1

n2
.

The series
∑∞

n=1
1
n2 is convergent being a p−series with p = 2 > 1. Thus, by

Weierstrass M-test the given series is uniformly convergent

In this section we introduce a type of series of functions known as Fourier
series. They are given by

a0
2

+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
, − L ≤ x ≤ L (15.1)

where an and bn are called the Fourier coefficients. Note that we begin
the series with a0

2
as opposed to simply a0 to simplify the coefficient formula
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for an that we will derive later in this section.
The main questions we want to consider next are the questions of determin-
ing which functions can be represented by Fourier series and if so how to
compute the coefficients an and bn.
Before answering these questions, we look at some of the properties of Fourier
series.

Periodicity Property
Recall that a function f is said to be periodic with period T > 0 if
f(x + T ) = f(x) for all x, x + T in the domain of f. The smallest value
of T for which f is periodic is called the fundamental period. A graph of
a T−periodic function is shown in Figure 15.1.

Figure 15.1

For a T−periodic function we have

f(x) = f(x+ T ) = f(x+ 2T ) = · · · .

Note that the definite integral of a T−periodic function is the same over any
interval of length T. By Problem 15.1 below, if f and g are two periodic func-
tions with common period T, then the product fg and an arbitrary linear
combination c1f + c2g are also periodic with period T. It is an easy exercise
to show that the Fourier series (15.1) is periodic with fundamental period 2L.

Orthogonality Property
Recall from Calculus that for each pair of vectors ~u and ~v we associate a
scalar quantity ~u ·~v called the dot product of ~u and ~v. We say that ~u and ~v
are orthogonal if and only if ~u · ~v = 0. We want to define a similar concept
for functions.
Let f and g be two functions with domain the closed interval [a, b]. We define
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a function that takes a pair of functions to a scalar. Symbolically, we write

< f, g >=

∫ b

a

f(x)g(x)dx.

We call < f, g > the inner product of f and g. We say that f and g are
orthogonal if and only if < f, g >= 0. A set of functions is said to be mu-
tually orthogonal if each distinct pair of functions in the set is orthogonal.
Before we proceed any further into computations, we would like to remind
the reader of the following two facts from calculus:
• If f(x) is an odd function defined on the interval [−L,L] then

∫ L
−L f(x)dx =

0.
• If f(x) is an even function defined on the interval [−L,L] then

∫ L
−L f(x)dx =

2
∫ L
0
f(x)dx.

Example 15.3
Show that the set

{
1, cos

(
nπ
L
x
)
, sin

(
nπ
L
x
)

: n ∈ N
}
, where m 6= n, is mutu-

ally orthogonal in [−L,L].

Solution.
Since the cosine function is even, we have∫ L

−L
1 · cos

(nπ
L
x
)
dx = 2

∫ L

0

cos
(nπ
L
x
)
dx =

2L

nπ

[
sin
(nπ
L
x
)]L

0
= 0.

Since the sine function is odd, we have∫ L

−L
1 · sin

(nπ
L
x
)
dx = 0.

Now, for n 6= m we have∫ L

−L
cos
(mπ
L
x
)

cos
(nπ
L
x
)
dx =

1

2

∫ L

−L

[
cos

(
(m+ n)π

L
x

)
+ cos

(
(m− n)π

L
x

)]
dx

=
1

2

[
L

(m+ n)π
sin

(
(m+ n)π

L
x

)
+

L

(m− n)π
sin

(
(m− n)π

L
x

)]L
−L

= 0
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where we used the trigonometric identity

cos a cos b =
1

2
[cos (a+ b) + cos (a− b)].

We can also show (see Problem 15.2):∫ L

−L
sin
(mπ
L
x
)

sin
(nπ
L
x
)
dx = 0

and ∫ L

−L
cos
(mπ
L
x
)

sin
(nπ
L
x
)
dx = 0

The reason we care about these functions being orthogonal is because we will
exploit this fact to develop a formula for the coefficients in our Fourier series.

Now, in order to answer the first question mentioned earlier, that is, which
functions can be expressed as a Fourier series expansion, we need to intro-
duce some mathematical concepts.
A function f(x) is said to be piecewise continuous on [a, b] if it is contin-
uous in [a, b] except possibly at finitely many points of discontinuity within
the interval [a, b], and at each point of discontinuity, the right- and left-
handed limits of f exist. An example of a piecewise continuous function is
the function

f(x) =

{
x 0 ≤ x < 1

x2 − x 1 ≤ x ≤ 2.

We will say that f is piecewise smooth in [a, b] if and only if f(x) as well
as its derivatives are piecewise continuous.
The following theorem, proven in more advanced books, ensures that a
Fourier decomposition can be found for any function which is piecewise
smooth.

Theorem 15.2
Let f be a 2L-periodic function. If f is a piecewise smooth on [−L,L] then
for all points of discontinuity x ∈ [−L,L] we have

f(x−) + f(x+)

2
=
a0
2

+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
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where as for points of continuity x ∈ [−L,L] we have

f(x) =
a0
2

+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
.

