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14 Sequences of Functions: Pointwise and Uni-

form Convergence

In the next section, we will be constructing solutions to PDEs involving
infinite sums of sines and cosines. These infinite sums or series are called
Fourier series. Fourier series are examples of series of functions. Conver-
gence of series of functions is defined in terms of convergence of a sequence of
functions. In this section we study the two types of convergence of sequences
of functions.
Recall that a sequence of numbers {an}∞n=1 is said to converge to a number
L if and only if for every given ε > 0 there is a positive integer N = N(ε)
such that for all n ≥ N we have|an − L| < ε.
What is the analogue concept of convergence when the terms of the sequence
are variables? Let D ⊂ R and for each n ∈ N consider a function fn : D → R.
Thus, we obtain a sequence of functions {fn}∞n=1. For such a sequence, there
are two types of convergenve that we consider in this section: pointwise con-
vergence and uniform convergence.
We say that {fn}∞n=1 converges pointwise in D to a function f : D → R if
and only if

lim
n→∞

fn(x) = f(x)

for each x ∈ D. Equivalently, for a given x ∈ D and ε > 0 there is a positive
integer N = N(x, ε) such that if n ≥ N then |fn(x) − f(x)| < ε. It is
important to note that N is a function of both x and ε.

Example 14.1
Define fn : [0,∞) → R by fn(x) = nx

1+n2x2
. Show that the sequence {fn}∞n=1

converges pointwise to the function f(x) = 0 for all x ≥ 0.

Solution.
For all x ≥ 0,

lim
n→∞

fn(x) = lim
n→∞

nx

1 + n2x2
= 0 = f(x)

Example 14.2
For each positive integer n let fn : (0,∞)→ (0,∞) be given by fn(x) = nx.
Show that {fn}∞n=1 does not converge pointwise in D = (0,∞).
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Solution.
This follows from the fact that lim

n→∞
nx =∞ for all x ∈ D

One of the weaknesses of this type of convergence is that it does not preserve
some of the properties of the base functions {fn}∞n=1. For example, if each fn
is continuous then the pointwise limit function need not be continuous. (See
Problem 14.1) A stronger type of convergence which preserves most of the
properties of the base functions is the uniform convergence which we define
next.
Let D be a subset of R and let {fn}∞n=1 be a sequence of functions defined on
D. We say that {fn}∞n=1 converges uniformly on D to a function f : D → R
if and only if for all ε > 0 there is a positive integer N = N(ε) such that if
n ≥ N then |fn(x)− f(x)| < ε for all x ∈ D.
This definition says that the integer N depends only on the given ε (in con-
trast to pointwise convergence where N depends on both x and ε) so that
for n ≥ N , the graph of fn(x) is bounded above by the graph of f(x) + ε and
below by the graph of f(x)− ε as shown in Figure 14.1.

Figure 14.1

Example 14.3
For each positive integer n let fn : [0, 1] → R be given by fn(x) = x

n
. Show

that {fn}∞n=1 converges uniformly to the zero function.

Solution.
Let ε > 0 be given. Let N be a positive integer such that N > 1

ε
. Then for
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n ≥ N we have

|fn(x)− f(x)| =
∣∣∣x
n
− 0
∣∣∣ =
|x|
n
≤ 1

n
≤ 1

N
< ε

for all x ∈ [0, 1]

Clearly, uniform convergence implies pointwise convergence to the same limit
function. However, the converse is not true in general. Thus, one way to show
that a sequence of functions does not converge uniformly is to show that it
does not converge pointwise.

Example 14.4
Define fn : [0,∞) → R by fn(x) = nx

1+n2x2
. By Example 14.1, this sequence

converges pointwise to f(x) = 0. Let ε = 1
3
. Show that there is no positive

integer N with the property n ≥ N implies |fn(x)− f(x)| < ε for all x ≥ 0.
Hence, the given sequence does not converge uniformly to f(x).

Solution.
For any positive integer N and for n ≥ N we have∣∣∣∣fn( 1

n

)
− f

(
1

n

)∣∣∣∣ =
1

2
> ε

Problem 14.1 shows a sequence of continuous functions converging pointwise
to a discontinuous function. That is, pointwise convergence does not pre-
serve the property of continuity. One of the interesting features of uniform
convergence is that it preserves continuity as shown in the next example.

Example 14.5
Suppose that for each n ≥ 1 the function fn : D → R is continuous in D.
Suppose that {fn}∞n=1 converges uniformly to f. Let a ∈ D.
(a) Let ε > 0 be given. Show that there is a positive integer N such that if
n ≥ N then |fn(x)− f(x)| < ε

3
for all x ∈ D.

(b) Show that there is a δ > 0 such that for all |x− a| < δ we have |fN(x)−
fN(a)| < ε

3
.

