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13 Parabolic Type: The Heat Equation in One-

Dimensional Space

In this section, We will look at a model for describing the distribution of
temperature in a solid material as a function of time and space. More specif-
ically, we will derive the heat equation that models the flow of heat in a rod
that is insulated everywhere except at the two ends.
Before we begin our discussion of the mathematics of the heat equation, we
must first determine what is meant by the term heat? Heat is type of energy
known as thermal energy. Heat travels in waves like other forms of energy,
and can change the matter it touches. It can heat it up and cause chemical
reactions like burning to occur.
Heat can be released through a chemical reaction (such as the nuclear re-
actions that make the Sun “burn”) or can be trapped for a limited time by
insulators. It is often released along with other kinds of energy such as light
waves or sound waves. For example, a burning candle releases light and heat
waves. On the other hand, an explosion releases light, heat, and sound waves.
The most common units of heat are BTU (British Thermal Unit), Calorie
and Joule.
Consider now a thin rod made of homogeneous heat conducting material of
uniform density ρ and constant cross section A, wrapped along the x−axis
from x = 0 to x = L as shown in Figure 13.1.

Figure 13.1

Assume the heat flows only in the x−direction, with the lateral sides well
insulated, and the only way heat can enter or leave the rod is at either end.
Since our rod is thin, the temperature of the rod can be considered constant
on any cross section and so depends on the horizontal position along the
x−axis and we can hence consider the rod to be a one spatial dimensional
rod. We will also assume that heat energy in any piece of the rod is conserved.
That is, the heat gained at one end is equal to the heat lost at the other end.
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Let u(x, t) be the temperature of the cross section at the point x and the
time t. Consider a portion U of the rod from x to x + ∆x of length ∆x as
shown in Figure 13.2.

Figure 13.2

Divide the interval [x, x+∆x] into n sub-intervals each of length ∆s using the
partition points x = s0 < s1 < · · · < sn = x+∆x. Consider the portion Ui of
U of height ∆s. The portion Ui is assumed to be thin so that the temperature
is constant throughout the volume. From the theory of heat conduction, the
quantity of heat Qi in Ui at time t is given by

Qi = cmiu(si−1, t) = cρu(si−1, t)∆Vi

where mi is the mass of Ui, ∆Vi is the volume of Ui and c is the specific
heat, that is, the amount of heat that it takes to raise one unit of mass of
the material by one unit of temperature.
But Ui is a cylinder of height ∆s and area of base A so that ∆Vi = A∆s.
Hence,

Qi = cρAu(si−1, t)∆s.

The quantity of heat in the portion U is given by

Q(t) = lim
n→∞

n∑
i=1

Qi = lim
n→∞

n∑
i=1

cρAu(si−1, t)∆s =

∫ x+∆x

x

cρAu(s, t)ds.

By differentiation, the change in heat with respect to time is

dQ

dt
=

∫ x+∆x

x

cρAut(s, t)ds.
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Assuming that u is continuously differentiable, we can apply the mean value
theorem for integrals and find x ≤ ξ ≤ x+ ∆x such that∫ x+∆x

x

ut(s, t)ds = ∆xut(ξ, t).

Thus, the rate of change of heat in U is given by

dQ

dt
= cρA∆xut(ξ, t).

Now, Fourier law of heat transfer says that the rate of heat transfer through
any cross section is proportional to the area A and the negative gradient of
the temperature normal to the cross section, i.e., −KAux(x, t). Note that
if the temperature increases as x increases (i.e., the temperature is hotter
to the right), ux > 0 so that the heat flows to the left. This explains the
minus sign in the formula for Fourier law. Hence, according to this law heat
is transferred from areas of high temperature to areas of low temperature.
Now, the rate of heat flowing in U through the cross section at x is−KAux(x, t)
and the rate of heat flowing out of U through the cross section at x+ ∆x is
−KAux(x+ ∆x, t), where K is the thermal conductivity1 of the rod.
Now, the conservation of energy law states

rate of change of heat in U = rate of heat flowing in − rate of heat flowing
out

or mathematically written as,

cρA∆xut(ξ, t) = −KAux(x, t) +KAux(x+ ∆x, t)

or
cρA∆xut(ξ, t) = KA[ux(x+ ∆x, t)− ux(x, t)].