Remark 15.1
(1) Almost all functions occurring in practice are piecewise smooth functions.
(2) Given a piecewise smooth function f on [−L,L]. The above theorem
applies to the periodic extension F of f where F (x + 2nL) = f(x) (n ∈ Z)
and F (x) = f(x) on (−L,L). Note that if f(−L) = f(L) then F (x) = f(x)
on [−L,L]. Otherwise, the end points of f(x) may be jump discontinuities
of F (x).

Convergence Results of Fourier Series
We list few of the results regarding the convergence of Fourier series:
(1) The type of convergence in the above theorem is pointwise convergence.
(2) The convergence is uniform for a continuous function f on [−L,L] such
that f(−L) = f(L).
(3) The convergence is uniform whenever

∑∞
n=1(|an|2 + |bn|2) is convergent.

(4) If f(x) is periodic, continuous, and has a piecewise continuous derivative,
then the Fourier Series corresponding to f converges uniformly to f(x) for
the entire real line.
(5) The convergence is uniform on any closed interval that does not contain
a point of discontinuity.

Euler-Fourier Formulas
Next, we will answer the second question mentioned earlier, that is, the ques-
tion of finding formulas for the coefficients an and bn. These formulas for an
and bn are called Euler-Fourier formulas which we derive next. We will as-
sume that the series in (15.1) converges uniformly to f(x) on the interval
[−L,L]. That is,

f(x) =
a0
2

+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
, − L ≤ x ≤ L. (15.2)

Integrating both sides of (15.2) we obtain∫ L

−L
f(x)dx =

∫ L

−L

a0
2
dx+

∫ L

−L

∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
dx.



15 AN INTRODUCTION TO FOURIER SERIES 7

Since the trigonometric series is assumed to be uniformly convergent, from
Theorem 14.2, we can interchange the order of integration and summation
to obtain∫ L

−L
f(x)dx =

∫ L

−L

a0
2
dx+

∞∑
n=1

∫ L

−L

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
dx.

But ∫ L

−L
cos
(nπ
L
x
)
dx =

L

nπ
sin
(nπ
L
x
)]L
−L

= 0

and likewise ∫ L

−L
sin
(nπ
L
x
)
dx = − L

nπ
cos
(nπ
L
x
)]L
−L

= 0.

Thus,

a0 =
1

L

∫ L

−L
f(x)dx.

To find the other Fourier coefficients, we recall the results of Problems 15.2
- 15.3 below. ∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx =

{
L if m = n
0 if m 6= n∫ L

−L
sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx =

{
L if m = n
0 if m 6= n∫ L

−L
sin
(nπ
L
x
)

cos
(mπ
L
x
)
dx = 0, ∀m,n.

Now, to find the formula for the Fourier coefficients am for m > 0, we multiply
both sides of (15.2) by cos

(
mπ
L
x
)

and integrate from −L to L to otbain∫ L

−L
f(x) cos

(mπ
L
x
)

=

∫ L

−L

a0
2

cos
(mπ
L
x
)
dx+

∞∑
n=1

[
an

∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx

+ bn

∫ L

−L
sin
(nπ
L
x
)

cos
(mπ
L
x
)
dx

]
.

Hence, ∫ L

−L
f(x) cos

(mπ
L
x
)
dx = amL
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and therefore

am =
1

L

∫ L

−L
f(x) cos

(mπ
L
x
)
dx.

Likewise, we can show that

bm =
1

L

∫ L

−L
f(x) sin

(mπ
L
x
)
dx.

Example 15.4
Find the Fourier series expansion of

f(x) =

{
0, x ≤ 0
x, x > 0

on the interval [−π, π].

Solution.
We have

a0 =
1

π

∫ π

−π
f(x)dx =

1

π

∫ π

0

xdx =
π

2

an =
1

π

∫ π

0

x cosnxdx =
1

π

[
x sinnx

n
+

cosnx

n2

]π
0

=
(−1)n − 1

πn2

bn =
1

π

∫ π

0

x sinnxdx =
1

π

[
−x cosnx

n
+

sinnx

n2

]π
0

=
(−1)n+1

n
.

Hence,

f(x) =
π

4
+
∞∑
n=1

[
(−1)n − 1

πn2
cos (nx) +

(−1)n+1

n
sin (nx)

]
− π < x < π

Example 15.5
Apply Theorem 15.2 to the function in Example 15.4.

Solution.
Let F be a periodic extension of f of period 2π. See Figure 152.
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Figure 152

Thus, f(x) = F (x) on the interval (−π, π). Note that for x = π, the Fourier
series coverges to

F (π−) + F (π+)

2
=
π

2
.

Similar result for x = −π. Clearly, F is a piecewise smooth function so that
by the previous thereom we can write

π

4
+
∞∑
n=1

[
(−1)n − 1

πn2
cos (nx) +

(−1)n+1

n
sin (nx)

]
=


π
2
, if x = −π

f(x), if −π < x < π
π
2
, if x = π.