(c) Using (a) and (b) show that for |x − a| < δ we have |f(x) − f(a)| < ε.
Hence, f is continuous in D since a was arbitrary.
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Solution.
(a) This follows from the definition of uniform convergence.
(b) This follows from the fact that fN is continuous at a ∈ D.
(c) For |x− a| < δ we have |f(x)− f(a)| = |f(a)− fN(a) + fN(a)− fN(x) +
fN(x)−f(x)| ≤ |fN(a)−f(a)|+|fN(a)−fN(x)|+|fN(x)−f(x)| < ε

3
+ ε

3
+ ε

3
=

ε

From this example, we can write

lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x).

Indeed,

lim
x→a

lim
n→∞

fn(x) = lim
x→a

f(x)

=f(a) = lim
n→∞

fn(a)

= lim
n→∞

lim
x→a

fn(x).

Does pointwise convergence allow the interchange of limits and integration?
The answer is no as shown in the next example.

Example 14.6
The sequence of function fn : (0,∞) → R defined by fn(x) = x

n
converges

pointwise to the zero function. Show that

lim
n→∞

∫ ∞
1

fn(x)dx 6=
∫ ∞
1

lim
n→∞

fn(x)dx.

Solution.
We have ∫ ∞

1

x

n
dx =

x2

2n

∣∣∣∣∞
1

=∞.

Hence,

lim
n→∞

∫ ∞
1

fn(x)dx =∞

whereas ∫ ∞
1

lim
n→∞

fn(x)dx = 0
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Contrary to pointwise convergence, uniform convergence preserves integra-
tion. That is, if {fn}∞n=1 converges uniformly to f on a closed interval [a, b]
then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx.

Theorem 14.1
Suppose that fn : [a, b] → R is a sequence of continuous functions that
converges uniformly to f : [a, b]→ R. Then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx =

∫ b

a

f(x)dx.

Proof.
From Example 14.5, we have that f is continuous and hence integrable. Let
ε > 0 be given. By uniform convergence, we can find a positive integer N
such that |fn(x)− f(x) < ε

b−a for all x in [a, b] and n ≥ N. Thus, for n ≥ N ,
we have ∣∣∣∣∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|fn(x)− f(x)|dx < ε.

This completes the proof of the theorem

Now, what about differentiability? Again, pointwise convergence fails in
general to conserve the differentiability property. See Problem 14.1. Does
uniform convergence preserve differentiability? The answer is still no as
shown in the next example.

Example 14.7

Consider the family of functions fn : [−1, 1] given by fn(x) =
√
x2 + 1

n
.

(a) Show that fn is differentiable for each n ≥ 1.
(b) Show that for all x ∈ [−1, 1] we have

|fn(x)− f(x)| ≤ 1√
n

where f(x) = |x|. Hint: Note that
√
x2 + 1

n
+
√
x2 ≥ 1√

n
.

(c) Let ε > 0 be given. Show that there is a positive integer N such that for
n ≥ N we have
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|fn(x)− f(x)| < ε for all x ∈ [−1, 1].

Thus, {fn}∞n=1 converges uniformly to the non-differentiable function f(x) =
|x|.

Solution.
(a) fn is the composition of two differentiable functions so it is differentiable
with derivative

f ′n(x) = x

[
x2 +

1

n

]− 1
2

.

(b) We have

|fn(x)− f(x)| =

∣∣∣∣∣
√
x2 +

1

n
−
√
x2

∣∣∣∣∣ =

∣∣∣∣∣∣
(
√
x2 + 1

n
−
√
x2)(

√
x2 + 1

n
+
√
x2)√

x2 + 1
n

+
√
x2

∣∣∣∣∣∣
=

1
n√

x2 + 1
n

+
√
x2

≤
1
n
1√
n

=
1√
n
.

(c) Let ε > 0 be given. Since limn→∞
1√
n

= 0 we can find a positive integer

N such that for all n ≥ N we have 1√
n
< ε. Now the answer to the question

follows from this and part (b)

Even when uniform convergence occurs, the process of interchanging lim-
its and differentiation may fail as shown in the next example.

Example 14.8
Consider the functions fn : R→ R defined by fn(x) = sinnx

n
.

(a) Show that {fn}∞n=1 converges uniformly to the function f(x) = 0.
(b) Note that {fn}∞n=1 and f are differentiable functions. Show that

lim
n→∞

f ′n(x) 6= f ′(x) =
[

lim
n→∞

fn(x)
]′
.

That is, one cannot, in general, interchange limits and derivatives.
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Solution.
(a) Let ε > 0 be given. Let N be a positive integer such that N > 1

ε
. Then

for n ≥ N we have

|fn(x)− f(x)| =
∣∣∣∣sinnxn

∣∣∣∣ ≤ 1

n
< ε

and this is true for all x ∈ R. Hence, {fn}∞n=1 converges uniformly to the
function f(x) = 0.
(b) We have limn→∞ f

′
n(π) = limn→∞ cosnπ = limn→∞(−1)n which does not

converge. However, f ′(π) = 0

Pointwise convergence was not enough to preserve differentiability, and nei-
ther was uniform convergence by itself. Even with uniform convergence the
process of interchanging limits with derivatives is not true in general. How-
ever, if we combine pointwise convergence with uniform convergence we can
indeed preserve differentiability and also switch the limit process with the
process of differentiation.

