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28 Calculus of Matrix-Valued Functions of a

Real Variable

In establishing the existence result for second and higher order linear differ-
ential equations one transforms the equation into a linear system and tries
to solve such a system. This procedure requires the use of concepts such
as the derivative of a matrix whose entries are functions of t, the integral
of a matrix, and the exponential matrix function. Thus, techniques from
matrix theory play an important role in dealing with systems of differential
equations. The present section introduces the necessary background in the
calculus of matrix functions.

Matrix-Valued Functions of a Real Variable
A matrix A of dimension m× n is a rectangular array of the form

A =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
am1 am2 ... amn


where the aij’s are the entries of the matrix, m is the number of rows, n
is the number of columns. The zero matrix 0 is the matrix whose entries
are all 0. The n × n identity matrix In is a square matrix whose main
diagonal consists of 1′s and the off diagonal entries are all 0. A matrix A can
be represented with the following compact notation A = (aij). The entry aij
is located in the ith row and jth column.

Example 28.1
Consider the matrix

A(t) =

 −5 0 1
10 −2 0
−5 2 −7


Find a22, a32, and a23.

Solution.
The entry a22 is in the second row and second column so that a22 = −2.
Similarly, a32 = 2 and a23 = 0
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An m × n array whose entries are functions of a real variable defined on
a common interval is called a matrix function. Thus, the matrix

A(t) =

 a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)
a31(t) a32(t) a33(t)


is a 3× 3 matrix function whereas the matrix

x(t) =

 x1(t)
x2(t)
x3(t)


is a 3× 1 matrix function also known as a vector-valued function.
We will denote an m × n matrix function by A(t) = (aij(t)) where aij(t) is
the entry in the ith row and jth coloumn.

Arithmetic of Matrix Functions
All the familiar rules of matrix arithmetic hold for matrix functions as well.

(i) Equality: Two m × n matrices A(t) = (aij(t)) and B(t) = (bij(t)) are
said to be equal if and only if aij(t) = bij(t) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
That is, two matrices are equal if and only if all corresponding elements are
equal. Notice that the matrices must be of the same dimension.

Example 28.2
Solve the following matrix equation for a, b, c, and d[

a− b b+ c
3d+ c 2a− 4d

]
=

(
8 1
7 6

)
Solution.
Equating corresponding entries we get the system

a − b = 8
b + c = 1

c + 3d = 7
2a − 4d = 6

Adding the first two equations to obtain a+ c = 9. Adding 4 times the third
equation to 3 times the last equation to obtain 6a+ 4c = 46 or 3a+ 2c = 23.
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Solving the two equations in a and c one finds a = 5 and c = 4. Hence,
b = −3 and d = 1

(ii) Addition: If A(t) = (aij(t)) and B(t) = (bij(t) are m × n matrices
then the sum is a new m× n matrix obtained by adding corresponding ele-
ments

(A + B)(t) = A(t) + B(t) = (aij(t) + bij(t))

Matrices of different dimensions cannot be added.
(iii) Subtraction: Let A(t) = (aij(t)) and B(t) = (bij(t)) be two m × n
matrices. Then the difference (A−B)(t) is the new matrix obtained by
subtracting corresponding elements,that is

(A−B)(t) = A(t)−B(t) = (aij(t)− bij(t))

(iv) Scalar Multiplication: If α is a real number and A(t) = (aij(t)) is an
m× n matrix then (αA)(t) is the m× n matrix obtained by multiplying the
entries of A by the number α; that is,

(αA)(t) = αA(t) = (αaij(t))

(v) Matrix Multiplication: If A(t) is an m×n matrix and B(t) is an n×p
matrix then the matrix AB(t) is the m× p matrix

AB(t) = (cij(t))

where

cij(t) =
n∑
k=1

aik(t)bkj(t)

That is the cij entry is obtained by multiplying componentwise the ith row
of A(t) by the jth column of B(t). It is important to realize that the order
of the multiplicands is significant, in other words AB(t) is not necessarily
equal to BA(t). In mathematical terminology matrix multiplication is not
commutative.

Example 28.3

A =

[
1 2
3 2

]
,B =

[
2 −1
−3 4

]
Show that AB 6= BA. Hence, matrix multiplication is not commutative.
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Solution.
Using the definition of matrix multiplication we find

AB =

[
−4 7

0 5

]
,BA =

[
−1 2

9 2

]
Hence, AB 6= BA
(vi) Inverse: An n × n matrix A(t) is said to be invertible if and only if
there is an n× n matrix B(t) such that AB(t) = BA(t) = I where I is the
matrix whose main diagonal consists of the number 1 and 0 elsewhere. We
denote the inverse of A(t) by A−1(t).

Example 28.4
Find the inverse of the matrix

A =

[
a b
c d

]
given that ad − bc 6= 0. The quantity ad − bc is called the determinant of
A and is denoted by detA

Solution.
Suppose that

A−1 =

[
x y
z t

]
Then [

x y
z t

] [
a b
c d

]
=

[
1 0
0 1

]
This implies that [

ax+ cy bx+ dy
az + ct bz + dt

]
=

[
1 0
0 1

]
Hence,

ax+ cy = 1
bx+ dy = 0
az + ct = 0
bz + dt = 1

Applying the method of elimination to the first two equations we find
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x = d
ad−bc and y = −b

ad−bc

Applying the method of elimination to the last two equations we find

z = −c
ad−bc and t = a

ad−bc

Hence,

A−1 =
1

ad− bc

[
d −b
−c a

]
Norm of a Vector Function
The norm of a vector function will be needed in the coming sections. In one
dimension a norm is known as the absolute value. In multidimenesion, we
define the norm of a vector function x with components x1, x2, · · · , xn by

||x|| = |x1|+ |x2|+ · · ·+ |xn|.

From this definition one notices the following properties:
(i) If ||x|| = 0 then |x1| + |x2| + · · · + |xn| = 0 and this implies that
|x1| = |x2| = · · · = |xn| = 0. Hence, x = 0.
(ii) If α is a scalar then ||αx|| = |αx1|+ |αx2|+ · · ·+ |αxn| = |α|(|x1|+ |x2|+
· · ·+ |xn|) = |α|||x||.
(iii) If x is vector function with components x1, x2, · · · , xn and y with com-
ponents y1, y2, · · · , yn then

||x + y|| = |x1 + y1|+ |x2 + y2|+ · · ·+ |xn + yn|
≤ (|x1|+ |x2|+ · · ·+ |xn|) + (|y1|+ |y2|+ · · ·+ |yn|)
= ||x||+ ||y||

Limits of Matrix Functions
If A(t) = (aij(t)) is an m× n matrix such that limt→t0 aij(t) = Lij exists for
all 1 ≤ i ≤ m and 1 ≤ j ≤ n then we define

lim
t→t0

A(t) = (Lij)

Example 28.5
Suppose that

A(t) =

[
t2 − 5t t3

2t 3

]
Find limt→1 A(t).
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Solution.

lim
t→1

A(t) =

[
limt→1(t

2 − 5t) limt→1 t
3

limt→1 2t limt→1 3

]
=

[
−4 1
2 3

]
If one or more of the component function limits does not exist, then the limit
of the matrix does not exist. For example, if

A(t) =

[
t t−1

0 et

]
then limt→0 A does not exist since limt→0

1
t

does not exist.
We say that A(t) is continuous at t = t0 if

lim
t→t0

A(t) = A(t0)

Example 28.6
Show that the matrix

A(t) =

[
t t−1

0 et

]
is continuous at t = 1.

Solution.
Since

lim
t→1

A(t) =

[
2 1/2
0 e2

]
= A(1)

we have A(t) is continuous at t = 1
Most properties of limits for functions of a single variable are also valid for
limits of matrix functions.

Matrix Differentiation
Let A(t) be an m×n matrix such that each entry is a differentiable function
of t. We define the derivative of A(t) to be

A′(t) = lim
h→0

A(t+ h)−A(t)

h

provided that the limit exists.
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Example 28.7
Let

A(t) =

[
a11(t) a12(t)
a21(t) a22(t)

]
where the entries a11, a12, a21, and a22 are differentiable. Find A′(t).

Solution.
We have

A′(t) = limh→0
A(t+h)−A(t)

h

=

[
limh→0

a11(t+h)−a11(t)
h

limh→0
a12(t+h)−a12(t)

h

limh→0
a21(t+h)−a21(t)

h
limh→0

a22(t+h)−a22(t)
h

]

=

[
a′11(t) a′12(t)
a′21(t) a′22(t)

]
It follows from the previous example that the derivative of a matrix function
is the matrix of derivatives of its component functions. From this fact one
can check easily the following two properties of differentiation:
(i) If A(t) and B(t) are two m×n matrices with both of them differentiable
then the matrix (A + B)(t) is also differentiable and

(A + B)′(t) = A′(t) + B′(t)

(ii) If A(t) is an m×n differentiable matrix and B(t) is an n×p differentiable
matrix then the product matrix AB(t) is also differentiable and

(AB)′(t) = A′(t)B(t) + A(t)B′(t)

Example 28.8
Write the system

y′1 = a11(t)y1(t) + a12(t)y2(t) + a13(t)y3(t) + g1(t)
y′2 = a21(t)y1(t) + a22(t)y2(t) + a23(t)y3(t) + g2(t)
y′3 = a11(t)y1(t) + a12(t)y2(t) + a13(t)y3(t) + g3(t)

in matrix form.
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Solution.
Let

y(t) =

 y1(t)
y2(t)
y3(t)

 , A(t) =

 a11(t) a12(t) a13
a21(t) a22(t) a23
a31 a32 a33

 , g(t) =

 g1(t)
g2(t)
g3(t)


Then the given system can be written in the matrix form

y′(t) = A(t)y(t) + g(t)

Matrix Integration:
Since the derivative of a matrix function is a matrix of derivatives, it should
not be surprising that antiderivatives of a matrix function can be evaluated
by performing the corresponding antidifferentiation operations upon each
component of the matrix function. That is, if A(t) is the m× n matrix

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

am1(t) am2(t) · · · amn(t)


then ∫

A(t)dt =


∫
a11(t)dt

∫
a12(t)dt · · ·

∫
a1n(t)dt∫

a21(t)dt
∫
a22(t)dt · · ·

∫
a2n(t)dt

...
...∫

am1(t)dt
∫
am2(t)dt · · ·

∫
amn(t)dt


Example 28.9
Determine the matrix function A(t) if

A′(t) =

[
2t 1

cos t 3t2

]
Solution.
We have

A(t) =

[
t2 + c11 t+ c12

sin t+ c21 t3 + c22

]
=

[
t2 t

sin t t3

]
+

[
c11 c12
c21 c22

]
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Finally, we conclude this section by showing that

||
∫ t

t0

x(s)ds|| ≤
∫ t

t0

||x(s)||ds

To see this,

||
∫ t
t0

x(s)ds|| =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


∫ t
t0
x1(s)ds∫ t

t0
x2(s)ds

...∫ t
t0
xn(s)ds


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
= |

∫ t
t0
x1(s)ds|+ |

∫ t
t0
x2(s)ds|+ · · · |

∫ t
t0
xn(s)ds|

≤
∫ t
t0
|x1(s)|ds+

∫ t
t0
|x2(s)|ds+ · · ·+

∫ t
t0
|xn(s)|ds

=
∫ t
t0

(|x1|+ |x2|+ · · ·+ |xn|)ds =
∫ t
t0
||x(s)||ds
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Practice Problems

Problem 28.1
Consider the following matrices

A(t) =

[
t− 1 t2

2 2t+ 1

]
, B(t) =

[
t −1
0 t+ 2

]
, c(t) =

[
t+ 1
−1

]
(a) Find 2A(t) - 3tB(t)
(b) Find A(t)B(t) - B(t)A(t)
(c) Find A(t)c(t)
(d) Find det(B(t)A(t))

Problem 28.2
Determine all values t such that A(t) is invertible and, for those t-values,
find A−1(t).

A(t) =

[
t+ 1 t
t t+ 1

]
Problem 28.3
Determine all values t such that A(t) is invertible and, for those t-values,
find A−1(t).

A(t) =

[
sin t − cos t
sin t cos t

]
Problem 28.4
Find

lim
t→0

[
sin t
t

t cos t 3
t+1

e3t sec t 2t
t2−1

]
Problem 28.5
Find

lim
t→0

[
te−t tan t
t2 − 2 esin t

]
Problem 28.6
Find A′(t) and A′′(t) if

A(t) =

[
sin t 3t
t2 + 2 5

]
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Problem 28.7
Express the system

y′1 = t2y1 + 3y2 + sec t
y′2 = (sin t)y1 + ty2 − 5

in the matrix form
y′(t) = A(t)y(t) + g(t)

Problem 28.8
Determine A(t) where

A′(t) =

[
2t 1

cos t 3t2

]
, A(0) =

[
2 5
1 −2

]
Problem 28.9
Determine A(t) where

A′′(t) =

[
1 t
0 0

]
, A(0) =

[
1 1
−2 1

]
, A′(0) =

[
−1 2
−2 3

]
Problem 28.10
Calculate A(t) =

∫ t
0

B(s)ds where

B(s) =

[
es 6s

cos 2πs sin 2πs

]
Problem 28.11
Construct a 2 × 2 a nonconstant matrix function A(t) such that A2(t) is a
constant matrix.

Problem 28.12
(a) Construct a 2× 2 differentiable matrix function A(t) such that

d

dt
A2(t) 6= 2A

d

dt
A(t)

That is, the power rule is not true for matrix functions.
(b) What is the correct formula relating A2(t) to A(t) and A’(t)?
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Problem 28.13
Transform the following third-order equation

y′′′ − 3ty′ + (sin 2t)y = 7e−t

into a first order system of the form

x′(t) = Ax(t) + b(t)

Problem 28.14
By introducing new variables x1 and x2, write y′′− 2y+ 1 = t as a system of
two first order linear equations of the form x′ + Ax = b

Problem 28.15
Write the differential equation y′′ + 4y′ + 4y = 0 as a first order system.

Problem 28.16
Write the differential equation y′′+ ky′+ (t− 1)y = 0 as a first order system.

Problem 28.17
Change the following second-order equations to a first-order system.

y′′ − 5y′ + ty = 3t2, y(0) = 0, y′(0) = 1

Problem 28.18
Consider the following system of first-order linear equations.

x′ =

 3
2 1
−1

 · x
Find the second-order linear differential equation that x satisfies.

The Determinant of a Matrix
The determinant of a matrix function is the same as the determinant with
constant entries. So we will introduce the definition of determinant of a ma-
trix with constant entries.
A permutation of the set S = {1, 2, . . . , n} is an arrangement of the el-
ements of S in some order without omissions or repetitions. We write
σ = (σ(1)σ(2) · · ·σ(n)). In terms of functions, a permutation is a one-to-
one function from S onto S.
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Let Sn denote the set of all permutations on S. How many permutations are
there in Sn? We have n positions to be filled by n numbers. For the first
position, there are n possibilities. For the second there are n−1 possibilities,
etc. Thus, according to the multiplication rule of counting there are

n(n− 1)(n− 2) . . . 2.1 = n!

permutations.
Is there a way to list all the permutations of Sn? The answer is yes and one
can find the permutations by using a permutation tree which we describe
in the following example

Problem 28.19
List all the permutations of S = {1, 2, 3, 4}.

An inversion is said to occur whenever a larger integer precedes a smaller
one. If the number of inversions is even (resp. odd) then the permutation is
said to be even (resp. odd). We define the sign of a permutation to be
a function sgn with domain Sn and range {−1, 1} such that sgn(σ) = −1
if σ is odd and sgn(σ) = +1 if σ is even. For example, the permutation in
S6 defined by σ(1) = 3, σ(2) = 6, σ(3) = 4, σ(5) = 2, σ(6) = 1 is an even
permuatation since the inversions are (6,1),(6,3),(6,4),(6,5),(6,2),(3,2),(4,2),
and (5,2).
Let A be an n×n matrix. An elementary product from A is a product of
n entries from A, no two of which come from the same row or same column.

Problem 28.20
List all elementary products from the matrices
(a) (

a11 a12
a21 a22

)
,

(b)  a11 a12 a13
a21 a22 a23
a31 a32 a33


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Let A be an n × n matrix. Consider an elementary product of entries of
A. For the first factor, there are n possibilities for an entry from the first
row. Once selected, there are n− 1 possibilities for an entry from the second
row for the second factor. Continuing, we find that there are n! elementary
products. They are the products of the form a1σ(1)a2σ(2) . . . anσ(n), where σ is
a permutation of {1, 2, . . . , n}, i.e. a member of Sn.