Taking x = π we have the identity

π

4
+
∞∑
n=1

(−1)n − 1

πn2
(−1)n =

π

2

which can be simplified to

∞∑
n=1

1

(2n− 1)2
=
π2

8
.

This provides a method for computing an approximate value of π

Remark 15.2
An example of a function that does not have a Fourier series representation
is the function f(x) = 1

x2
on [−L,L]. For example, the coefficient a0 for this

function does not exist. Thus, not every function can be written as a Fourier
series expansion.
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The final topic of discussion here is the topic of differentiation and integration
of Fourier series. In particular we want to know if we can differentiate a
Fourier series term by term and have the result be the Fourier series of the
derivative of the function. Likewise we want to know if we can integrate a
Fourier series term by term and arrive at the Fourier series of the integral of
the function. Answers to these questions are provided next.

Theorem 15.3
A Fourier series of a piecewise smooth function f can always be integrated
term by term and the result is a convergent infinite series that always con-
verges to

∫ L
−L f(x)dx even if the original series has jumps.

Theorem 15.4
A Fourier series of a continuous function f(x) can be differentiated term by
term if f ′(x) is piecewise smooth. The result of the differentiation is the
Fourier series of f ′(x).
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Practice Problems

Problem 15.1
Let f and g be two functions with common domain D and common period
T. Show that
(a) fg is periodic of period T.
(b) c1f + c2g is periodic of period T, where c1 and c2 are real numbers.

Problem 15.2
Show that for m 6= n we have
(a)
∫ L
−L sin

(
mπ
L
x
)

sin
(
nπ
L
x
)
dx = 0 and

(b)
∫ L
−L cos

(
mπ
L
x
)

sin
(
nπ
L
x
)
dx = 0.

Problem 15.3
Compute the following integrals:
(a)
∫ L
−L cos2

(
nπ
L
x
)
dx.

(b)
∫ L
−L sin2

(
nπ
L
x
)
dx.

(c)
∫ L
−L cos

(
nπ
L
x
)

sin
(
nπ
L
x
)
dx.

Problem 15.4
Find the Fourier coefficients of

f(x) =


−π, −π ≤ x < 0
π, 0 < x < π
0, x = 0, π

on the interval [−π, π].

Problem 15.5
Find the Fourier series of f(x) = x2 − 1

2
on the interval [−1, 1].

Problem 15.6
Find the Fourier series of the function

f(x) =


−1, −2π < x < −π
0, −π < x < π
1, π < x < 2π.
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Problem 15.7
Find the Fourier series of the function

f(x) =

{
1 + x, −2 ≤ x ≤ 0
1− x, 0 < x ≤ 2.

Problem 15.8
Show that f(x) = 1

x
is not piecewise continuous on [−1, 1].

Problem 15.9
Assume that f(x) is continuous and has period 2L. Prove that∫ L

−L
f(x)dx =

∫ L+a

−L+a
f(x)dx

is independent of a ∈ R. In particular, it does not matter over which interval
the Fourier coefficients are computed as long as the interval length is 2L.
[Remark: This result is also true for piecewise continuous functions].

Problem 15.10
Consider the function f(x) defined by

f(x) =

{
1 0 ≤ x < 1
2 1 ≤ x < 3

and extended periodically with period 3 to R so that f(x+ 3) = f(x) for all
x.
(i) Find the Fourier series of f(x).
(ii) Discuss its limit: In particular, does the Fourier series converge pointwise
or uniformly to its limit, and what is this limit?
(iii) Plot the graphs of f(x) and its extension F (x) on the interval [0, 3].

Problem 15.11
For the following functions f(x) on the interval −L < x < L, determine the
coefficients an, n = 0, 1, 2, · · · and bn, n ∈ N of the Fourier series expansion.
(a) f(x) = 1.
(b) f(x) = 2 + sin

(
πx
L

)
.

(c) f(x) =

{
1 x ≤ 0
0 x > 0.

(d) f(x) = x.
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Problem 15.12
Let f(t) be the function with period 2π defined as

f(t) =

{
2 if 0 ≤ x ≤ π

2

0 if π
2
< x ≤ 2π

f(t) has a Fourier series and that series is equal to

a0
2

+
∞∑
n=1

(an cosnt+ bn sinnt), 0 < x < 2π.

Find a3
b3

.

Problem 15.13
Let f(x) = x3 on [−π, π], extended periodically to all of R. Find the Fourier
coefficients an, n = 1, 2, 3, · · · .

Problem 15.14
Let f(x) be the square wave function

f(x) =

{
−π −π ≤ x < 0
π 0 ≤ x ≤ π

extended periodically to all of R. To what value does the Fourier series of
f(x) converge when x = 0?

Problem 15.15
(a) Find the Fourier series of

f(x) =

{
1 −π ≤ x < 0
2 0 ≤ x ≤ π

extended periodically to all of R. Simplify your coefficients as much as pos-
sible.
(b) Use (a) to evaluate the series

∑∞
n=1

(−1)n+1

(2n−1) . Hint: Evaluate the Fourier
series at x = π

2
.
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