Dividing this last equation by cAρ∆x and letting ∆x→ 0 we obtain

ut(x, t) = kuxx(x, t) (13.1)

where k = K
cρ

is called the diffusivity constant.

Equation (13.1) is the one dimensional heat equation which is second order,

1It is a property of material to conduct heat. Heat transfer is slow in materials with
small thermal conductivity and fast in materials with large thermal conductivity.
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linear, homogeneous, and of parabolic type.
The non-homogeneous heat equation

ut = kuxx + f(x)

is known as the heat equation with an external heat source f(x). An ex-
ample of an external heat source is the heat generated from a candle placed
under the bar.
The function

E(t) =

∫ L

0

u(x, t)dx

is called the total thermal energy2 at time t of the entire rod.

Example 13.1
The two ends of a homogeneous rod of length L are insulated. There is a
constant source of thermal energy q0 6= 0 and the temperature is initially
u(x, 0) = f(x).
(a) Write the equation and the boundary conditions for this model.
(b) Calculate the total thermal energy of the entire rod.

Solution.
(a) The model is given by the PDE

ut(x, t) = kuxx + q0

with boundary conditions

ux(0, t) = ux(L, t) = 0.

(b) First note that

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

ut(x, t)dx =

∫ L

0

kuxxdx+

∫ L

0

q0dx

= kux|L0 + q0L = q0L

since ux(0, t) = ux(L, t) = 0. Integrating with respect to t we find

E(t) = q0Lt+ C.

2The total internal energy in the rod generated by the rod’s temperature.
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But C = E(0) =
∫ L

0
u(x, 0)dx =

∫ L
0
f(x)dx. Hence, the total thermal energy

is given by

E(t) =

∫ L

0

f(x)dx+ q0Lt

Initial Boundary Value Problems
In order to solve the heat equation we must give the problem some initial
conditions. If you recall from the theory of ODE, the number of conditions
required for solving initial value problems always matched the highest order
of the derivative in the equation.
In partial differential equations the same idea holds except now we have to
pay attention to the variable we are differentiating with respect to as well.
So, for the heat equation we have got a first order time derivative and so we
will need one initial condition and a second order spatial derivative and so
we will need two boundary conditions.
For the initial condition, we define the temperature of every point along the
rod at time t = 0 by

u(x, 0) = f(x)

where f is a given (prescribed) function of x. This function is known as the
initial temperature distribution.
The boundary conditions will tell us something about what the temperature
is doing at the ends of the bar. The conditions are given by

u(0, t) = T0 and u(L, t) = TL.

and they are called as the Dirichlet conditions. In this case, the general
form of the heat equation initial boundary value problem is to find u(x, t)
satisfying

ut(x, t) =kuxx(x, t), 0 ≤ x ≤ L, t > 0

u(x, 0) =f(x), 0 ≤ x ≤ L

u(0, t) =T0, u(L, t) = TL, t > 0.

In the case of insulated endpoints, i.e., there is no heat flow out of them, we
use the boundary conditions

ux(0, t) = ux(L, t) = 0.
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These conditions are examples of what is known as Neumann boundary
conditions. In this case, the general form of the heat equation initial bound-
ary value problem is to find u(x, t) satisfying

ut(x, t) =kuxx(x, t), 0 ≤ x ≤ L, t > 0

u(x, 0) =f(x), 0 ≤ x ≤ L

ux(0, t) =ux(L, t) = 0, t > 0.
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Practice Problems
Problem 13.1
Show that if u(x, t) and v(x, t) satisfy equation (13.1) then αu+ βv is also a
solution to (13.1), where α and β are constants.

Problem 13.2
Show that any linear time independent function u(x, t) = ax+ b is a solution
to equation (13.1).

Problem 13.3
Find a linear time independent solution u to (13.1) that satisfies u(0, t) = T0

and u(L, T ) = TL.

Problem 13.4
Show that to solve (13.1) with the boundary conditions u(0, t) = T0 and
u(L, t) = TL it suffices to solve (13.1) with the homogeneous boundary
conditions u(0, t) = u(L, t) = 0.