Let A be an n × n matrix. Then we define the determinant of A to be
the number

det(A) =
∑

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

where the sum is over all permutations σ of {1, 2, . . . , n}.

Problem 28.21
Find det(A) if
(a)

A =

(
a11 a12
a21 a22

)
,

(b)

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The following theorem is of practical use. It provides a technique for evalu-
ating determinants by greatly reducing the labor involved.

Theorem 28.1
Let A be an n× n matrix.
(a) Let B be the matrix obtained from A by multiplying a row or a column
by a scalar c. Then det(B) = cdetA.
(b) Let B be the matrix obtained from A by interchanging two rows or two
columns of A. Then det(B) = −det(A).
(c) If A has two identical rows or columns then its determinant is zero.
(d) Let B be the matrix obtained from A by adding c times a row (or a
column) to another row (column). Then det(B) = det(A).
(e) The determinant of the product of two n× n matrices is the product of
their determinant.
(g) If B is the matrix whose columns are the rows of A then det(B) = det(A).
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The proof of this theorem can be found in any textbook in elementary linear
algebra.
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29 nth Order Linear Differential Equations:Existence

and Uniqueness

In the following three sections we carry the basic theory of second order linear
differential equations to nth order linear differential equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = g(t)

where the functions p0, p1, · · · , pn−1 and g(t) are continuous functions for
a < t < b.
If g(t) is not identically zero, then this equation is said to be nonhomoge-
neous; if g(t) is identically zero, then this equation is called homogeneous.

Existence and Uniqueness of Solutions
We begin by discussing the existence of a unique solution to the initial value
problem

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = g(t)

y(t0) = y0, y
′(t0) = y′0, · · · , y(n−1)(t0) = y

(n−1)
0 , a < t0 < b

The following theorem is a generalization to Theorems 3.2 and 15.1

Theorem 29.1
The nonhomogeneous nth order linear differential equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = g(t) (1)

with initial conditions

y(t0) = y0, y
′(t0) = y′0, · · · , y(n−1)(t0) = y

(n−1)
0 , a < t0 < b (2)

has a unique solution in a < t < b.

Proof.
Existence: The existence of a local solution is obtained here by transform-
ing the problem into a first order system. This is done by introducing the
variables

x1 = y, x2 = y′, · · · , xn = y(n−1).
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In this case, we have

x′1 = x2
x′2 = x3
... =

...
x′n−1 = xn
x′n = −pn−1(t)xn − · · ·+ p1(t)x2 − p0(t)x1 + g(t)

Thus, we can write the problem as a system:
x1
x2
x3
...
xn


′

+


0 −1 0 0 · · · 0
0 0 −1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −1
p0 p1 p2 p3 · · · pn−1




x1
x2
x3
...
xn

 =


0
0
...
0
g(t)


or in compact form

x′(t) = A(t)x(t) + b(t), x(t0) = y0 (3)

where

A(t) =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



x(t) =


x1
x2
x3
...
xn

 , b(t) =


0
0
...
0
g(t)

 , y0 =


y0
y′0
...

y
(n−1)
0


Note that if y(t) is a solution of (1) then the vector-valued function

x(t) =


y
y′

...
y(n−1)


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is a solution to (3). Conversely, if the vector

x(t) =


x1
x2
x3
...
xn


is a solution of (3) then x′1 = x2, x

′′
1 = x3, · · · , x(n−1)1 = xn. Hence, x

(n)
1 =

x′n = −pn−1(t)xn − pn−2(t)xn−1 − · · · − p0(t)x1 + g(t) or

x
(n)
1 + pn−1(t)x

(n−1)
1 + pn−2(t)x

(n−2)
1 + · · ·+ p0(t)x1 = g(t)

which means that x1 is a solution to (1).
Next, we start by reformulating (3) as an equivalent integral equation. Inte-
gration of both sides of (3) yields∫ t

t0

x′(s)ds =

∫ t

t0

[A(s)x(s) + b(s)]ds (4)

Applying the Fundamental Theorem of Calculus to the left side of (4) yields

x(t) = x(t0) +

∫ t

t0

[A(s)x(s) + b(s)]ds (5)

Thus, a solution of (5) is also a solution to (3) and vice versa.
To prove the existence and uniqueness, we shall use again the method of
successive approximation as described in Theorem 8.1.
Letting

y0 =


y0
y′0
...

y
(n−1)
0


we can introduce Picard’s iterations defined recursively as follows:

y0(t) ≡ y0

y1(t) = y0 +
∫ t
t0

[A(s)y0(s) + b(s)]ds

y2(t) = y0 +
∫ t
t0

[A(s)y1(s) + b(s)]ds
...

...

yN(t) = y0 +
∫ t
t0

[A(s)yN−1(s) + b(s)]ds
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Let

yN(t) =


y1,N
y2,N

...
yn,N


For i = 1, 2, · · · , n, we are going to show that the sequence {yi,N(t)} converges
uniformly to a function yi(t) such that y(t) (with components y1, y2, · · · , yn)is
a solution to (5) and hence a solution to (3).
Let [c, d] be a closed interval containing t0 and contained in (a, b). Then there
exist constants k0, k1, · · · , kn−1 such that

max
c≤t≤d

|p0(t)| ≤ k0, max
c≤t≤d

|p1(t)| ≤ k1, · · · , max
c≤t≤d

|pn−1(t)| ≤ kn−1.

This implies that

||A(t)x(t)|| = |x2|+ |x3|+ · · ·+ |xn−1 + |p0||x1|+ |p1||x2|+ · · ·+ |pn−1||xn|
≤ k0|x1|+ (1 + k1)|x2|+ · · ·+ (1 + kn−2)|xn−1|+ kn−1|xn| ≤ K||x||

for all c ≤ t ≤ d, where we define

||y|| = |y1|+ |y2|+ · · ·+ |yn|

and where
K = k0 + (1 + k1) + · · ·+ (1 + kn−2) + kn−1.

It follows that for 1 ≤ i ≤ n

|yi,N − yi,N−1| ≤ ||yN − yN−1|| ≤
∫ t
t0
||A(s) · (yN−1 − yN−2)||ds

≤ K
∫ t
t0
||yN−1 − yN−2||ds

But
||y1 − y0|| ≤

∫ t
t0
||A(s) · y0 + b(s)||ds

≤ M(t− t0)
where

M = K||y0||+ max
c≤t≤d

||b(t)||

An easy induction yields that

||yN+1 − yN || ≤MKN (t− t0)N+1

N !
≤MKN (b− a)N+1

N !
.
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Since
∞∑
N=0

MKN (b− a)N+1

N !
= M(b− a)(eK(b−a) − 1)

by Weierstrass M-test we conclude that the series
∑∞

N=0[yi,N − yi,N−1] con-
verges uniformly for all c ≤ t ≤ d. But

yi,N(t) =
N−1∑
k=0

[yi,k+1(t)− yi,k(t)] + yi,0

Thus, the sequence {yi,N} converges uniformly to a function yi(t) for all
c ≤ t ≤ d.
The function yi(t) is a continuous function (a uniform limit of a sequence
of continuous function is continuous). Also we can interchange the order of
taking limits and integration for such sequences. Therefore

y(t) = limN→∞ yN(t)

= y0 + limN→∞
∫ t
t0

(A(s)yN−1 + b(s))ds

= y0 +
∫ t
t0

limN→∞(A(s)yN−1 + b(s))ds

= y0 +
∫ t
t0

(A(s)y + b(s))ds

This shows that y(t) is a solution to the integral equation (5) and therefore
a solution to (3).

Uniqueness:
The uniqueness follows from Gronwall Inequality (See Problem 8.11). Sup-
pose that y(t) and z(t) are two solutions to the initial value problem, it
follows that for all a < t < b we have

||y(t)− z(t)|| ≤
∫ t

t0

K||y(s)− z(s)||ds

Letting u(t) = ||y(t)− z(t)|| we have

u(t) ≤
∫ t

t0

Ku(s)ds

so that by Gronwall’s inequality u(t) ≡ 0 and therefore y(t) = z(t) for all
a < t < b. This completes a proof of the theorem
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Example 29.1
Find the largest interval where

(t2 − 16)y(4) + 2y′′ + t2y = sec t, y(3) = 1, y′(3) = 3, y′′(3) = −1

is guaranteed to have a unique solution.

Solution.
We first put it into standard form

y(4) +
2

t2 − 16
y′′ +

t2

t2 − 16
y =

sect

t2 − 16

The coefficient functions are continuous for all t 6= ±4 and t 6= (2n + 1)π
2
.

Since t0 = 3, the largest interval where the given initial value problem is
guaranteed to have a unique solution is the ineterval π

2
< t < 4
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Practice Problems
For Problems 29.1 - 29.3, use Theorem 29.1 to find the largest interval

a < t < b in which a unique solution is guaranteed to exist.

Problem 29.1

y′′′ − 1

t2 − 9
y′′ + ln (t+ 1)y′ + (cos t)y = 0, y(0) = 1, y′(0) = 3, y′′(0) = 0

Problem 29.2

y′′′ +
1

t+ 1
y′ + (tan t)y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 2

Problem 29.3

y′′ − 1

t2 + 9
y′′ + ln (t2 + 1)y′ + (cos t)y = 0, y(0) = 1, y′(0) = 3, y′′(0) = 0

Problem 29.4
Determine the value(s) of r so that y(t) = ert is a solution to the differential
equation

y′′′ − 2y′′ − y′ + 2y = 0

Problem 29.5
Transform the following third-order equation

y′′′ − 3ty′ + (sin 2t)y = 7e−t

into a first order system of the form

x′(t) = Ax(t) + b(t)
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30 The General Solution of nth Order Linear

Homogeneous Equations

In this section we consider the question of solving the homogeneous equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = 0 (6)

where p0(t), p1(t), · · · , pn−1(t) are continuous functions in the interval a <
t < b.
The next theorem shows that any linear combination of solutions to the
homogeneous equation is also a solution.
In what follows and for the simplicity of arguments we introduce the function
L defined by

L[y] = y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y

Theorem 30.1 (Linearity)
If y1 and y2 are n times differentiable and α1 and α2 are scalars then L
satisfies the property

L[α1y1 + α2y2] = α1L[y1] + α2L[y2]

Proof.
Indeed, we have

L[α1y1 + α2y2] = (α1y1 + α2y2)
(n) + pn−1(t)(α1y1 + α2y2)

(n−1) + · · ·
+ p0(t)(α1y1 + α2y2)

= (α1y
(n)
1 + α1pn−1(t)y

(n−1)
1 + · · ·+ α1p1(t)y

′
1 + α1p0(t)y1)

+ (α2y
(n)
2 + α2pn−1(t)y

(n−1)
2 + · · ·+ α2p1(t)y

′
2 + α2p0(t)y2)

= α1(y
(n)
1 + pn−1(t)y

(n−1)
1 + · · ·+ p1(t)y

′
1 + p0(t)y1)

+ α2(y
(n)
2 + pn−1(t)y

(n−1)
2 + · · ·+ p1(t)y

′
2 + p0(t)y2)

= α1L[y1] + α2L[y2]

The above property applies for any number of functions.
An important consequence of this theorem is the following result.

Corollary 30.1 (Principle of Superposition)
If y1, y2, · · · , yr satisfy the homogeneous equation (6) and if α1, α2, · · · , αr
are any numbers, then

y(t) = α1y1 + α2y2 + · · ·+ αryr

also satisfies the homogeneous equation (6).
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Proof.
Since y1, y2, · · · , yr are solutions to (6), L[y1] = L[y2] = · · · = L[yr] = 0.
Now, using the linearity property of L we have

L[α1y1 + α2y2 + · · ·+ αryr] = α1L[y1] + α2L[y2] + · · ·+ αrL[yr]
= 0 + 0 + · · ·+ 0 = 0

The principle of superposition states that if y1, y2, · · · , yr are solutions to
(6) then any linear combination is also a solution. The next question that we
consider is the question of existence of n solutions y1, y2, · · · , yn of equation
(6) such that every solution to (6) can be written as a linear combination
of these functions. We call such a set a functions a fundamental set of
solutions. Note that the number of solutions comprising a fundamental set
is equal to the order of the differential equation. Also, note that the general
solution to (6) is then given by

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t).

Next, we consider a criterion for testing n solutions for a fundamental set.
For that we first introduce the following definition:
For n functions y1, y2, · · · , yn, we define the Wronskian of these functions
to be the determinant

W (t) =

∣∣∣∣∣∣∣∣∣∣∣

y1(t) y2(t) · · · yn(t)
y′1(t) y′2(t) · · · y′n(t)
y′′1(t) y′′2(t) · · · y′′n(t)

...
... · · · ...

y
(n−1)
1 (t) y

(n−1)
2 (t) · · · y

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣∣
Theorem 30.2 (Criterion for identifying fundamental sets)
Let y1(t), y2(t), · · · , yn(t) be n solutions to the homogeneous equation (6).
If there is a a < t0 < b such that W (t0) 6= 0 then {y1, y2, · · · , yn} is a
fundamental set of solutions.

Proof.
We need to show that if y(t) is a solution to (6) then we can write y(t) as a
linear combination of y1, y2(t), · · · , yn(t). That is

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn.
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So the problem reduces to finding the constants c1, c2, · · · , cn. These are
found by solving the following linear system of n equations in the unknowns
c1, c2, · · · , cn:

c1y1(t0) + c2y2(t0) + · · ·+ cnyn(t0) = y(t0)
c1y
′
1(t0) + c2y

′
2(t0) + · · ·+ cny

′
n(t0) = y′(t0)

................................................... = ...

c1y
(n−1)
1 (t) + c2y

(n−1)
2 (t) + · · ·+ cny

(n−1)
n (t) = y(n−1)(t0)

Solving this system using Cramer’s rule we find

ci =
Wi(t0)

W (t0)
, 1 ≤ i ≤ n

where

Wi(t0) =

∣∣∣∣∣∣∣∣∣∣∣

y1(t0) y2(t0) · · · y(t0) · · · yn(t0)
y′1(t0) y′2(t0) · · · y′(t0) · · · y′n(t0)
y′′1(t0) y′′2(t0) · · · y′′(t0) · · · y′′n(t0)

...
... · · · ...

y
(n−1)
1 (t0) y

(n−1)
2 (t0) · · · y(n−1)(t0) · · · y

(n−1)
n (t0)

∣∣∣∣∣∣∣∣∣∣∣
That is, Wi(t0) is the determinant of W with the ith column being replaced
by the right-hand column of the above system. Note that c1, c2, · · · , cn exist
since W (t0) 6= 0
As a first application to this result, we establish the existence of fundamental
sets

Theorem 30.3
The linear homogeneous differential equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = 0

where pn−1(t), · · · , p1(t), p0(t) are continuous functions in a < t < b has a
fundamental set {y1, y2, · · · , yn}.

Proof.
Pick a t0 in the interval a < t < b and consider the n initial value problems

y(n)+pn−1(t)y
(n−1)+· · ·+p1(t)y′+p0(t)y = 0, y(t0) = 1, y′(t0) = 0, y′′(t0) = 0, · · · , y(n−1)(t0) = 0

28



y(n)+pn−1(t)y
(n−1)+· · ·+p1(t)y′+p0(t)y = 0, y(t0) = 0, y′(t0) = 1, y′′(t0) = 0, · · · , y(n−1)(t0) = 0

y(n)+pn−1(t)y
(n−1)+· · ·+p1(t)y′+p0(t)y = 0, y(t0) = 0, y′(t0) = 0, y′′(t0) = 1, · · · , y(n−1)(t0) = 0

...

y(n)+pn−1(t)y
(n−1)+· · ·+p1(t)y′+p0(t)y = 0, y(t0) = 0, y′(t0) = 0, y′′(t0) = 0, · · · , y(n−1)(t0) = 1

Then by Theorem 27.1, we can find unique solutions {y1, y2, · · · , yn}. This
set is a fundamental set by the previous theorem since

W (t) =

∣∣∣∣∣∣∣∣∣
1 0 0 · · · 0
0 1 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣ = 1 6= 0

Theorem 30.2 says that if one can find a < t0 < b such that W (t0) 6= 0
then the set {y1, y2, · · · , yn} is a fundamental set of solutions. The following
theorem shows that the condition W (t0) 6= 0 implies that W (t) 6= 0 for all
t in the interval (a, b). That is, the theorem tells us that we can choose our
test point t0 on the basis of convenience-any test point t0 will do.