Theorem 14.2
Let {fn}∞n=1 be a sequence of differentiable functions on [a, b] that converges
pointwise to some function f defined on [a, b]. If {f ′n}∞n=1 converges uniformly
on [a, b] to a function g, then the function f is differentiable with derivative
equals to g. Thus,

lim
n→∞

f ′n(x) = g(x) = f ′(x) =
[

lim
n→∞

fn(x)
]′
.

Proof.
First, note that the function g is continuous in [a, b] since uniform convergence
preserves continuity. Let c be an arbitrary point in [a, b]. Then∫ x

c

f ′n(t)dt = fn(x)− fn(c), x ∈ [a, b].

Taking the limit of both sides and using the facts that f ′n converges uniformly
to g and fn converges pointwise to f , we can write∫ x

c

g(t)dt = f(x)− f(c).
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Taking the derivative of both sides of the last equation yields g(x) = f ′(x)

Finally, we conclude this section with the following important result that
is useful in testing uniform convergence.

Theorem 14.3
Consider a sequence fn : D → R. Then this sequence converges uniformly to
f : D → R if and only if

lim
n→∞

sup{|fn(x)− f(x)| : x ∈ D} = 0.

Proof.
Suppose that fn converges uniformly to f. Let ε > 0 be given. Then there
is a positive integer N such that |fn(x) − f(x)| < ε

2
for all n ≥ N and all

x ∈ D. Thus, for n ≥ N, we have

sup{|fn(x)− f(x)| : x ∈ D} ≤ ε

2
< ε.

This shows that

lim
n→∞

sup{|fn(x)− f(x)| : x ∈ D} = 0.

Conversely, suppose that

lim
n→∞

sup{|fn(x)− f(x)| : x ∈ D} = 0.

Let ε > 0 be given. Then there is a positive interger N such that

sup{|fn(x)− f(x)| : x ∈ D} < ε

for all n ≥ N. But this implies that

|fn(x)− f(x)| < ε

for all x ∈ D. Hence, fn converges uniformly to f in D

Example 14.9
Show that the sequence defined by fn(x) = cosx

n
converges uniformly to the

zero function.
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Solution.
We have

0 ≤ sup{|cosx

n
| : x ∈ R} ≤ 1

n
.

Now apply the squeeze rule1 for sequences we find that

lim
n→∞

sup{|cosx

n
| : x ∈ R} = 0

which implies that the given sequence converges uniformly to the zero func-
tion on R

1If an ≤ bn ≤ cn for all n ≥ N and if limn→∞ an = limn→∞ cn = L then limn→∞ bn =
L.
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Practice Problems

Problem 14.1
Define fn : [0, 1]→ R by fn(x) = xn. Define f : [0, 1]→ R by

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1.

(a) Show that the sequence {fn}∞n=1 converges pointwise to f.
(b) Show that the sequence {fn}∞n=1 does not converge uniformly to f. Hint:
Suppose otherwise. Let ε = 0.5 and get a contradiction by using a point
(0.5)

1
N < x < 1.

Problem 14.2
Consider the sequence of functions

fn(x) =
nx+ x2

n2

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.

Problem 14.3
Consider the sequence of functions

fn(x) =
sin (nx+ 3)√

n+ 1

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.

Problem 14.4
Consider the sequence of functions defined by fn(x) = n2xn for all 0 ≤ x ≤ 1.
Show that this sequence does not converge pointwise to any function.

Problem 14.5
Consider the sequence of functions defined by fn(x) = (cosx)n for all −π

2
≤

x ≤ π
2
. Show that this sequence converges pointwise to a noncontinuous

function to be determined.
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Problem 14.6
Consider the sequence of functions fn(x) = x− xn

n
defined on [0, 1).

(a) Does {fn}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.
(b) Does {f ′n}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

Problem 14.7
Let fn(x) = xn

1+xn
for x ∈ [0, 2].

(a) Find the pointwise limit f(x) = limn→∞ fn(x) on [0, 2].
(b) Does fn → f uniformly on [0, 2]?

Problem 14.8
For each n ∈ N define fn : R→ R by fn(x) = n+cosx

2n+sin2 x
.

(a) Show that fn → 1
2

uniformly.

(b) Find limn→∞
∫ 7

2
fn(x)dx.

Problem 14.9
Show that the sequence defined by fn(x) = (cosx)n does not converge uni-
formly on [−π

2
, π
2
].

Problem 14.10
Let {fn}∞n=1 be a sequence of functions such that

sup{|fn(x)| : 2 ≤ x ≤ 5} ≤ 2n

1 + 4n
.

(a) Show that this sequence converges uniformly to a function f to be found.

(b) What is the value of the limit limn→∞
∫ 5

2
fn(x)dx?
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