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12 Hyperbolic Type: The Wave equation

The wave equation has many physical applications from sound waves in air
to magnetic waves in the Sun’s atmosphere. However, the simplest systems
to visualize and describe are waves on a stretched flexible string.

A flexible homogeneous string of length L and constant mass density p (i.e.,
mass per unit length) is stretched horizontally along the z—axis with its left
end placed at x = 0 and its right end placed at x = L. From the left end (and
at time ¢ = 0) we slightly shake the string and we notice a small vibrations
propagate through the string. We make the following physical assumptions:
(a) the string does not furnish any resistance to bending (i.e., perfectly elas-
tic);

(b) the (pulling) tension force on the string is the dominant force and all
other forces acting on the string are negligible (no external forces are applied
to the string, the damping forces (resistance) and gravitational forces are
negligible);

(c) clearly a point on the string moves up and down along a curve but since
the horizontal displacement is small compared to the vertical displacement,
we will assume that each point of the string moves only vertically. Thus, the
horizontal component of the tension force must be constant.

We denote the vertical displacement from the x—axis of the string by u(zx,t)
which is a function of position x and time ¢. That is, u(z,t) is the vertical
displacement from the equilibrium at position z and time ¢. Our aim is to
find an equation that is satisfied by u(z,t).

A displacement of a tiny piece of the string between points P and () is shown
in Figure 12.1,
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where

(i) 0(x,t) is the angle between T'(x,t) and 7 at x and time ¢; for small vibra-
tions, we have 6 = 0;

(ii) T'(x,¢) is the (pulling) tension force in the string at position z and time
t pulling to the left and f(az + Az, t) the tension force at position z + Ax
and t pulling the string to the right.

By (c) above, we have
| T (, 1)|] cos [0(x, £)] = ||T(x + Az, t)|| cos [0(z + Az, t)] = T.

Now, at P the vertical component of the tension force is —||T'(z, t)|| sin [0(z, t)]
(the minus sign occurs due to the component at P is pointing downward)
whereas at @ the vertical component is ||T(z + Az, t)||sin [0(z + Az, t)].
Then Newton’s Law of motion

mass X acceleration = net applied forces
gives
*u - . - .
pAT = = [|T(z + Az, t)|[sin [0(z + Az, t)] = ||T'(z, £)]| sin [0(z, t)].
Next, dividing through by T, we obtain
0 O[T+ Aw b)l|sin [0 + A, 0)] [T, 0)]|sin[0(z,0)
T 08 ||T(x+ A, t)]|cos [0(x + Az, t)]  ||T(x,t)|| cos [0(z, )]
=tan [0(z + Az, t)] — tan [0(x, )]
=u,(r + Az, t) — uy(z,t).

Dividing by Az and letting Az — 0 we obtain

p 0%u
which can be written as
U (7, 1) = gy (2, 1) (12.1)

where ¢ = %. We call ¢ the wave speed.
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General Solution of (12.1): D’Alembert Approach
By using the change of variables v = z + ¢t and w = = — ct, we find

Up =CUy — Clhyy

2 2 2
Ut =C Upy — 2C Uy + C U
Ugp =Uy + Uy

Ugy =Uyy + 2uvw + Uw

Substituting into Equation (12.1), we find u,, = 0 and solving this equation
we find u, = F(v) and u(v, w) = f(v) + g(w) where f(v) = [ F(v)dv.
Finally, using the fact that v = x + ¢t and w = x — ct; we get d’Alembert’s
solution to the one-dimensional wave equation:

u(x,t) = f(x + ct) + g(x — ct) (12.2)

where f and g are arbitrary differentiable functions.

The function f(x + ct) represents waves that are moving to the left at a
constant speed ¢ and the function g(x — ct) represents waves that are moving
to the right at the same speed c.

The function u(z,t) in (12.2) involves two arbitrary functions that are deter-
mined (normally) by two initial conditions.

Example 12.1
Find the solution to the Cauchy problem

u(z,0) =v(z)
uy(x,0) =w(x).

Solution.
The condition u(x,0) is the initial position whereas u:(z,0) is the initial
velocity. We have
u(@,0) = f(z) + glz) = v(x)
and
ui(z,0) = —cf'(z) + cg'(z) = w(x)

which implies that



4

Therefore,

f(a) = 5o(a) — 2 (@)
and .

() = 5 (0(x) + W (2))
Finally,

u(@, 1) :%Mx —et)+o(a A ct) - (W (a4 ct) — W(a — b))

/:+th(s)ds] n

—ct

Al ol

:%[v(x —ct)+vu(x+ct)+
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Practice Problems

Problem 12.1
Show that if v(x,t) and w(z,t) satisfy equation (12.1) then av + fw is also
a solution to (12.1), where av and § are constants.

Problem 12.2
Show that any linear time independent function u(z,t) = ax +b is a solution
to equation (12.1).

Problem 12.3
Find a solution to (12.1) that satisfies the homogeneous conditions u(z,0) =
u(0,t) = u(L,t) = 0.

Problem 12.4
Solve the initial value problem

Up =gy
u(x,0) =cosz
u(z,0) =0.

Problem 12.5
Solve the initial value problem

Utt =Ugy
1
w0 =13
ut(z,0) =0.
Problem 12.6
Solve the initial value problem
Utt :4ux1’
u(z,0) =1

u(z,0) = cos (2mx).



Problem 12.7
Solve the initial value problem

Ut =2DUgy
u(z,0) =v(z)
u(z,0) =0

where

B 1 ifxz<0
viz) =4 if £ > 0.

Problem 12.8
Solve the initial value problem

Uyt =CUgy
u(z,0) ==

ug(x,0) = cos® .

Problem 12.9

Prove that the wave equation, uy = cu,, satisfies the following properties,
which are known as invariance properties. If u(z,t) is a solution, then

(i) Any translate, u(z — y,t) where y is a fixed constant, is also a solution.
(ii) Any derivative, say u,(z,t), is also a solution.

(iii) Any dilation, u(az, at), is a solution, for any fixed constant a.

Problem 12.10
Find v(r) if u(r, t) = 22 cosnt is a solution to the PDE

T

2

Upp + ;ur = Ug.

Problem 12.11
Find the solution of the wave equation on the real line (—oco < & < 400)
with the initial conditions

u(z,0) = e, uz,0) =sinz.
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Problem 12.12
The total energy of the string (the sum of the kinetic and potential energies)
is defined as

1 L
E(t) = —/ (u? + *u?)dx.
2 Jo
(a) Using the wave equation derive the equation of conservation of energy
dE(t
% = A (uy(L, t)ug (L, ) — uy(0,)u,(0,1)).

(b) Assuming fixed ends boundary conditions, that is the ends of the string
are fixed so that u(0,¢) = u(L,t) = 0, for all ¢ > 0, show that the energy is
constant.

(c) Assuming free ends boundary conditions for both x = 0 and = = L, that
is both u(0,t) and u(L,t) vary with ¢, show that the energy is constant.

Problem 12.13
For a wave equation with damping

utt—CQum—i-dut:O, d>0,0<z<L
with the fixed ends boundary conditions show that the total energy decreases.

Problem 12.14
(a) Verify that for any twice differentiable R(z) the function

u(z,t) = R(z — ct)

is a solution of the wave equation uy = c*u,,. Such solutions are called
traveling waves.

(b) Show that the potential and kinetic energies (see Exercise 12.12) are
equal for the traveling wave solution in (a).

Problem 12.15
Find the solution of the Cauchy wave equation

Uy = 4uzx

u(z,0) = 2%, w(w,0) = sin 2.

Simplify your answer as much as possible.
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