Theorem 30.4 (Abel’s)
Let y1(t), y2(t), · · · , yn be n solutions to equation (6). Then
(1) W (t) satisfies the differential equation W ′(t) + pn−1(t)W (t) = 0;
(2) If t0 is any point in (a, b) then

W (t) = W (t0)e
−

∫ t
t0
pn−1(s)ds

Thus, if W (t0) 6= 0 then W (t) 6= 0 for all a < t < b.

Proof.
(1) By introducing the variables x1 = y, x2 = y′, x3 = y′′, · · · , xn = y(n−1)

we can write the differential equation as a first order system in the form

x′(t) = A(t)x(t)

where

A(t) =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1

 , x(t) =


x1
x2
x3
...
xn


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We will show in Section 33 that for any linear system of the form

x′(t) = A(t)x(t)

we have
W ′(t) = (a11 + a22 + · · ·+ ann)W (t)

In our case
a11 + a22 + · · ·+ ann = −pn−1(t)

so that
W ′(t) + pn−1(t)W (t) = 0

(2) The previous differential equation can be solved by the method of inte-
grating factor to obtain

W (t) = W (t0)e
−

∫ t
t0
pn−1(s)ds

Example 30.1
Use the Abel’s formula to find the Wronskian of the DE: ty′′′ + 2y′′ − t3y′ +
et

2
y = 0

Solution.
The original equation can be written as

y′′′ +
2

t
y′′ − t2y′ + et

2

t
y = 0

By Abel’s formula the Wronskian is

W (t) = Ce−
∫

2
t
dt =

C

t2

Example 30.2
Consider the linear system

x′(t) = A(t)x(t)

where

A =

[
a11 a12
a21 a22

]
Show that for any two solutions Y1 and Y2 we have

W ′(t) = (a11 + a22)W (t).
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Solution.
Suppose that

Y1 =

[
u1
u2

]
, Y2 =

[
v1
v2

]
are solutions to the given system. Then we have

W ′(t) = d
dt

∣∣∣∣ u1 v1
u2 v2

∣∣∣∣
=

∣∣∣∣ u′1 v′1
u2 v2

∣∣∣∣+

∣∣∣∣ u1 v1
u′2 v′2

∣∣∣∣
But ∣∣∣∣ u′1 v′1

u2 v2

∣∣∣∣ =

∣∣∣∣ a11u1 + a12u2 a11v1 + a12v2
u2 v2

∣∣∣∣ = a11W (t)

and ∣∣∣∣ u1 v1
u′2 v′2

∣∣∣∣ =

∣∣∣∣ u1 v1
a21u1 + a22u2 a21v1 + a22v2

∣∣∣∣ = a22W (t)

It follows that
W ′(t) = (a11 + a22)W (t)

We end this section by showing that the converse of Theorem 30.2 is also
true.

Theorem 30.5
If {y1, y2, · · · , yn} is a fundamental set of solutions to

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = 0

where pn−1(t), · · · , p1(t), p0(t) are continuous functions in a < t < b then
W (t) 6= 0 for all a < t < b.

Proof.
Let t0 be any point in (a, b). By Theorem 27.1, there is a unique solution y(t)
to the initial value problem

y(n)+pn−1(t)y
(n−1)+· · ·+p1(t)y′+p0(t)y = 0, y(t0) = 1, y′(t0) = 0, · · · , y(n−1)(t0) = 0
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Since {y1, y2, · · · , yn} is a fundamental set, there exist unique constants
c1, c2, · · · , cn such that

c1y1(t) + c2y2(t) · · · cnyn(t) = y(t)
c1y
′
1(t) + c2y

′
2(t) · · · cny

′
n(t) = y′(t)

...

c1y
(n−1)
1 (t) + c2y

(n−1)
2 (t) · · · cny

(n−1)
n (t) = y(n−1)(t)

for all a < t < b. In particular for t = t0 we obtain the system

c1y1(t) + c2y2(t) · · · cnyn(t) = 1
c1y
′
1(t) + c2y

′
2(t) · · · cny

′
n(t) = 0

...

c1y
(n−1)
1 (t) + c2y

(n−1)
2 (t) · · · cny

(n−1)
n (t) = 0

This system has a unique solution (c1, c2, · · · , cn) where

ci =
Wi

W (t0)

and Wi is the determinant W with the ith column replaced by the column
1
0
0
...
0


Note that for c1, c2, · · · , cn to exist we must have W (t0) 6= 0. By Abel’s
theorem we conclude that W (t) 6= 0 for all a < t < b
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Practice Problems

In Problems 30.1 - 30.3, show that the given solutions form a fundamen-
tal set for the differential equation by computing the Wronskian.

Problem 30.1

y′′′ − y′ = 0, y1(t) = 1, y2(t) = et, y3(t) = e−t

Problem 30.2

y(4) + y′′ = 0, y1(t) = 1, y2(t) = t, y3(t) = cos t, y4(t) = sin t

Problem 30.3

t2y′′′ + ty′′ − y′ = 0, y1(t) = 1, y2(t) = ln t, y3(t) = t2

Use the fact that the solutions given in Problems 30.1 - 30.3 for a fundamental
set of solutions to solve the following initial value problems.

Problem 30.4

y′′′ − y′ = 0, y(0) = 3, y′(0) = −3, y′′(0) = 1

Problem 30.5

y(4) + y′′ = 0, y( |pi
2

) = 2 + π, y′(π
2
) = 3, y′′(π

2
) = −3, y′′′(π

2
) = 1.

Problem 30.6

t2y′′′ + ty′′ − y′ = 0, , y(1) = 1, y′(1) = 2, y′′(1) = −6
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Problem 30.7
In each question below, show that the Wronskian determinant W (t) behaves
as predicted by Abel’s Theorem. That is, for the given value of t0, show that

W (t) = W (t0)e
−

∫ t
t0
pn−1(s)ds

(a) W (t) found in Problem 30.1 and t0 = −1.
(b) W (t) found in Problem 30.2 and t0 = 1.
(c) W (t) found in Problem 30.3 and t0 = 2.

Problem 30.8
Determine W (t) for the differential equation y′′′+(sin t)y′′+(cos t)y′+2y = 0
such that W (1) = 0.

Problem 30.9
Determine W (t) for the differential equation t3y′′′−2y = 0 such that W (1) =
3.

Problem 30.10
Consider the initial value problem

y′′′ − y′ = 0, y(0) = α, y′(0) = β, y′′(0) = 4.

The general solution of the differential equation is y(t) = c1 + c2e
t + c3e

−t.
(a) For what values of α and β will limt→∞ y(t) = 0?
(b) For what values α and β will the solution y(t) be bounded for t ≥ 0, i.e.,
|y(t)| ≤ M for all t ≥ 0 and for some M > 0? Will any values of α and β
produce a solution y(t) that is bounded for all real number t?

Problem 30.11
Consider the differential equation y′′′ + p2(t)y

′′ + p1(t)y
′ = 0 on the interval

−1 < t < 1. Suppose it is known that the coefficient functions p2(t) and p1(t)
are both continuous on −1 < t < 1. Is it possible that y(t) = c1 + c2t

2 + c3t
4

is the general solution for some functions p1(t) and p2(t) continuous on −1 <
t < 1?
(a) Answer this question by considering only the Wronskian of the functions
1, t2, t4 on the given interval.
(b) Explicitly determine functions p1(t) and p2(t) such that y(t) = c1 +c2t

2 +
c3t

4 is the general solution of the differential equation. Use this information,
in turn, to provide an alternative answer to the question.
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Problem 30.12
(a) Find the general solution to y′′′ = 0.
(b) Using the general solution in part (a), construct a fundamental set
{y1(t), y2(t), y3(t)} satisfying the following conditions

y1(1) = 1, y′1(1) = 0, y′′1(1) = 0.
y2(1) = 0, y′1(1) = 1, y′′1(1) = 0.
y1(1) = 0, y′1(1) = 0, y′′1(1) = 1.
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31 Fundamental Sets and Linear Independence

In Section 30 we established the existence of fundamental sets. There re-
main two questions that we would like to answer. The first one is about the
number of fundamental sets. That is how many fundamental sets are there.
It turns out that there are more than one. In this case, our second question
is about how these sets are related. In this section we turn our attention to
these questions.
We start this section by the following observation. Suppose that the Wron-
skian of n solutions {y1, y2, · · · , yn} to the nth order linear homogeneous
differential equation is zero. In terms of linear algebra, this means that one
of the columns of W can be written as a linear combination of the remaining
columns. For the sake of argument, suppose that the last column is a linear
combination of the remaining columns:

yn
y′n
...

y
(n−1)
n

 = c1


y1
y′1
...

y
(n−1)
1

+ c2


y2
y′2
...

y
(n−1)
2

+ · · ·+ cn−1


yn−1
y′n−1

...

y
(n−1)
n−1


This implies that

yn(t) = c1y1(t) + c2y2(t) + · · ·+ cn−1yn−1(t).

Such a relationship among functions merit a name:
We say that the functions f1, f2, · · · , fm are linearly dependent on an
interval I if at least one of them can be expressed as a linear combination
of the others on I; equivalently, they are linearly dependent if there exist
constants c1, c2, · · · , cm not all zero such that

c1f1(t) + c2f2(t) + · · ·+ cmfm(t) = 0 (7)

for all t in I. A set of functions that is not linearly dependent is said to be
linearly independent. This means that a sum of the form (7) implies that
c1 = c2 = · · · = cm = 0.

Example 31.1
Show that the functions f1(t) = et, f2(t) = e−2t, and f3(t) = 3et − 2e−2t are
linearly dependent on (−∞,∞).
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Solution.
Since f3(t) = 3f1(t) − 2f2(t), the given functions are linearly dependent on
(−∞,∞)

The concept of linear independence can be used to test a fundamental set of
solutions to the equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = 0 (8)

Theorem 31.1
The solution set {y1, y2, · · · , yn} is a fundamental set of solutions to

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = 0

where pn−1(t), · · · , p1(t), p0(t) are continuous functions in a < t < b if and
only if the functions y1, y2, · · · , yn are linearly independent.

Proof.
Suppose first that {y1, y2, · · · , yn} is a fundamental set of solutions. Then by
Theorem 28.5 there is a < t0 < b such that W (t0) 6= 0. Suppose that

c1y1(t) + c2y2(t) + · · ·+ cnyn(t) = 0

for all a < t < b. By repeated differentiation of the previous equation we find

c1y
′
1(t) + c2y

′
2(t) + · · ·+ cny

′
n(t) = 0

c1y
′′
1(t) + c2y

′′
2(t) + · · ·+ cny

′′
n(t) = 0

...

c1y
(n−1)
1 (t) + c2y

(n−1)
2 (t) + · · ·+ cny

(n−1)
n (t) = 0

Thus, one finds c1, c2, · · · , cn by solving the system

c1y1(t0) + c2y2(t0) + · · ·+ cnyn(t0) = 0
c1y
′
1(t0) + c2y

′
2(t0) + · · ·+ cny

′
n(t0) = 0

c1y
′′
1(t0) + c2y

′′
2(t0) + · · ·+ cny

′′
n(t0) = 0

...

c1y
(n−1)
1 (t0) + c2y

(n−1)
2 (t0) + · · ·+ cny

(n−1)
n (t0) = 0

Solving this system using Cramer’s rule one finds

c1 = c2 = · · · , cn =
0

W (t0)
= 0
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Thus, y1(t), y2(t), · · · , yn(t) are linearly independent.
Conversely, suppose that {y1, y2, · · · , yn} is a linearly independent set. Sup-
pose that {y1, y2, · · · , yn} is not a fundamental set of solutions. Then by
Theorem 30.2, W (t) = 0 for all a < t < b. Choose any a < t0 < b. Then
W (t0) = 0. But this says that the matrix

y1(t0) y2(t0) · · · yn(t0)
y′1(t0) y′2(t0) · · · y′n(t0)

...
...

...
...

y
(n−1)
1 (t0) y

(n−1)
2 (t0) · · · y

(n−1)
n (t0)


is not invertible which means that there exist c1, c2, · · · , cn not all zero such
that

c1y1(t0) + c2y2(t0) + · · ·+ cnyn(t0) = 0
c1y
′
1(t0) + c2y

′
2(t0) + · · ·+ cny

′
n(t0) = 0

c1y
′′
1(t0) + c2y

′′
2(t0) + · · ·+ cny

′′
n(t0) = 0

...

c1y
(n−1)
1 (t0) + c2y

(n−1)
2 (t0) + · · ·+ cny

(n−1)
n (t0) = 0

Now, let y(t) = c1y1(t)+c2y2(t)+ · · ·+cnyn(t) for all a < t < b. Then y(t) is a
solution to the differential equation and y(t0) = y′(t0) = · · · = y(n−1)(t0) = 0.
But the zero function also is a solution to the initial value problem. By
the existence and uniqueness theorem (i.e, Theorem 29.1) we must have
c1y1(t) + c2y2(t) + · · ·+ cnyn(t) = 0 for all a < t < b with c1, c2, · · · , cn not
all equal to 0. But this means that y1, y2, · · · , yn are linearly depedent which
contradicts our assumption that y1, y2, · · · , yn are linearly independent

Remark 31.1
The fact that {y1, y2, · · · , yn} are solutions is very critical. That is, if y1, y2, · · · , yn
are merely differentiable functions then it is possible for them to be linearly
independent and yet have a vanishing Wronskian. See Section 17.

Next, we will show how to generate new fundamental sets from a given one
and therefore establishing the fact that a linear homogeneous differential
equation has many fundamental sets of solutions. We also show how different
fundamental sets are related to each other. For this, let us start with a funda-
mental set {y1, y2, · · · , yn} of solutions to (8). If {y1, y2, · · · , yn} are n solu-
tions then they can be written as linear combinations of the {y1, y2, · · · , yn}.
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That is,
a11y1 + a21y2 + · · ·+ an1yn = y1
a12y1 + a22y2 + · · ·+ an2yn = y2

...
a1ny1 + a2ny2 + · · ·+ annyn = yn

or in matrix form as

[
y1 y2 · · · yn

]
=
[
y1 y2 · · · yn

]

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
... · · · ...

an1 an2 an3 · · · ann


Theorem 31.2
{y1, y2, · · · , yn} is a fundamental set if and only if det(A) 6= 0 where A is
the coefficient matrix of the above matrix equation.

Proof.
By differentiating (n-1) times the system

a11y1 + a21y2 + · · ·+ an1yn = y1
a12y1 + a22y2 + · · ·+ an2yn = y2

...
a1ny1 + a2ny2 + · · ·+ annyn = yn

one can easily check that
y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

 =


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n




a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann


By taking the determinant of both sides and using the fact that the deter-
minant of a product is the product of determinants then we can write

W (t) = det(A)W (t)

Since W (t) 6= 0, W (t) 6= 0 (i.e., {y1, y2, · · · , yn} is a fundamental set) if and
only if det(A) 6= 0
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Example 31.2
The set {y1(t), y2(t), y3(t)} = {1, et, e−t} is fundamental set of solutions to
the differential equation

y′′′ − y′ = 0

(a) Show that {y1(t), y2(t), y3(t)} = {cosh t, 1−sinh t, 2+sinh t} is a solution
set.
(b) Determine the coefficient matrix A described in the previous theorem.
(c) Determine whether this set is a fundamental set by calculating the deter-
minant of the matrix A.

Solution.
(a) Since y′1 = sinh t, y′′1 = cosh t, and y′′′1 (t) = sinh t we have y′′′1 − y′1 = 0 so
that y1 is a solution. A similar argument holds for y2 and y3.
(a) Since y1(t) = 0 · 1 + 1

2
· et + 1

2
· e−t, y2(t) = 1 · 1− 1

2
et + 1

2
· e−t, y3(t) =

2 · 1 + 1
2
· et − 1

2
· e−t we have

A =

 0 1 2
1/2 −1/2 1/2
1/2 1/2 −1/2


(c) One can easily find that det(A) = 3

2
6= 0 so that {y1(t), y2(t), y3(t)} is a

fundemantal set of solutions
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Practice Problems

Problem 31.1
Determine if the following functions are linearly independent

y1(t) = e2t, y2(t) = sin (3t), y3(t) = cos t

Problem 31.2
Determine whether the three functions : f(t) = 2, g(t) = sin2 t, h(t) = cos2 t,
are linearly dependent or independent on −∞ < t <∞

Problem 31.3
Determine whether the functions, y1(t) = 1; y2(t) = 1 + t; y3(t) = 1 + t + t2;
are linearly dependent or independent. Show your work.