Problem 13.5
Find a solution to (13.1) that satisfies the conditions u(x, 0) = u(0, t) =
u(L, t) = 0.

Problem 13.6
Let (I) denote equation (13.1) together with intial condition u(x, 0) = f(x),
where f is not the zero function, and the homogeneous boundary conditions
u(0, t) = u(L, t) = 0. Suppose a nontrivial solution to (I) can be written in
the form u(x, t) = X(x)T (t). Show that X and T satisfy the ODE

X ′′ − λ
k
X = 0 and T ′ − λT = 0

for some constant λ.

Problem 13.7
Consider again the solution u(x, t) = X(x)T (t). Clearly, T (t) = T (0)eλt.
Suppose that λ > 0.
(a) Show that X(x) = Aex

√
α + Be−x

√
α, where α = λ

k
and A and B are

arbitrary constants.
(b) Show that A and B satisfy the two equations A + B = 0 and A(eL

√
α −

e−L
√
α) = 0.

(c) Show that A = 0 leads to a contradiction.
(d) Using (b) and (c) show that eL

√
α = e−L

√
α. Show that this equality leads

to a contradiction. We conclude that λ < 0.
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Problem 13.8
Consider the results of the previous exercise.

(a) Show that X(x) = c1 cos βx+ c2 sin βx where β =
√
−λ
k
.

(b) Show that λ = λn = −kn2π2

L2 , where n is an integer.

Problem 13.9

Show that u(x, t) =
∑n

i=1 ui(x, t), where ui(x, t) = cie
− ki

2π2

L2 t sin
(
iπ
L
x
)

satis-
fies (13.1) and the homogeneous boundary conditions.

Problem 13.10
Suppose that a wire is stretched between 0 and a. Describe the boundary
conditions for the temperature u(x, t) when
(i) the left end is kept at 0 degrees and the right end is kept at 100 degrees;
and
(ii) when both ends are insulated.

Problem 13.11
Let ut = uxx for 0 < x < π and t > 0 with boundary conditions u(0, t) =
0 = u(π, t) and initial condition u(x, 0) = sinx. Let E(t) =

∫ π
0

(u2
t + u2

x)dx.
Show that E ′(t) < 0.

Problem 13.12
Suppose

ut = uxx + 4, ux(0, t) = 5, ux(L, t) = 6, u(x, 0) = f(x).

Calculate the total thermal energy of the one-dimensional rod (as a function
of time).

Problem 13.13
Consider the heat equation

ut = kuxx

for x ∈ (0, 1) and t > 0, with boundary conditions u(0, t) = 2 and u(1, t) = 3
for t > 0 and initial condition u(x, 0) = x for x ∈ (0, 1). A function v(x) that
satisfies the equation v′′(x) = 0, with conditions v(0) = 2 and v(1) = 3 is
called a steady-state solution. That is, the steady-state solutions of the
heat equation are those solutions that don’t depend on time. Find v(x).



13 PARABOLIC TYPE: THE HEAT EQUATION IN ONE-DIMENSIONAL SPACE9

Problem 13.14
Consider the equation for the one-dimensional rod of length L with given
heat energy source:

ut = uxx + q(x).

Assume that the initial temperature distribution is given by u(x, 0) = f(x).
Find the equilibrium (steady state) temperature distribution in the following
cases.
(a) q(x) = 0, u(0) = 0, u(L) = T.
(b) q(x) = 0, ux(0) = 0, u(L) = T.
(c) q(x) = 0, u(0) = T, ux(L) = α.

Problem 13.15
Consider the equation for the one-dimensional rod of length L with insulated
ends:

ut = kuxx, ux(0, t) = ux(L, t) = 0.

(a) Give the expression for the total thermal energy of the rod.
(b) Show using the equation and the boundary conditions that the total
thermal energy is constant.

Problem 13.16
Suppose

ut = uxx + x, u(x, 0) = f(x), ux(0, t) = β, ux(L, t) = 7.

(a) Calculate the total thermal energy of the one-dimensional rod (as a func-
tion of time).
(b) From part (a) find the value of β for which a steady-state solution exist.
(c) For the above value of β find the steady state solution.
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