Problem 31.4
Consider the set of functions {y1(t), y2(t), y3(t)} = {t2 +2t, αt+1, t+α}. For
what value(s) α is the given set linearly depedent on the interval −∞ < t <
∞?

Problem 31.5
Determine whether the set {y1(t), y2(t), y3(t)} = {t|t|+ 1, t2−1, t} is linearly
independent or linearly dependent on the given interval
(a) 0 ≤ t <∞.
(b) −∞ < t ≤ 0.
(c) −∞ < t <∞.

In Problems 31.6 - 31.7, for each differential equation, the corresponding set
of functions {y1(t), y2(t), y3(t)} is a fundamental set of solutions.
(a) Determine whether the given set {y1(t), y2(t), y3(t)} is a solution set to
the differential equation.
(b) If {y1(t), y2(t), y3(t)} is a solution set then find the coefficient matrix A
such that  y1

y2
y3

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 y1
y2
y3


(c) If {y1(t), y2(t), y3(t)} is a solution set, determine whether it is a funda-
mental set by calculating the determinant of A.
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Problem 31.6

y′′′ + y′′ = 0
{y1(t), y2(t), y3(t)} = {1, t, e−t}

{y1(t), y2(t), y3(t)} = {1− 2t, t+ 2, e−(t+2)}

Problem 31.7

t2y′′′ + ty′′ − y′ = 0, t > 0
{y1(t), y2(t), y3(t)} = {t, ln t, t2}

{y1(t), y2(t), y3(t)} = {2t2 − 1, 3, ln (t3)}

42



32 Higher Order Homogeneous Linear Equa-

tions with Constant Coefficients

In this section we investigate how to solve the nth order linear homogeneous
equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0 (9)

The general solution is given by

y(t) = c1y1 + c2y2 + · · ·+ cnyn

where {y1, y2, · · · , yn} is a fundamental set of solutions.
What was done for second-order, linear homogeneous equations with constant
coefficients holds, with the obvious modifications, for higher order analogs.
As for the second order case, we seek solutions of the form y(t) = ert, where
r is a constant (real or complex-valued) to be found. Inserting into (9) we
find

(rn + an−1r
n−1 + · · · a1r + a0)e

rt = 0

We call P (r) = rn +an−1r
n−1 + · · · a1r+a0 the characteristic polynomial

and the equation

rn + an−1r
n−1 + · · · a1r + a0 = 0 (10)

the characteristic equation. Thus, for y(t) = ert to be a solution to (9) r
must satisfy (11).

Example 32.1
Solve: y′′′ − 4y′′ + y′ + 6y = 0

Solution.
The characteristic equation is

r3 − 4r2 + r + 6 = 0

We can factor to find the roots of the equation. A calculator can efficiently
do this, or you can use the rational root theorem to get

(r + 1)(r − 2)(r − 3) = 0
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Thus, the roots are
r = −1, r = 2, r = 3

The Wronskian ∣∣∣∣∣∣
e−t e2t e3t

−e−t 2e2t 3e3t

e−t 4e2t 9e3t

∣∣∣∣∣∣ = 12e4t 6= 0

Hence, {e−t, e2t, e3t} is a fundamental set of solutions and the general solution
is

y = c1e
−t + c2e

2t + c3e
3t

In the previous example, the characteristic solution had three distinct roots
and the corresponding set of solutions formed a fundamental set. This is
always true according to the following theorem.

Theorem 32.1
Assume that the characteristic equation

rn + an−1r
n−1 + · · · a1r + a0 = 0

has n distinct roots r1, r2, · · · , rn (real valued or complex valued). Then the
set of solutions {er1t, er2t, · · · , ernt} is a fundamental set of solution to the
equation

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0

Proof.
For a fixed number t0 we consider the Wronskian

W (t0) =

∣∣∣∣∣∣∣∣∣∣∣

er1t0 er2t0 · · · ernt0

r1e
r1t0 r2e

r2t0 · · · rne
rnt0

r21e
r1t0 r22e

r2t0 · · · r2ne
rnt0

...
...

rn−11 er1t0 rn−12 er2t0 · · · rn−1n ernt0

∣∣∣∣∣∣∣∣∣∣∣
Now, in linear algebra one proves that if a row or a column of a matrix
is multiplied by a constant then the determinant of the new matrix is the
determinant of the old matrix multiplied by that constant. It follows that

W (t) = er1t0er2t0 · · · ernt0

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
r1 r2 · · · rn
r21 r22 · · · r2n
...

...
rn−11 rn−12 · · · rn−1n

∣∣∣∣∣∣∣∣∣∣∣
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The resulting determinant above is the well-known Vandermonde deter-
minant. Its value is the product of all factors of the form rj − ri where
j > i. Since rj 6= ri for i 6= j, this determinant is not zero and consequently
W (t0) 6= 0. This establishes that {er1t, er2t, · · · , ernt} is a fundamental set of
solutions

Next, we consider characteristic equations whose roots are not all distinct.
For example, if α is a real root that appears k times (in this case we say that
α is a root of multiplicity k), that is, P (r) = (r− α)kq(r), where q(α) 6= 0,
then the k linearly independent solutions are given by

eαt, teαt, t2eαt, · · · , tk−1eαt

The remaining n − k solutions needed to complete the fundamental set of
solutions are determined by examining the roots of q(r) = 0.
If, on the other hand, α± iβ are conjugate complex roots each of multiplicity
k, that is

P (r) = (r − r1)k(r − r1)kp(r)
where r1 = α+ iβ and p(r1) 6= 0, p(r1) 6= 0 then the 2k linearly independent
solutions are given by

eαt cos βt, teαt cos βt, · · · , tk−1eαt cos βt

and
eαt sin βt, teαt sin βt, · · · , tk−1eαt sin βt

Example 32.2
Find the solution to

y(5) + 4y′′′ = 0, y(0) = 2, y′(0) = 3, y′′(0) = 1, y′′′(0) = −1, y(4)(0) = 1

Solution.
We have the characteristic equation

r5 + 4r3 = r3(r2 + 4) = 0

Which has a root of multiplicity 3 at r = 0 and complex roots r = 2i and
r = −2i. We use what we have learned about repeated roots and complex
roots to get the general solution. Since the multiplicity of the repeated root
is 3, we have

y1(t) = 1, y2(t) = t, y3(t) = t2.

The complex roots give the other two solutions
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y4(t) = cos (2t) and y5(t) = sin (2t)

The general solution is

y(t) = c1 + c2t+ c3t
2 + c4 cos (2t) + c5 sin (2t)

Now Find the first four derivatives

y′(t) = c2 + 2c3t− 2c4 sin (2t) + 2c5 cos (2t)
y′′(t) = 2c3 − 4c4 cos (2t)− 4c5 sin (2t)
y′′′(t) = 8c4 sin (2t)− 8c5 cos (2t)
y(4)(t) = 16c4 cos (2t) + 16c5 sin (2t)

Next plug in the initial conditions to get

2 = c1 + c4
3 = c2 + 2c5
1 = 2c3 − 4c4
−1 = 8c5
1 = 16c4

Solving these equations we find

c1 = 31/16, c2 = 23/4, c3 = 5/8, c4 = 1/16, c5 = 1/8

The solution is

y(t) =
31

15
+

23

4
t+

5

8
t2 +

1

16
cos (2t) +

1

8
sin (2t)

Solving the Equation y(n) − ay = 0.
The characteristic equation corresponding to the differential equation y(n) −
ay = 0 is rn−a = 0. The fundamental theorem of algebra asserts the existence
of exactly n roots (real or complex-valued). To find these roots, we write a
in polar form a = |a|eiα where α = 0 if a > 0 and α = π is a < 0 (since
eiπ = cos π + i sin π = −1). Also, since ei2kπ = 1 for any integer k then we
can write

a = |a|e(α+2kπ)i

Thus, the charactersitic equation is

rn = |a|e(α+2kπ)i.
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Taking the nth root of both sides we find

r = |a|
1
n e

(α+2kπ)i
n .

The n distinct roots are generated by taking k = 0, 1, 2, · · · , n − 1. We
illustrate this in the next example.

Example 32.3
Find the general solution of y(6) + y = 0.

Solution.
In this case the characteristic equation is r6 + 1 = 0 or r6 = −1 = ei(2k+1)π.

Thus, r = ei
(2k+1)π

6 where k is an integer. Replacing k by 0,1,2,3,4,5 we find

r0 =
√
3
2

+ i
2

r1 = i

r2 = −
√
3
2

+ i
2

r3 = −
√
3
2
− i

2

r4 = −i
r5 =

√
3
2
− i

2

Thus, the general solution is

y(t) = c1e
√

3
2
t cos

t

2
+c2e

√
3

2
t sin

t

2
+c3e

−
√
3

2
t cos

t

2
+c4e

√
3
2
t sin

t

2
+c5 cos t+c6 sin t
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Practice Problems

Problem 32.1
Solve y′′′ + y′′ − y′ − y = 0

Problem 32.2
Find the general solution of 16y(4) − 8y′′ + y = 0.

Problem 32.3
Solve the following constant coefficient differential equation :

y′′′ − y = 0.

Problem 32.4
Solve y(4) − 16y = 0

Problem 32.5
Solve the initial-value problem

y′′′ + 3y′′ + 3y′ + y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 0.

Problem 32.6
Given that r = 1 is a solution of r3 + 3r2 − 4 = 0, find the general solution
to

y′′′ + 3y′′ − 4y = 0

Problem 32.7
Given that y1(t) = e2t is a solution to the homogeneous equation, find the
general solution to the differential equation

y′′′ − 2y′′ + y′ − 2y = 0

Problem 32.8
Suppose that y(t) = c1 cos t + c2 sin t + c3 cos (2t) + c4 sin (2t) is the general
solution to the equation

y(4) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0

Find the constants a0, a1, a2, and a3.
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Problem 32.9
Suppose that y(t) = c1 + c2t + c3 cos 3t + c4 sin 3t is the general solution to
the homogeneous equation

y(4) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0

Determine the values of a0, a1, a2, and a3.

Problem 32.10
Suppose that y(t) = c1e

−t sin t+c2e
−t cos t+c3e

t sin t+c4e
t cos t is the general

solution to the homogeneous equation

y(4) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0

Determine the values of a0, a1, a2, and a3.

Problem 32.11
Consider the homogeneous equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0

Suppose that y1(t) = t, y2(t) = et, y3(t) = cos t are several functions belong-
ing to a fundamental set of solutions to this equation. What is the smallest
value for n for which the given functions can belong to such a fundamental
set? What is the fundamemtal set?

Problem 32.12
Consider the homogeneous equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0

Suppose that y1(t) = t2 sin t, y2(t) = et sin t are several functions belonging
to a fundamental set of solutions to this equation. What is the smallest value
for n for which the given functions can belong to such a fundamental set?
What is the fundamemtal set?

Problem 32.13
Consider the homogeneous equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0

Suppose that y1(t) = t2, y2(t) = e2t are several functions belonging to a
fundamental set of solutions to this equation. What is the smallest value for
n for which the given functions can belong to such a fundamental set? What
is the fundamemtal set?
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33 Non Homogeneous nth Order Linear Dif-

ferential Equations

We consider again the nth order linear nonhomogeneous equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = g(t) (11)

where the functions p0, p1, · · · , pn−1 and g(t) are continuous functions for
a < t < b.
The solution structure established for second order linear nonhomogeneous
equations applies as well in the nth order case.

Theorem 33.1
Let {y1(t), y2(t), · · · , yn(t)} be a fundamental set of solutions to the homo-
geneous equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = 0

and yp(t) be a particular solution of the nonhomogeneous equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = g(t).

The general solution of the nonhomogeneous equation is given by

y(t) = yp(t) + c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

Proof.
Let y(t) be any solution to equation (11). Since yp(t) is also a solution, we
have

(y − yp)(n) + pn−1(t)(y − yp)(n−1) + · · ·+ p1(t)(y − yp)′ + p0(t)(y − yp) =

y(n)+pn−1(t)y
(n−1)+· · ·+p1(t)y′+p0(t)y−(y(n)p +pn−1(t)y

(n−1)
p +· · ·+p1(t)y′p+p0(t)yp) =

g(t)− g(t) = 0

Therefore y−yp is a solution to the homogeneous equation. But {y1, y2, · · · , yn}
is a fundamental set of solutions to the homogeneous equation so that there
exist unique constants c1, c2, · · · , cn such that y(t)−yp(t) = c1y1(t)+c2y2(t)+
· · ·+ cnyn(t). Hence,

y(t) = yp(t) + c1y1(t) + c2y2(t) + · · ·+ cnyn(t)
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Since the sum c1y1(t) + c2y2(t) + · · ·+ cnyn(t) represents the general solution
to the homogeneous equation, we will denote it by yh so that the general
solution of (11) takes the form

y(t) = yh(t) + yp(t)

It follows from the above theorem that finding the general solution to non-
homogeneous equations consists of three steps:
1. Find the general solution yh of the associated homogeneous equation.
2. Find a single solution yp of the original equation.
3. Add together the solutions found in steps 1 and 2.

The superposition of solutions is valid only for homogeneous equations and
not true in general for nonhomogeneous equations. (Recall the case n = 2
in Section 22). However, we can have a property of superposition of nonho-
mogeneous if one is adding two solutions of two different nonhomogeneous
equations. More precisely, we have

Theorem 33.2
Let y1(t) be a solution of y(n) + pn−1(t)y

(n−1) + · · ·+ p1(t)y
′ + p0(t)y = g1(t)

and y2(t) a solution of y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = g2(t).
Then for any constants c1 and c2 the function Y (t) = c1y1(t) + c2y2(t) is a
solution of the equation

y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = c1g1(t) + c2g2(t)

Proof.
We have

L[Y ] = c1(y
(n)
1 + pn−1(t)y

(n−1)
1 + · · ·+ p1(t)y

′
1 + p0(t)y1)

+ c2(y
(n)
2 + pn−1(t)y

(n−1)
2 + · · ·+ p1(t)y

′
2 + p0(t)y2)

= c1g1(t) + c2g2(t)

Next, we discuss methods for determining yp(t). The techinque we discuss
first is known as the method of undetermined coefficients.
This method requires that we make an initial assumption about the form of
the particular solution yp(t), but with the coefficients left unspecified, thus
the name of the method. We then substitute the assumed expression into
equation (11) and attempt to determine the coefficients as to satisfy that
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equation.
The main advantage of this method is that it is straightforward to execute
once the assumption is made as to the form of yp(t). Its major limitation is
that it is useful only for equations with constant coefficients and the nonho-
mogeneous term g(t) is restricted to a very small class of functions, namely
functions of the form eαtPn(t) cos βt or eαtPn(t) sin βt where Pn(t) is a poly-
nomial of degree n.

In the following table we list examples of g(t) along with the correspond-
ing form of the particular solution.

Form of g(t) Form of yp(t)
Pn(t) = ant

n + an−1t
n−1 + · · ·+ a0 tr[Ant

n +An−1t
n−1 + · · ·+A1t+A0]

Pn(t)e
αt tr[Ant

n +An−1t
n−1 + · · ·+A1t+A0]e

αt

Pn(t)e
αt cosβt or Pn(t)e

αt sinβt treαt[(Ant
n +An−1t

n−1 + · · ·+A1t+A0) cosβt
+(Bnt

n +Bn−1t
n−1 + · · ·+B1t+B0) sinβt]

The number r is chosen to be the smallest nonnegative integer such that
no term in the assumed form is a solution of the homogeneous equation
y(n)+pn−1(t)y

(n−1)+· · ·+p1(t)y′+p0(t)y = 0. The value of r will be 0 ≤ r ≤ n.
Equivalently, for the three cases, r is the number of times 0 is a root of the
characterstic equation, α is a root of the characteristic equation, and α+ iβ
is a root of the characteristic equation, respectively.

Example 33.1
Solve

y′′′ + y′′ = cos (2t), y(0) = 1, y′(0) = 2, y′′(0) = 3

Solution.
We first solve the homogeneous differential equation

y′′′ + y′′ = 0

The characteristic equation is

r3 + r2 = 0

Factoring gives
r2(r + 1) = 0
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Solving we find r = 0 (repeated twice) and r = −1. The homogeneous
solution is

yh(t) = c1 + c2t+ c3e
−t

The trial function generated by g(t) = cos (2t) is

yp(t) = A cos (2t) +B sin (2t)

Then
y′p = −2A cos (2t) + 2B sin (2t)
y′′p = −4A sin (2t)− 4B cos (2t)
y′′′p = −8A cos (2t) + 8B sin (2t)

Plugging back into the original differential equation gives

[−8A cos (2t) + 8B sin (2t)] + [−4A sin (2t)− 4B cos (2t)] = cos (2t)

Combining like terms gives

(−8A− 4B) cos (2t) + (8B − 4A) sin (2t) = cos (2t)

Equating coefficients gives

−8A− 4B = 1
−4A+ 8B = 0

Solving we find A = −0.1 and B = −0.05. The general solution is thus

y(t) = c1 + c2t+ c3e
−t − 0.1 cos (2t)− 0.05 sin (2t)

Now take derivatives to get

y′ = c2 − c3e−t + 0.2 sin (2t)− 0.1 cos (2t)
y′′ = c3e

−t + 0.4 cos (2t) + 0.2 sin (2t)

Plug in the initial values to get

c1 + c3 = 1.1
c2 − c3 = 2.1
c3 = 2.6

Solving we find c1 = −3.6, c2 = 4.7, c3 = 2.6. The final solution is

y(t) = −3.6 + 4.7t+ 2.6e−t − 0.1 cos (2t)− 0.05 sin (2t)
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Finally, we discuss a second method for finding a particular solution to a
nonhomogeneous differential equation known as the method of variation
of parameters. This method has no prior conditions to be satisfied by
either pn−1(t), · · · , p1(t), p0(t), or g(t). Therefore, it may sound more general
than the method of undetermined coefficients.
The basic assumption underlying the method is that we know a fundamental
set of solutions {y1, y2, · · · , yn}. The homogeneous solution is then

yh(t) = c1y1 + c2y2 + · · ·+ cnyn

Then the constants c1, c2, · · · , cn are being replaced by functions u1, u2, · · · , un
so that the particular solution assumes the form

yp(t) = u1y1 + u2y2 + · · ·+ unyn (12)

We find u1, u2, · · · , un by solving a system of n equations with the n un-
knowns u1, u2, · · · , un. We obtain the system by first imposing the n − 1
constraints

y1u
′
1 + y2u

′
2 + · · ·+ ynu

′
n = 0

y′1u
′
1 + y′2u

′
2 + · · ·+ y′nu

′
n = 0
... (13)

y
(n−2)
1 u′1 + y

(n−2)
2 u′2 + · · ·+ y(n−2)n u′n = 0

This choice of constraints is made to make the successive derivatives of yp(t)
have the following simple forms

y′p = y′1u1 + y′2u2 + · · ·+ y′nun
y′′p = y′′1u1 + y′′2u2 + · · ·+ y′′nun
...

y
(n−1)
p = y

(n−1)
1 u1 + y

(n−1)
2 u2 + · · ·+ y

(n−1)
n un

Substituting (12) into (11), using (13) and the fact that each of the functions
y1, y2, · · · , yn is a solution of the homogeneous equation we find

y
(n−1)
1 u′1 + y

(n−1)
2 u′2 + · · ·+ y(n−1)n u′n = g(t) (14)
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Take together, equations (13) and (14) form a set of n linear equations for
the n unknowns u′1, u

′
2, · · · , u′n. In matrix form that system takes the form

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n



u′1
u′2
...
u′n

 =


0
0
...
g


Solving this system we find

u′i =
Wi

W
g

where 1 ≤ i ≤ n,W is the Wronskian of {y1, y2, · · · , yn} and Wi is the
determinant obtained after replacing the ith column of W with the column
vector 

0
0
...
1


It follows that

yp(t) = y1

∫
W1(t)

W (t)
g(t)dt+ y2

∫
W2(t)

W (t)
g(t)dt+ · · ·+ yn

∫
Wn(t)

W (t)
g(t)dt

Example 33.2
Solve

y′′′ + y′ = sec t

Solution.
We first find the homogeneous solution. The characteristic equation is

r3 + r = 0 or r(r2 + 1) = 0

so that the roots are r = 0, r = i, r = −i.
We conclude

yh(t) = c1 + c2 cos t+ c3 sin t

We have
yp(t) = u1 + u2 cos t+ u3 sin t
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and the Wronskian is

W (t) =

∣∣∣∣∣∣
1 cos t sin t
0 − sin t cos t
0 − cos t − sin t

∣∣∣∣∣∣ = 1

So

W1(t) =

∣∣∣∣∣∣
0 cos t sin t
0 − sin t cos t
1 − cos t − sin t

∣∣∣∣∣∣ = 1

W2(t) =

∣∣∣∣∣∣
1 0 sin t
0 0 cos t
0 1 − sin t

∣∣∣∣∣∣ = − cos t

W3(t) =

∣∣∣∣∣∣
1 cos t 0
0 − sin t 0
0 − cos t 1

∣∣∣∣∣∣ = − sin t

Hence,

u1(t) =
∫ W1(t)

W (t)
g(t)dt =

∫
sec tdt = ln | sec t+ tan t|

u2(t) =
∫ W2(t)

W (t)
g(t)dt =

∫
−dt = −t

u3(t) =
∫ W3(t)

W (t)
g(t)dt =

∫
− sin t

cos t
dt = ln | cos t|

Hence, the general solution is

y(t) = c1 + c2 cos t+ c3 sin t+ ln | sec t+ tan t| − t cos t+ ln | cos t| sin t
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Practice Problems

Problem 33.1
Consider the nonhomogeneous differential equation

t3y′′′ + at2y′′ + bty′ + cy = g(t), t > 0

Determine a, b, c, and g(t) if the general solution is given by y(t) = c1t +
c2t

2 + c3t
4 + 2 ln t

Problem 33.2
Consider the nonhomogeneous differential equation

y′′′ + ay′′ + by′ + cy = g(t), t > 0

Determine a, b, c, and g(t) if the general solution is given by y(t) = c1 + c2t+
c3e

2t + 4 sin 2t

Problem 33.3
Solve

y(4) + 4y′′ = 16 + 15et

Problem 33.4
Solve: y(4) − 8y′′ + 16y = −64e2t

Problem 33.5
Given that y1(t) = e2t is a solution to the homogeneous equation, find the
general solution to the differential equation,

y′′′ − 2y′′ + y′ − 2y = 12 sin 2t

Problem 33.6
Find the general solution of the equation

y′′′ − 6y′′ + 12y′ − 8y =
√

2te2t

Problem 33.7
(a) Verify that {t, t2, t4} is a fundamental set of solutions of the differential
equation

t3y′′′ − 4t2y′′ + 8ty′ − 8y = 0

(b) Find the general solution of

t3y′′′ − 4t2y′′ + 8ty′ − 8y = 2
√
t, t > 0
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Problem 33.8
(a) Verify that {t, t2, t3} is a fundamental set of solutions of the differential
equation

t3y′′′ − 3t2y′′ + 6ty′ − 6y = 0

(b) Find the general solution of by using the method of variation of param-
eters

t3y′′′ − 3t2y′′ + 6ty′ − 6y = t, t > 0

Problem 33.9
Solve using the method of undetermined coefficients: y′′′ − y′ = 4 + 2 cos t

Problem 33.10
Solve using the method of undetermined coefficients: y′′′ − y′ = −4et

Problem 33.11
Solve using the method of undetermined coefficients: y′′′ − y′′ = 4e−2t

Problem 33.12
Solve using the method of undetermined coefficients: y′′′−3y′′+3y′−y = 12et.

Problem 33.13
Solve using the method of undetermined coefficients: y′′′ + y = et + cos t.

In Problems 33.14 and 33.15, answer the following two questions.
(a) Find the homogeneous general solution.
(b) Formulate an appropriate for for the particular solution suggested by the
method of undetermined coefficients. You need not evaluate the undeter-
mined coefficients.

Problem 33.14
y′′′ − 3y′′ + 3y′ − y = et + 4et cos 3t+ 4

Problem 33.15
y(4) + 8y′′ + 16y = t cos 2t

Consider the nonhomogeneous differential equation

y′′′ + ay′′ + by′ + cy = g(t)

In Problems 33.16 - 33.17, the general solution of the differential equation is
given, where c1, c2, and c3 represent arbitrary constants. Use this information
to determine the constants a, b, c and the function g(t).
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Problem 33.16
y(t) = c1 + c2t+ c3e

2t + 4 sin 2t.

Problem 33.17
y(t) = c1 + c2t+ c3t

2 − 2t3

Problem 33.18
Consider the nonhomogeneous differential equation

t3y′′′ + at2y′′ + bty′ + cy = g(t), t > 0

Suppose that y(t) = c1t + c2t
2 + c3t

4 + 2 ln t is the general solution to the
above equation. Determine the constants a, b, c and the function g(t)
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34 Existence and Uniqueness of Solution to

Initial Value First Order Linear Systems

In this section we study the following initial-value problem

y′1 = p11(t)y1 + p12(t)y2 + · · ·+ p1n(t)yn + g1(t)
y′2 = p21(t)y1 + p22(t)y2 + · · ·+ p2n(t)yn + g2(t)
...
y′n = pn1(t)y1 + pn2(t)y2 + · · ·+ pnn(t)yn + gn(t)

y1(t0) = y01, y1(t0) = y02, · · · , yn(t0) = y0n, a < t0 < b

where all the pij(t) and gi(t) functions are continuous in a < t < b. The
above system can be recast in matrix form as

y′(t) = P(t)y(t) + g(t), y(t0) = y0 (15)

where

y(t) =


y1(t)
y2(t)

...
yn(t)

 , g(t) =


g1(t)
g2(t)

...
gn(t)

 , y0 =


y01
y02
...
y0n


and

P(t) =


p11(t) p12(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)

...
pn1(t) pn2(t) · · · pnn(t)


We refer to differential equation in (15) as a first order linear system. If
g(t) is the zero vector in a < t < b then we call

y′(t) = P(t)y(t)

a first order homogeneous linear system. Otherwise, we call the system
a first order nonhomogengeous linear system.
Next we discuss the conditions required for (15) to have a unique solution.
In order to establish the next theorem we state an important result from
analysis.
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Theorem 34.1 (Weierstrass M-Test)
Assume {yN(t)}∞N=1 is a sequence of functions defined in an open interval
a < t < b. Suppose that {MN}∞N=1 is a sequence of positive constants such
that

|yN(t)| ≤MN

for all a < t < b. If
∑∞

N=1MN is convergent then
∑∞

N=1 yN converges uni-
formly for all a < t < b.

Theorem 34.2
If the components of the matrices P(t) and g(t) are continuous in an interval
a < t < b then the initial value problem (15) has a unique solution on the
entire interval a < t < b.

Proof.
We start by reformulating the matrix differential equation in (15) as an in-
tegral equation. Integration of both sides of (15) yields∫ t

t0

y′(s)ds =

∫ t

t0

[P(s)y(s) + g(s)]ds (16)

Applying the Fundamental Theorem of Calculus to the left side of (16) yields

y(t) = y0 +

∫ t

t0

[P(s)y(s) + g(s)]ds (17)

Thus, a solution of (17) is also a solution to (15) and vice versa.
Existence: To prove the existence we shall use again the method of succes-
sive approximations as described in Theorem 8.1.

y0(t) ≡ y0

y1(t) = y0 +
∫ t
t0

[P(s)y0(s) + g(s)]ds

y2(t) = y0 +
∫ t
t0

[P(s)y1(s) + g(s)]ds
...

...

yN(t) = y0 +
∫ t
t0

[P(s)yN−1(s) + g(s)]ds

Write

yN(t) =


y1,N
y2,N

...
yn,N


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For i = 1, 2, · · · , n, we are going to show that the sequence {yi,N(t)} converges
uniformly to a function yi(t) such that y(t) (with components y1, y2, · · · , yn)is
a solution to (17) and hence a solution to (15).
Let [c, d] be a closed interval containing t0 and contained in (a, b). Then by
continuity there exist positive constants kij, 1 ≤ i, j ≤ n, such that

max
c≤t≤d

|pij(t)| ≤ kij

This implies that

||P(t)y(t)|| = |
∑n

j=1 p1jyj|+ |
∑n

j=1 p2jyj|+ · · ·+ |
∑n

j=1 pnjyj|
≤ K ′

∑n
j=1 |yj|+K ′

∑n
j=1 |yj|+ · · ·+K ′

∑n
j=1 |yj| = K||y||

for all c ≤ t ≤ d, where we define

||y|| = |y1|+ |y2|+ · · ·+ |yn|

and where

K ′ =
n∑
i=1

n∑
j=1

kij, K = nK ′.

It follows that for 1 ≤ i ≤ n

|yi,N − yi,N−1| ≤ ||yN − yN−1|| = ||
∫ t
t0

[P(s)(yN−1 − yN−2)ds||
≤

∫ t
t0
||P(s)(yN−1 − yN−2)||ds

≤ K
∫ t
t0
||yN−1 − yN−2||ds

But
||y1 − y0|| ≤

∫ t
t0
||P(s)y0 + g(s)||ds

≤ M(t− t0)
where

M = K||y0||+ max
c≤t≤d

|g1(t)|+ max
c≤t≤d

|g2(t)|+ · · ·+ max
c≤t≤d

|gn(t)|.

An easy induction yields that for 1 ≤ i ≤ n

|yi,N+1 − yi,N | ≤ ||yN+1 − yN || ≤MKN (t− t0)N+1

(N + 1)!
≤MKN (b− a)N+1

(N + 1)!
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Since
∞∑
N=0

MKN (b− a)N+1

(N + 1)!
=
M

K
(eK(b−a) − 1)

by the Weierstrass M-test we conclude that the series
∑∞

N=0[yi,N − yi,N−1]
converges uniformly for all c ≤ t ≤ d. But

yi,N(t) =
N−1∑
k=0

[yi,k+1(t)− yi,k(t)] + yi,0.

Thus, the sequence {yi,N} converges uniformly to a function yi(t) for all
c ≤ t ≤ d.
The function yi(t) is a continuous function (a uniform limit of a sequence of
continuous functions is continuous). Also, we can interchange the order of
taking limits and integration for such sequences. Therefore

y(t) = limN→∞ yN(t)

= y0 + limN→∞
∫ t
t0

(P(s)yN−1 + g(s))ds

= y0 +
∫ t
t0

limN→∞(P(s)yN−1 + g(s))ds

= y0 +
∫ t
t0

(P(s)y + g(s))ds

This shows that y(t) is a solution to the integral equation (17) and therefore
a solution to (15).

Uniqueness:
The uniqueness follows from Gronwall Inequality (See Problem 8.11). Sup-
pose that y(t) and z(t) are two solutions to the initial value problem, it
follows that for all a < t < b we have

||y(t)− z(t)|| ≤
∫ t

t0

K||y(s)− z(s)||ds

Letting u(t) = ||y(t)− z(t)|| we have

u(t) ≤
∫ t

t0

Ku(s)ds

so that by Gronwall’s inequality u(t) ≡ 0 and therefore y(t) = z(t) for all
a < t < b. This completes a proof of the theorem
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Example 34.1
Consider the initial value problem

y′1 = t−1y1 + (tan t)y2, y1(3) = 0
y′2 = (ln |t|)y1 + ety2, y2(3) = 1

Determine the largest t-interval such that a unique solution is guaranteed to
exist.

Solution.
The function p11(t) = 1

t
is continuous for all t 6= 0. The function p12(t) = tan t

is continuous for all t 6= (2n + 1)π
2

where n is an integer. The function
p21(t) = ln |t| is continuous for all t 6= 0. The function p22(t) = et is continuous
for all real numbers. All these functions can be continuous on the common
domain t 6= 0 and t 6= (2n+ 1)π

2
. Since t0 = 3, the largest t-interval for which

a unique solution is guaranteed to exist is π
2
< t < 3π

2
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Practice Problems

Problem 34.1
Consider the initial value problem

y′1 = y1 + (tan t)y2 + (t+ 1)−2, y1(0) = 0
y′2 = (t2 − 2)y1 + 4y2, y2(0) = 0

Determine the largest t-interval such that a unique solution is guaranteed to
exist.

Problem 34.2
Consider the initial value problem

(t+ 2)y′1 = 3ty1 + 5y2, y1(1) = 0
(t− 2)y′2 = 2y1 + 4ty2, y2(1) = 2

Determine the largest t-interval such that a unique solution is guaranteed to
exist.

Problem 34.3
Verify that the functions y1(t) = c1e

t cos t+c2e
t sin t and y2(t) = −c1et sin t+

c2e
t cos t are solutions to the linear system

y′1 = y1 + y2
y′2 = −y1 + y2

Problem 34.4
Consider the first order linear system

y′1 = y1 + y2
y′2 = −y1 + y2

(a) Rewrite the system in matrix form y′(t) = Ay(t) and identify the matrix
A.
(b) Rewrite the solution to this system in the form y(t) = c1y1(t) + c2y2(t).

Problem 34.5
Consider the initial value problem

y′(t) = Ay(t), y(0) = y0
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where

A =

[
3 2
4 1

]
, y0 =

[
−1
8

]
(a) Verify that y(t) = c1e

5t

[
1
1

]
+ c2e

−t
[
−1
2

]
is a solution to the first

order linear system.
(b) Determine c1 and c2 such that y(t) solves the given initial value problem.

Problem 34.6
Rewrite the differential equation (cos t)y′′−3ty′+

√
ty = t2 + 1 in the matrix

form y(t) = P(t)y(t) + g(t).

Problem 34.7
Rewrite the differential equation 2y′′+ ty+ e3t = y′′′+ (cos t)y′ in the matrix
form y(t) = P(t)y(t) + g(t).

Problem 34.8
The initial value problem

y′(t) =

[
0 1
−3 2

]
y +

[
0

2 cos (2t)

]
, y(−1) =

[
1
4

]
was obtained from an initial value problem for a higher order differential
equation. What is the corresponding scalar initial value problem?

Problem 34.9
The initial value problem

y′(t) =


y2
y3
y4

y2 + y3 sin y1 + y23

 , y(1) =


0
0
−1
2


was obtained from an initial value problem for a higher order differential
equation. What is the corresponding scalar initial value problem?

Problem 34.10
Consider the system of differential equations

y′′ = tz′ + y′ + z
z′′ = y′ + z′ + 2ty
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Write the above system in the form

y′ = P(t)y + g(t)

where

y(t) =


y(t)
y′(t)
z(t)
z′(t)


Identify P(t) and g(t).

Problem 34.11
Consider the system of differential equations

y′′ = 7y′ + 4y − 8z + 6z′ + t2

z′′ = 5z′ + 2z − 6y′ + 3y − sin t

Write the above system in the form

y′ = P(t)y + g(t)

where

y(t) =


y(t)
y′(t)
z(t)
z′(t)


Identify P(t) and g(t).
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35 Homogeneous First Order Linear Systems

In this section we consider the following system of n homogeneous linear dif-
ferential equations known as the first order homogeneous linear system.

y′1 = p11(t)y1 + p12(t)y2 + · · ·+ p1n(t)yn
y′2 = p21(t)y1 + p22(t)y2 + · · ·+ p2n(t)yn
...
y′n = pn1(t)y1 + pn2(t)y2 + · · ·+ pnn(t)yn

where the coefficient functions are all continuous in a < t < b. The above
system can be recast in matrix form as

y′(t) = P(t)y(t) (18)

where

y(t) =


y1(t)
y2(t)

...
yn(t)

 , P(t) =


p11(t) p12(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)

...
pn1(t) pn2(t) · · · pnn(t)


Example 35.1
(a) Rewrite the given system of linear homogeneous differential equations as
a homogeneous linear system of the form y′(t) = P(t)y.

y′1 = y2 + y3
y′2 = −6y1 − 3y2 + y3
y′3 = −8y1 − 2y2 + 4y3

(b) Verify that the vector function

y(t) =

 et

−et
2et


is a solution of y′(t) = P(t)y.

Solution.
(a) [

y1
y2

]′
=

 0 1 1
−6 −3 1
−8 −2 4

[ y1
y2

]
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(b) We have

y′ =

 et

−et
2et


and

P(t)y =

 0 1 1
−6 −3 1
−8 −2 4

 et

−et
2et

 =

 et

−et
2et

 = y′

Our first result shows that any linear combinations of solutions to (18) is
again a solution.

Theorem 35.1
If y1,y2, · · · ,yr are solutions to (18) then for any constants c1, c2, · · · , cr, the
function y = c1y1 + c2y2 + · · ·+ cryr is also a solution.

Proof.
Differentiating we find

y′(t) = (c1y1 + c2y2 + · · ·+ cryr)
′

= c1y
′
1 + c2y

′
2 + · · ·+ cry

′
r

= c1P(t)y1 + c2P(t)y2 + · · ·+ crP(t)yr
= P(t)(c1y1 + c2y2 + · · ·+ cryr) = P(t)y

Next, we pose the following question: Are there solutions {y1,y2, · · · ,yn}
such that every solution to (18) can be written as a linear combination of
y1,y2, · · · ,yn. We call such a set of functions a fundamental set of solu-
tions. With such a set, the general solution is

y = c1y1 + c2y2 + · · ·+ cnyn

Our next question is to find a criterion for testing n solutions to (18) for a
fundamental set. For this purpose, writing the components of the vectors
y1,y2, · · · ,yn

y1(t) =


y1,1(t)
y2,1(t)

...
yn,1

 , y2(t) =


y1,2(t)
y2,2(t)

...
yn,2

 , · · · ,yn(t) =


y1,n(t)
y2,n(t)

...
yn,n

 ,
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we define the matrix Ψ(t) whose columns are the vectors y1,y2, · · · ,yn. That
is,

Ψ(t) =


y1,1 y1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
yn,1 yn,2 · · · yn,n


We call Ψ(t) a solution matrix of y′ = P(t)y. In this case, Ψ(t) is a
solution to the matrix equation Ψ′(t) = P(t)Ψ(t). Indeed,

Ψ′(t) = [y′1(t) y′2(t) · · · y′n(t)]
= [P(t)y1(t) P(t)y2(t) · · · P(t)yn(t)]
= P(t)[y1(t) y2(t) · · · yn(t)]
= P(t)Ψ(t)

We define the Wronskian of y1,y2, · · · ,yn to be the determinant of Ψ; that
is

W (t) = det(Ψ(t)).

The following theorem provides a condition for the solution vectors y1,y2, · · · ,yn
to form a fundamental set of solutions.

Theorem 35.2
Let {y1,y2, · · · ,yn} be a set of n solutions to (18). If there is a < t0 < b
such that W (t0) 6= 0 then the set {y1,y2, · · · ,yn} forms a fundamental set
of solutions.

Solution.
Let u(t) be any solution to (18). Can we find constants c1, c2, · · · , cn such
that

u(t) = c1y1 + c2y2 + · · ·+ cnyn?

A simple matrix algebra we see that

c1y1 + c2y2 + · · ·+ cnyn = Ψ(t) =


y1,1 y1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
yn,1 yn,2 · · · yn,n



c1
c2
...
cn


= Ψ(t)c
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where

c =


c1
c2
...
cn


Thus,

u(t) = Ψ(t)c, a < t < b.

In particular,
u(t0) = Ψ(t0)c.

Since W (t0) = det(Ψ(t0)) 6= 0, the matrix Ψ(t0) is invertible and as a result
of this we find

c = Ψ−1(t0)u(t0)

When the columns of Ψt) form a fundamental set of solutions of y′(t) =
P(t)y(t) then we call Ψ(t) a fundamental matrix.

Example 35.2
(a) Verify the given functions are solutions of the homogeneous linear system.
(b) Compute the Wronskian of the solution set. On the basis of this calcu-
lation can you assert that the set of solutions forms a fundamental set?
(c) If the given solutions are shown in part(b) to form a fundamental set,
state the general solution of the linear homogeneous system. Express the
general solution as the product y(t) = Ψ(t)c, where Ψ(t) is a square matrix
whose columns are the solutions forming the fundamental set and c is a col-
umn vector of arbitrary constants.
(d) If the solutions are shown in part (b) to form a fundamental set, impose
the given initial condition and find the unique solution of the initial value
problem.

y′ =

 −21 −10 2
22 11 −2
−110 −50 11

y,y(0) =

 3
−10
−16

 ,y1(t) =

 5et

−11et

0

 , y2(t) =

 et

0
11et



y3(t) =

 e−t

−e−t
5e−t


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Solution.
(a) We have

y′1 =

 5et

−11et

0


and  −21 −10 2

22 11 −2
−110 −50 11

 5et

−11et

0

 =

 5et

−11et

0

 = y′1

Similarly,

y′2 =

 et

0
11et


and  −21 −10 2

22 11 −2
−110 −50 11

 et

0
11et

 =

 et

0
11et

 = y′2

y′3 =

 −e−te−t

−5e−t


and  −21 −10 2

22 11 −2
−110 −50 11

 e−t

−e−t
5e−t

 =

 −e−te−t

−5e−t

 = y′3

(b) The Wronskian is given by

W (t) =

∣∣∣∣∣∣
5et et e−t

−11et 0 −e−t
0 11et 5e−t

∣∣∣∣∣∣ = −11et

Since W (t) 6= 0, the set {y1,y2,y3} forms a fundamental set of solutions.
(c) The general solution is

y(t) = c2y1 + c2y2 + c3y3 =

 5et et e−t

−11et 0 −e−t
0 11et 5e−t

 c1
c2
c3



72



(d) We have  5 1 1
−11 0 −1

0 11 5

 c1
c2
c3

 =

 3
−10
−16


Solving this system using Cramer’s rule we find c1 = 1, c2 = −1, c3 = −1.
Therefore the solution to the initial value problem is

y(t) =

 5et

−11et

0

−
 et

0
11et

−
 e−t

−e−t
5e−t

 =

 4et − e−t
−11et + e−t

−11et − 5e−t


The final result of this section is Abel’s theorem which states that the Wron-
skian of a set of solutions either vanishes nowhere or it vanishes everywhere
on the interval a < t < b.

Theorem 35.3 (Abel’s)
Let {y1(t),y2, · · · ,yn(t)(t)} be a set of solutions to (18) and let W(t) be the
Wronskian of these solutions. Then W(t) satisfies the differential equation

W ′(t) = tr(P(t))W (t)

where
tr(P(t)) = p11(t) + p22(t) + · · ·+ pnn(t).

Moreover, if a < t0 < b then

W (t) = W (t0)e
∫ t
t0
tr(P(s))ds

Proof.
Since {y1,y2, · · · ,yn} is a set of n solutions to (18), we have

y′i,j =
n∑
k=1

pikyk,j, 1 ≤ i, j ≤ n (19)

Using the definition of determinant we can write

W (t) =
∑
σ

sgn(σ)y1,σ(1)y2,σ(2) · · · yn,σ(n)
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where the sum is taken over all one-to-one functions σ from the set {1, 2, · · · , n}
to itself. Taking the derivative of both sides and using the product rule we
find

W ′(t) = (
∑

σ sgn(σ)y1,σ(1)y2,σ(2) · · · yn,σ(n))′
=

∑
σ sgn(σ)y′1,σ(1)y2,σ(2) · · · yn,σ(n) +

∑
σ sgn(σ)y1,σ(1)y

′
2,σ(2) · · · yn,σ(n)

+ · · ·+
∑

σ sgn(σ)y1,σ(1)y2,σ(2) · · · y′n,σ(n)

=

∣∣∣∣∣∣∣∣∣
y′1,1 y′1,2 · · · y′1,n
y2,1 y2,2 · · · y2,n

...
yn,1 yn,2 · · · yn,n

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
y1,1 y1,2 · · · y1,n
y′2,1 y′2,2 · · · y′2,n

...
yn,1 yn,2 · · · yn,n

∣∣∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣∣∣
y1,1 y1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
y′n,1 y′n,2 · · · y′n,n

∣∣∣∣∣∣∣∣∣
But∣∣∣∣∣∣∣∣∣
y′1,1 y′1,2 · · · y′1,n
y2,1 y2,2 · · · y2,n

...
yn,1 yn,2 · · · yn,n

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑n

k=1 p1kyk,1
∑n

k=1 p1kyk,2 · · ·
∑n

k=1 p1kyk,n
y2,1 y2,2 · · · y2,n

...
yn,1 yn,2 · · · yn,n

∣∣∣∣∣∣∣∣∣
We evaluate the determinant of the right-side using elementary row opera-
tions (See Theorem 26.1). We multiply the second row by p12, the third by
p13, and so on, add these n − 1 rows and then subtract the result from the
first row. The resulting determinant is∣∣∣∣∣∣∣∣∣

y′1,1 y′1,2 · · · y′1,n
y2,1 y2,2 · · · y2,n

...
yn,1 yn,2 · · · yn,n

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
p11y1,1 p11y1,2 · · · p11y1,n
y2,1 y2,2 · · · y2,n

...
yn,1 yn,2 · · · yn,n

∣∣∣∣∣∣∣∣∣ = p11W (t)

Proceeding similarly with the other determinants we obtain

W ′(t) = p11W (t) + p22W (t) + · · ·+ pnnW (t)
= (p11 + p22 + · · ·+ pnn)W (t)
= tr(P(t))W (t)

This is a first-order scalar equation for W(t), whose solution can be found
by the method of integrating factor

W (t) = W (t0)e
∫ t
t0
tr(P(s))ds

.

It follows that either W (t) = 0 for all a < t < b or W (t) 6= 0 for all a < t < b
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Example 35.3
(a) Compute the Wronskian of the solution set and verify the set is a funda-
mental set of solutions.
(b) Compute the trace of the coefficient matrix.
(c) Verify Abel’s theorem by showing that, for the given point t0, W (t) =

W (t0)e
∫ t
t0
tr(P(s))ds

.

y′ =

[
9 5
−7 −3

]
y,y1(t) =

[
5e2t

−7e2t

]
,y2(t) =

[
e4t

−e4t
]
, t0 = 0, −∞ < t <∞

Solution.
(a) The Wronskian is

W (t) =

∣∣∣∣ 5e2t e4t

−7e2t −e4t
∣∣∣∣ = 2e6t

Since W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions.
(b) tr(P(t)) = 9− 3 = 6

(c) W (t) = 2e6t and W (t0)e
∫ t
t0
tr(P(s))ds

= 2e
∫ t
0 6ds = 2e6t
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Practice Problems

In Problems 35.1 - 35.3 answer the following two questions.
(a) Rewrite the given system of linear homogeneous differential equations as
a homogeneous linear system of the form y′(t) = P(t)y.
(b) Verify that the given function y(t) is a solution of y′(t) = P(t)y.

Problem 35.1

y′1 = −3y1 − 2y2
y′2 = 4y1 + 3y2

and

y(t) =

[
et + e−t

−2et − e−t
]

Problem 35.2

y′1 = y2
y′2 = − 2

t2
y1 + 2

t
y2

and

y(t) =

[
t2 + 3t
2t+ 3

]
Problem 35.3

y′1 = 2y1 + y2 + y3
y′2 = y1 + y2 + 2y3
y′3 = y1 + 2y2 + y3

and

y(t) =

 2et + e4t

−et + e4t

−et + e4t


In Problems 35.4 - 35.7
(a) Verify the given functions are solutions of the homogeneous linear system.
(b) Compute the Wronskian of the solution set. On the basis of this calcu-
lation can you assert that the set of solutions forms a fundamental set?
(c) If the given solutions are shown in part(b) to form a fundamental set,
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state the general solution of the linear homogeneous system. Express the
general solution as the product y(t) = Ψ(t)c, where Ψ(t) is a square matrix
whose columns are the solutions forming the fundamental set and c is a col-
umn vector of arbitrary constants.
(d) If the solutions are shown in part (b) to form a fundamental set, impose
the given initial condition and find the unique solution of the initial value
problem.

Problem 35.4

y′ =

[
9 −4
15 −7

]
y,y(0) =

[
0
1

]
,y1(t) =

[
2e3t − 4e−t

3e3t − 10e−t

]
,y2(t) =

[
4e3t + 2e−t

6e3t + 5e−t

]
Problem 35.5

y′ =

[
−3 −5
2 −1

]
y,y(0) =

[
5
2

]
, y1(t) =

[
−5e−2t cos 3t

e−2t(cos 3t− 3 sin 3t)

]
,

y2(t) =

[
−5e−2t sin 3t

e−2t(3 cos 3t+ sin 3t)

]
Problem 35.6

y′ =

[
1 −1
−2 2

]
y,y(−1) =

[
−2
4

]
,y1(t) =

[
1
1

]
,y2(t) =

[
e3t

−2e3t

]
Problem 35.7

y′ =

 −2 0 0
0 1 4
0 −1 1

y,y(0) =

 3
4
−2

 ,y1(t) =

 e−2t

0
0

 , y2(t) =

 0
2et cos 2t
−et sin 2t



y3(t) =

 0
2et sin 2t
et cos 2t


In Problems 35.8 - 35.9, the given functions are solutions of the homogeneous
linear system.
(a) Compute the Wronskian of the solution set and verify the set is a funda-
mental set of solutions.
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(b) Compute the trace of the coefficient matrix.
(c) Verify Abel’s theorem by showing that, for the given point t0, W (t) =

W (t0)e
∫ t
t0
tr(P(s))ds

.

Problem 35.8

y′ =

[
6 5
−7 −6

]
y,y1(t) =

[
5e−t

−7e−t

]
,y2(t) =

[
et

−et
]
, t0 = −1, −∞ < t <∞

Problem 35.9

y′ =

[
1 t
0 −t−1

]
y,y1(t) =

[
−1
t−1

]
,y2(t) =

[
et

0

]
, t0 = −1, t 6= 0, 0 < t <∞

Problem 35.10
The functions

y1(t) =

[
5
1

]
, y2(t) =

[
2e3t

e3t

]
are known to be solutions of the homogeneous linear system y′ = Py, where
P is a real 2× 2 constant matrix.
(a) Verify the two solutions form a fundamental set of solutions.
(b) What is tr(P)?
(c) Show that Ψ(t) satisfies the homogeneous differential equation Ψ′ = PΨ,
where

Ψ(t) = [y1(t) y2(t)] =

[
5 2e3t

1 e3t

]
(d) Use the observation of part (c) to determine the matrix P.[Hint: Compute
the matrix product Ψ′(t)Ψ−1(t). It follows from part (a) that Ψ−1(t) exists.]
Are the results of parts (b) and (d) consistent?

Problem 35.11
The homogeneous linear system

y′ =

[
3 1
−2 α

]
y

has a fundamental set of solutions whose Wronskian is constant, W (t) =
4, −∞ < t <∞. What is the value of α?
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36 First Order Linear Systems: Fundamental

Sets and Linear Independence

The results presented in this section are analogous to the ones established
for nth order linear homogeneous differential equations (See Section 5.3).
We start by showing that fundamental sets always exist.

Theorem 36.1
The first-order linear homogeneous equation

y′ = P(t)y, a < t < b

where the entries of P are all continuous in a < t < b, has a fundamental set
of solutions.

Proof.
Pick a number t0 such that a < t0 < b. Consider the following n initial value
problems

y′ = P(t)y, y(t0) = e1

y′ = P(t)y, y(t0) = e2
...

y′ = P(t)y, y(t0) = en

where

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , en =


0
0
...
1

 ,
By the existence and uniqueness theorem we find the solutions {y1,y2, · · · ,yn}.
Since W (t) = det([e1, e2, · · · , en]) = det(I) = 1 where I is the n× n identity
matrix we see that the solution set {y1,y2, · · · ,yn} forms a fundamental set
of solutions

Next, we establish the converse to Theorem 35.2

Theorem 36.2
If {y1,y2, · · · ,yn} is a fundamental set of solutions to the first order linear
homogeneous system

y′ = P(t)y, a < t < b

then W (t) 6= 0 for all a < t < b.
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Proof.
It suffices to show that W (t0) 6= 0 for some number a < t0 < b because by
Abel’s theorem this implies that W (t) 6= 0 for all a < t < b. The general
solution y(t) = c1y1 + c2y2 + · · ·+ cnyn to y′ = P(t)y can be written as the
matrix equation

y(t) = c1y1 + c2y2 + · · ·+ cnyn = Ψ(t)c, a < t < b

where Ψ(t) = [y1 y2 · · ·yn] is the fundamental matrix and

c =


c1
c2
...
cn


In particular,

y(t0) = Ψ(t0)c.

This matrix equation has a unique solution for c. This is possible only when
Ψ−1(t0) exists which is equivalent to saying that W (t0) = det(Ψ(t0)) 6= 0.
This completes a proof of the theorem

We next extend the definition of linear dependence and independence to
vector functions and show that a fundamental set of solutions is a linearly
independent set of vector functions on the t-interval of existence.
We say that a set of n × 1 vector functions {f1(t), f2(t), · · · , fr(t)}, where
a < t < b, is linearly dependent if one of the vector function can be writ-
ten as a linear combination of the remaining functions. Equivalently, this
occurs if one can find constants k1, k2, · · · , kr not all zero such that

k1f1(t) + k2f2(t) + · · ·+ krfr(t) = 0, a < t < b.

If the set {f1(t), f2(t), · · · , fr(t)} is not linearly dependent then it is said to
be linearly independent in a < t < b. Equivalently, {f1(t), f2(t), · · · , fr(t)}
is linearly independent if and only if

k1f1(t) + k2f2(t) + · · ·+ krfr(t) = 0

implies k1 = k2 = · · · = 0.
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Example 36.1
Determine whether the given functions are linearly dependent or linearly
independent on the interval −∞ < t <∞.

f1(t) =

 1
t
0

 , f2(t) =

 0
1
t2


Solution.
Suppose that k1f1(t)+k2f2(t) = 0 for all t. This implies that for all t we have

k1 = 0
k1t+ k2 = 0
k2t

2 = 0

Thus, k1 = k2 = 0 so that the functions f1(t) and f2(t) are linearly indepen-
dent

Theorem 36.3
The solution set {y1,y2, · · · ,yn} is a fundamental set of solutions to

y′ = P(t)y

where the n × n matrix P(t) is continuous in a < t < b, if and only if the
functions y1, y2, · · · ,yn are linearly independent.

Proof.
Suppose first that {y1, y2, · · · ,yn} is a fundamental set of solutions. Then
by Theorem 36.2 there is a < t0 < b such that W (t0) 6= 0. Suppose that

c1y1(t) + c2y2(t) + · · ·+ cnyn(t) = 0

for all a < t < b. This can be written as the matrix equation

Ψ(t)c = 0, a < t < b

where

c =


c1
c2
...
cn


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In particular,
Ψ(t0)c = 0.

Since W (t0) = det(Ψ(t0)) 6= 0, Ψ−1(t0) exists so that c = Ψ−1(t0)Ψ(t0)c =
Ψ−1(t0) · 0 = 0. Hence, c1 = c2 = · · · = cn = 0. Therefore, y1,y2, · · · ,yn are
linearly independent.
Conversely, suppose that {y1,y2, · · · ,yn} is a linearly independent set. Sup-
pose that {y1,y2, · · · ,yn} is not a fundamental set of solutions. Then by
Theorem 35.2, W (t) = det(Ψ(t)) = 0 for all a < t < b. Choose any
a < t0 < b. Then W (t0) = 0. But this says that the matrix Ψ(t0) is not
invertible. In terms of matrix theory, this means that Ψ(t0) · c = 0 for some
vector

c =


c1
c2
...
cn

 6= 0

Now, let y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t) for all a < t < b. Then y(t)
is a solution to the differential equation and y(t0) = Ψ(t0)c = 0. But the
zero function also is a solution to the initial value problem. By the existence
and uniqueness theorem we must have c1y1(t) + c2y2(t) + · · · + cnyn(t) = 0
for all a < t < b with c1, c2, · · · , cn not all equal to 0. But this means that
y1, y2, · · · ,yn are linearly depedent which contradicts our assumption that
y1, y2, · · · , yn are linearly independent

Remark 36.1
The fact that y1, y2, · · · ,yn are solutions to y′ = Py is critical in the above
theorem. For example the vectors

f1(t) =

 1
0
0

 , f2(t) =

 t
2
0

 , f3(t) =

 t2

t
0


are linearly independent with det(f1, f2, f3) ≡ 0.

Example 36.2
Consider the functions

f1(t) =

[
et

0

]
, f2(t) =

[
t2

t

]
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(a) Let Ψ(t) = [f1(t) f2(t)]. Determine det(Ψ(t)).
(b) Is it possible that the given functions form a fundamental set of solutions
for a linear system y′ = P(t)y where P(t) is continuous on a t-interval con-
taining the point t = 0? Explain.
(c) Determine a matrix P(t) such that the given vector functions form a
fundamental set of solutions for y′ = P(t)y. On what t-interval(s) is the
coefficient matrix P(t) continuous?(Hint: The matrix Ψ(t) must satisfy
Ψ′(t) = P(t)Ψ(t) and det(Ψ(t)) 6= 0.)

Solution.
(a) We have

det(Ψ)(t) =

∣∣∣∣ et t2

0 t

∣∣∣∣ = tet

(b) Since det(Ψ)(0) = 0, the given functions do not form a fundamental set
for a linear system y′ = P(t)y on any t-interval containing 0.
(c) For Ψ(t) to be a fundamental matrix it must satisfy the differential equa-
tion Ψ′(t) = P(t)Ψ(t) and the condition det(Ψ(t)) 6= 0. But det(Ψ(t)) = tet

and this is not zero on any interval not containing zero. Thus, our coefficient
matrix P(t) must be continuous on either −∞ < t < 0 or 0 < t <∞. Now,
from the equation Ψ′(t) = P(t)Ψ(t) we can find P(t) = Ψ′(t)Ψ−1(t). That
is,

P(t) = Ψ′(t)Ψ−1(t) = 1
tet

[
et 2t
0 1

] [
t −t2
0 et

]

= 1
tet

[
tet (2t− t2)et
0 et

]

= t−1
[
t 2t− t2
0 1

]
Finally, we will show how to generate new fundamental sets from a given
one and therefore establishing the fact that a first order linear homogeneous
system has many fundamental sets of solutions. We also show how different
fundamental sets are related to each other. For this, let us start with a funda-
mental set {y1,y2, · · · ,yn} of solutions to y′ = P(t)y. If y1,y2, · · · ,yn are n
solutions then they can be written as linear combinations of the {y1,y2, · · · ,yn}.
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That is,
a11y1 + a21y2 + · · ·+ an1yn = y1

a12y1 + a22y2 + · · ·+ an2yn = y2
...

a1ny1 + a2ny2 + · · ·+ annyn = yn

or in matrix form as

[
y1 y2 · · · yn

]
=
[

y1 y2 · · · yn
]

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
... · · · ...

an1 an2 an3 · · · ann


That is

Ψ(t) = Ψ(t)A

Theorem 36.4
{y1,y2, · · · ,yn} is a fundamental set if and only if det(A) 6= 0 where A is
the coefficient matrix of the above matrix equation.

Proof.
Since Ψ(t) = Ψ(t)A and W (t) = det(Ψ(t)) 6= 0, W (t) = det(Ψ(t)) 6= 0 if
and only if det(A) 6= 0. That is, {y1,y2, · · · ,yn} is a fundamental set of
solutions if and only if det(A) 6= 0

Example 36.3
Let

y′ =

[
0 1
1 0

]
y, Ψ(t) =

[
et e−t

et −e−t
]
, Ψ(t) =

[
sinh t cosh t
cosh t sinh t

]
(a) Verify that the matrix Ψ(t) is a fundamental matrix of the given linear
system.
(b) Determine a constant matrix A such that the given matrix Ψ(t) can be
represented as Ψ(t) = Ψ(t)A.
(c) Use your knowledge of the matrix A and Theorem 36.4 to determine
whether Ψ(t) is also a fundamental matrix, or simply a solution matrix.
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Solution.
(a) Since

Ψ′(t) =

[
et −e−t
et e−t

]
and

P(t)Ψ(t) =

[
0 1
1 0

] [
et e−t

et −e−t
]

=

[
et −e−t
et e−t

]
we conclude that Ψ is a solution matrix. To show that Ψ(t) is a fundamental
matrix we need to verify that det(Ψ(t)) 6= 0. Since det(Ψ(t)) = −2 6= 0, Ψ(t)
is a fundamental matrix.
(b) First write

Ψ(t) =

[
sinh t cosh t
cosh t sinh t

]
=

1

2

[
et − e−t et + e−t

et + e−t et − e−t
]

Thus, the question is to find a, b, c, and d such that

1

2

[
et − e−t et + e−t

et + e−t et − e−t
]

=

[
et e−t

et −e−t
] [

a b
c d

]
=

[
aet + ce−t bet + de−t

aet − ce−t bet − de−t
]

Comparing entries we find a = 1/2, b = 1/2, c = −1/2, and d = 1/2.
(c) Since det(A) = 1

2
, Ψ(t) is a fundamental matrix
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Practice Problems

In Problems 36.1 - 36.4, determine whether the given functions are linearly
dependent or linearly independent on the interval −∞ < t <∞.

Problem 36.1

f1(t) =

[
t
1

]
, f2(t) =

[
t2

1

]
Problem 36.2

f1(t) =

[
et

1

]
, f2(t) =

[
e−t

1

]
, f3(t) =

[
et−e−t

2

0

]
Problem 36.3

f1(t) =

 1
t
0

 , f2(t) =

 0
1
t2

 , f3(t) =

 0
0
0


Problem 36.4

f1(t) =

 1
sin2 t

0

 , f2(t) =

 0
2(1− cos2 t)
−2

 , f3(t) =

 1
0
1


Problem 36.5
Let

y′ =

 1 1 1
0 −1 1
0 0 2

y, Ψ(t) =

 et e−t 4e2t

0 −2e−t e2t

0 0 3e2t

 , Ψ(t) =

 et + e−t 4e2t et + 4e2t

−2e−t e2t e2t

0 3e2t 3e2t


(a) Verify that the matrix Ψ(t) is a fundamental matrix of the given linear
system.
(b) Determine a constant matrix A such that the given matrix Ψ(t) can be
represented as Ψ(t) = Ψ(t)A.
(c) Use your knowledge of the matrix A and Theorem 34.4 to determine
whether Ψ(t) is also a fundamental matrix, or simply a solution matrix.

86



Problem 36.6
Let

y′ =

[
1 1
0 −2

]
y, Ψ(t) =

[
et e−2t

0 −3e−2t

]
where the matrix Ψ(t) is a fundamental matrix of the given homogeneous
linear system. Find a constant matrix A such that Ψ(t) = Ψ(t)A with

Ψ(0) =

[
1 0
0 1

]
.
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37 Homogeneous Systems with Constant Co-

efficients

In this section, we consider solving linear homogeneous systems of the form
y′ = Py where P is a matrix with real-valued constants. Recall that the
general solution to this system is given by

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

where {y1(t),y2(t), · · · ,yn(t)} is a fundamental set of solutions. So the prob-
lem of finding the general solution reduces to the one of finding a fundamental
set of solutions.
Let’s go back and look at how we solved a second order linear homogeneous
equation with constant coefficients

y′′ + ay′ + by = 0 (20)

To find the fundamental set of solutions we considered trial functions of the
form y = ert and find out that r is a solution to the characteristic equation
r2 + ar + b = 0. But (20) is a first order homogeneous linear system[

y1
y2

]′
=

[
0 1
−b −a

] [
y1
y2

]
(21)

where y1 = y and y2 = y′.
Now, if r is a solution to the characteristic equation r2 + ar+ b = 0 then one
can easily check that the vector function

y =

[
ert

rert

]
= ert

[
1
r

]
is a solution to (21).
Motivated by the above discussion we will consider trial functions for the
system

y′ = Py (22)

of the form y = ertx where x is a nonzero vector. Substituting this into (22)
we find rertx = Pertx. This can be written as a linear system of the form

(P− rI)x = 0 (23)
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where I is the n× n identity matrix.
Since system (23) has a nonzero solution x, the matrix P − rI cannot be
invertible (otherwise x=0). This means that

p(r) = det(P− rI) = 0. (24)

We call (24) the characteristic equation associated to the linear system
(22). Its solutions are called eigenvalues. A vector x corresponding to an
eigenvalue r is called an eigenvector. The pair (r,x) is called an eigenpair.
It follows that each eigenpair (r,x) yields a solution of the form y(t) = ertx.
If there are n different eigenpairs then these will yield n different solutions.
We will show below that these n different solutions form a fundamental set
of solutions and therefore yield the general solution to (22). Thus, we need
to address the following questions:
(1) Given an n×n matrix P, do there always exist eigenpairs? Is it possible
to find n different eigenpairs and thereby form n different solutions of (22)?
(2) How do we find these eigenpairs?
As pointed out earlier, the eigenvalues are solutions to equation (24). But

p(r) =

∣∣∣∣∣∣∣∣∣
a11 − r a12 · · · a1n
a21 a22 − r · · · a2n
...

...
an1 an2 · · · ann − r

∣∣∣∣∣∣∣∣∣ = 0

The determinant is the sum of elementary products each having n factors
no two come from the same row or column. Thus, one of the term has
the form (a11 − r)(a22 − r) · · · (ann − r). From this we see that p(r) is a
polynomial of degree n. We call p(r) the characteristic polynomial. By
the Fundamental Theorem of Algebra, the equation p(r) = 0 has n roots,
and therefore n eigenvalues. These eigenvalues may be zero or nonzero, real
or complex, and some of them may be repeated.
Now, for each eigenvalue r, we find a corresponding eigenvector by solving
the linear system of n equations in n unknowns: (P− rI) = 0.

Example 37.1
Consider the homogeneous first order system

y′ =

[
4 2
−1 1

]
y
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(a) Show that x1 =

[
1
−1

]
and x1 =

[
−2
1

]
are eigenvectors of P. Deter-

mine the corresponding eigenvalues.
(b) For each eigenpair found in (a), form a solution yk of the system y′ = Py.
(c) Calculate the Wronskian and decide if the two solutions form a funda-
mental set.

Solution.
(a) Since

Px1 =

[
4 2
−1 1

] [
1
−1

]
=

[
2
−2

]
= 2x1

x1 is an eigenvector corresponding to the eigenvalue 2. Similarly,

Px2 =

[
4 2
−1 1

] [
−2
1

]
=

[
−6
3

]
= 3x2

Thus, x2 is an eigenvector corresponding to the eigenvalue 3.

(b) The two solutions are y1(t) = e2t
[

1
−1

]
and y2(t) = e3t

[
−2
1

]
.

(c) The Wronskian is

W (t) =

[
e2t −2e3t

−e2t e3t

]
= −e5t.

Since W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions

Example 37.2

Find the eigenvalues of the matrix P =

[
8 0
5 2

]
.

Solution.

The characteristic polynomial is p(r) =

∣∣∣∣ 8− r 0
3 2− r

∣∣∣∣ = (8 − r)(2 − r).

Thus, the eigenvalues are r = 8 and r = 2

Example 37.3

Suppose that r = 2 is an eigenvalue of the matrix P =

[
−4 3
−4 4

]
. Find the

eigenvector corresponding to this eigenvalue.
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Solution.
We have (P− 2I)x = 0 or[

−6 3
−4 2

] [
x1
x2

]
=

[
0
0

]

Solving this system we find 2x1 = x2. Thus, an eigenvector is

[
1
2

]
We next list some properties of eigenvalues and eigenvectors.

Theorem 37.1
(a) If (r,x) is an eigenpair then for any α 6= 0, (r, αx) is also an eigenpair.
This shows that eigenvectors are not unique.
(b) A matrix P can have a zero eigenvalue.
(c) A real matrix may have one or more complex eigenvalues and eigenvectors.

Proof.
(a) Suppose that x is an eigenvector corresponding to an eigenvalue r of a
matrix P. Then for any nonzero constant α we have P(αx) = αPx = r(αx)
with αx 6= 0. Hence, (r, αx) is an eigenpair.

(b) The characteristic equation of the matrix P =

[
0 0
0 1

]
is r(r − 1) = 0

so that r = 0 is an eigenvalue.

(c) The characteristic equation of the matrix P =

[
1 1
−1 1

]
is r2−2r+2 = 0.

Its roots are r = 1 + i and r = 1− i. For the r = 1 + i we have the system[
−i 1
−1 −i

] [
x1
x2

]

A solution to this system is the vector x1 =

[
1
i

]
. Similarly, for r = 1 − i

we have [
i 1
−1 i

] [
x1
x2

]
A solution to this system is the vector x2 =

[
1
−i

]
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Theorem 37.2
Eigenvectors x1,x2, · · · ,xk corresponding to distinct eigenvalues r1, r2, · · · , rk
are linearly independent.

Proof.
Let us prove this by induction on k. The result is clear for k = 1 because
eigenvectors are nonzero and a subset consisting of one nonzero vector is
linearly independent. Now assume that the result holds for k − 1 eigenvec-
tors. Let x1,x2, · · · ,xk be eigenvectors corresponding to distinct eigenvalues
r1, r2, · · · , rk. Assume that there is a linear combination

c1x1 + c2x2 + · · ·+ ckxk = 0.

Then we have

c1x1 + c2x2 + · · ·+ ckxk = 0 =⇒
P(c1x1 + c2x2 + · · ·+ ckxk) = 0 =⇒
c1Px1 + c2Px2 + · · ·+ ckPxk = 0 =⇒
c1r1x1 + c2r2x2 + · · ·+ ckrkxk = 0 =⇒

(c1r1x1 + c2r2x2 + · · ·+ ckrkxk)− (c1rkx1 + c2rkx2 + · · ·+ ckrkxk) = 0 =⇒
c1(r1 − rk)x1 + c2(r2 − rk)x2 + · · ·+ ck−1(rk−1 − rk)xk−1 = 0

But by the induction hypothesis, the vectors x1,x2, · · · ,xk−1 are linearly in-
dependent so that c1(r1− rk) = c2(r2− rk) = · · · = ck−1(rk−1− rk) = 0. Since
the eigenvalues are all distinct, we must have c1 = c2 = · · · = ck−1 = 0. In
this case we are left with ckxk = 0. Since xk 6= 0, ck = 0. This shows that
{x1,x2, · · · ,xk} is linearly independent

The next theorem states that n linearly independent eigenvectors yield a
fundamental set of solutions to the equation y′ = Py.

Theorem 37.3
Consider the homogeneous system y′ = Py, −∞ < t <∞. Suppose that P
has eigenpairs (r1,x1), (r2,x2), · · · , (rn,xn) where x1,x2, · · · ,xn are linearly
independent. Then the set of solutions

{er1tx1, e
r2tx2, · · · , erntxn}

forms a fundamental set of solutions.
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Proof.
We will show that the vectors er1tx1, e

r2tx2, · · · , erntxn are linearly indepen-
dent. Suppose that

c1e
r1tx1 + c2e

r2tx2 + · · ·+ cne
rntxn = 0

for all −∞ < t <∞. In particular, we can replace t by 0 and obtain

c1x1 + c2x2 + · · ·+ cnxn = 0.

Since the vectors x1,x2, · · · ,xn are linearly independent, we must have c1 =
c2 = · · · = cn = 0. This shows that er1tx1, e

r2tx2, · · · , erntxn are linearly
independent. Since each vector is also a solution, by Theorem 34.3 the set
{er1tx1, e

r2tx2, · · · , erntxn} forms a fundamental set of solutions

Combining Theorem 37.2 and Theorem 37.3 we obtain

Theorem 37.4
Consider the homogeneous system y′ = Py, −∞ < t <∞. Suppose that P
has n eigenpairs (r1,x1), (r2,x2), · · · , (rn,xn) with distinct eigenvalues. Then
the set of solutions

{er1tx1, e
r2tx2, · · · , erntxn}

forms a fundamental set of solutions.

Proof.
Since the eigenvalues are distinct, by Theorem 37.2 the eigenvectors x1,x2, · · · ,xn
are linearly independent. But then by Theorem 35.3 the set of solutions

{er1tx1, e
r2tx2, · · · , erntxn}

forms a fundamental set of solutions

Example 37.4
Solve the following initial value problem

y′ =

[
−2 1
1 −2

]
y, y(0) =

[
3
1

]
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Solution.
The characteristic equation is∣∣∣∣ −2− r 1

1 −2− r

∣∣∣∣ = (r + 1)(r + 3) = 0

Solving this quadratic equation we find r1 = −1 and r2 = −3. Now,

(P + I)x =

[
−1 1
1 −1

] [
x1
x2

] [
−x1 + x2
x1 − x2

]
=

[
0
0

]
Solving this system we find x1 = x2. Letting x1 = 1 then x2 = 1. Thus, an
eigenvector is

x1 =

[
1
1

]
Similarly,

(P + 3I)x =

[
1 1
1 1

] [
x1
x2

] [
x1 + x2
x1 + x2

]
=

[
0
0

]
Solving this system we find x1 = x2. Letting x1 = 1 then x2 = −1. Thus, an
eigenvector is

x2 =

[
1
−1

]
By Theorem 35.4, a fundamental set of solutions is given by {e−tx1, e

−3tx2}.
The general solution is then

y(t) = c1e
−tx1 + c2e

−3tx2.

Using the initial condtion we find c1 + c2 = 3 and c1 − c2 = 1. Solving this
system we find c1 = 2 and c2 = 1. Hence, the unique solution is given by

y(t) = 2e−tx1 + e−3tx2

=

[
2e−t + e−3t

2e−t − e−3t
]
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Practice Problems

In Problems 37.1 - 37.3, a 2× 2 matrix P and vectors x1 and x2 are given.
(a) Decide which, if any, of the given vectors is an eigenvector of P, and
determine the corresponding eigenvalue.
(b) For the eigenpair found in part (a), form a solution yk(t), where k = 1
or k = 2, of the first order system y′ = Py.
(c) If two solution are found in part (b), do they form a fundamental set of
solutions for y′ = Py.

Problem 37.1

P =

[
7 −3
16 −7

]
, x1 =

[
3
8

]
, x2 =

[
1
2

]
Problem 37.2

P =

[
−5 2
−18 7

]
, x1 =

[
1
3

]
, x2 =

[
1
2

]
Problem 37.3

P =

[
2 −1
−4 2

]
, x1 =

[
1
−2

]
, x2 =

[
1
2

]

In Problems 37.4 - 37.6, an eigenvalue is given of the matrix P. Determine a
corresponding eigenvector.

Problem 37.4

P =

[
5 3
−4 −3

]
, r = −1

Problem 37.5

P =

 1 −7 3
−1 −1 1
4 −4 0

 , r = −4
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Problem 37.6

P =

 1 3 1
2 1 2
4 3 −2

 , r = 5

In Problems 37.7 - 37.10, Find the eigenvalues of the matrix P.

Problem 37.7

P =

[
−5 1
0 4

]
Problem 37.8

P =

[
3 −3
−6 6

]
Problem 37.9

P =

 5 0 0
0 1 3
0 2 2


Problem 37.10

P =

 1 −7 3
−1 −1 1
4 −4 0


In Problems 37.11 - 37.13, the matrix P has distinct eigenvalues. Using
Theorem 37.4 determine a fundamental set of solutions of the system y′ =
Py.

Problem 37.11

P =

[
−0.09 0.02
0.04 −0.07

]
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Problem 37.12

P =

 1 2 0
−4 7 0
0 0 1


Problem 37.13

P =

 3 1 0
−8 6 2
−9 −9 4


Problem 37.14
Solve the following initial value problem.

y′ =

[
5 3
−4 −3

]
y, y(1) =

[
2
0

]
Problem 37.15
Solve the following initial value problem.

y′ =

 4 2 0
0 1 3
0 0 −2

y, y(0) =

 −1
0
3


Problem 37.16
Find α so that the vector x is an eigenvector of P. What is the corresponding
eigenvalue?

P =

[
2 α
1 −5

]
, u =

[
1
−1

]
Problem 37.17
Find α and β so that the vector x is an eigenvector of P corresponding the
eigenvalue r = 1.

P =

[
α β
2α β

]
, u =

[
−1
1

]
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38 Homogeneous Systems with Constant Co-

efficients: Complex Eigenvalues

We continue the study of finding the general solution of y′ = Py where P is
an n× n matrix with real entries. In this section, we consider the case when
P possesses complex eigenvalues. We start with the following result.

Theorem 38.1
If (r,x) is an eigenpair of P then (r,x) is an eigenpair of P. Thus, complex
eigenvalues always occur in conjugate pairs.

Proof.
Write r = α + iβ. Then we have Px = (α + iβ)x. Take the conjugate of
both sides to obtain Px = (α− iβ)x. But P is a real matrix so that P = P.
Thus, Px = (α − iβ)x. This shows that α − iβ is an eigenvalue of P with
corresponding eigenvector x

In most applications, real-valued solutions are more meaningful then complex
valued solutions. Our next task is to describe how to convert the complex
solutions to y′ = Py into real-valued solutions.

Theorem 38.2
Let P be a real valued n×n matrix. If P has complex conjugate eigenvalues
r1 = α + iβ and r2 = α − iβ, where β 6= 0, and corresponding (complex
conjugate) eigenvectors x1 = a+ ib and x2 = a− ib then y1 = eαt(a cos βt−
b sin βt) and y2 = eαt(a sin βt+b cos βt) are two solutions of y′ = Py.(These
functions are the real and imaginary parts of the two solutions, e(α+iβ)tx1 and
e(α−iβ)tx2).

Proof.
By Euler’s formula we have

e(α+iβ)tx1 = eαt(cos βt+ i sin βt)(a + ib)
= eαt(a cos βt− b sin βt) + eαti(a sin βt+ b cos βt)
= y1 + iy2

and

e(α−iβ)tx2 = eαt(cos βt− i sin βt)(a− ib)
= eαt(a cos βt− b sin βt)− eαti(a sin βt+ b cos βt)
= y1 − iy2
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We next show that y1 and y2 are solutions to y′ = Py. Indeed,

[e(α+iβ)tx1]
′ = y1

′ + iy2
′

and
Pe(α+iβ)tx1 = Py1 + iPy2

Since Pe(α+iβ)tx1 = [e(α+iβ)tx1]
′, we must have Py1 = y′1 and Py2 = y′2

Example 38.1
Solve

y′ =

[
−1

2
1

−1 −1
2

]
y

Solution.
The characteristic equation is∣∣∣∣ −1

2
− r 1
−1 −1

2
− r

∣∣∣∣ = (r +
1

2
)2 + 1 = 0

Solving this quadratic equation we find r1 = −1
2
− i and r2 = −1

2
+ i. Now,

(P + (
1

2
+ i)I)x =

[
−i 1
−1 −i

] [
x1
x2

] [
−ix1 + x2
−x1 − ix2

]
=

[
0
0

]
Solving this system we find x1 = −ix2. Letting x2 = i then x1 = 1. Thus, an
eigenvector is

x1 =

[
1
i

]
An eigenvector corresponding to the eigenvalue −1

2
+ i is then

x2 =

[
1
−i

]
The general solution is then

y(t) = c1e
− t

2

[[
1
0

]
cos t−

[
0
1

]
sin t

]
+ c2e

− t
2

[[
1
0

]
sin t+

[
0
1

]
cos t

]
=

[
e−

t
2 (c1 cos t+ c2 sin t)

e−
t
2 (−c1 sin t+ c2 cos t)

]

99



Practice Problems

Problem 38.1
Find the eigenvalues and the eigenvectors of the matrix

P =

[
0 −9
1 0

]
Problem 38.2
Find the eigenvalues and the eigenvectors of the matrix

P =

[
3 1
−2 1

]
Problem 38.3
Find the eigenvalues and the eigenvectors of the matrix

P =

 1 −4 −1
3 2 3
1 1 3


In Problems 36.4 - 36.6, one or more eigenvalues and corresponding eigenvec-
tors are given for a real matrix P. Determine a fundamental set of solutions
for y′ = Py, where the fundamental set consists entirely of real solutions.

Problem 38.4
P is a 2× 2 matrix with an eigenvalue r = i and corresponding eigenvector

x =

[
−2 + i

5

]
Problem 38.5
P is a 2×2 matrix with an eigenvalue r = 1+i and corresponding eigenvector

x =

[
−1 + i
i

]
Problem 38.6
P is a 4×4 matrix with eigenvalues r = 1+5i with corresponding eigenvector

x =


i
1
0
0


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and eigenvalue r = 1 + 2i with corresponding eigenvector

x =


0
0
i
1


Problem 38.7
Solve the initial value problem

y′ =

[
0 −9
1 0

]
y, y(0) =

[
6
2

]
Problem 38.8
Solve the initial value problem

y′ =

[
3 1
−2 1

]
y, y(0) =

[
8
6

]
Problem 38.9
Solve the initial value problem

y′ =

 1 −4 −1
3 2 3
1 1 3

y, y(0) =

 −1
9
4


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39 Homogeneous Systems with Constant Co-

efficients: Repeated Eigenvalues

In this section we consider the case when the characteristic equation possesses
repeated roots. A major difficulty with repeated eigenvalues is that in some
situations there is not enough linearly independent eigenvectors to form a
fundamental set of solutions. We illustrate this in the next example.

Example 39.1
Solve the system

y′ =

[
1 2
0 1

]
y

Solution.
The characteristic equation is∣∣∣∣ 1− r 2

0 1− r

∣∣∣∣ = (r − 1)2 = 0

and has a repeated root r = 1. We find an eigenvector as follows.[
0 2
0 0

] [
x1
x2

]
=

[
2x2
0

]
=

[
0
0

]
It follows that x2 = 0 and x1 is arbitrary. Letting x1 = 1 then an eigenvector
is

x1 =

[
1
0

]
This is the only eigenvector. It yields the solution

y1 =

[
et

0

]
But we need two linearly independent solutions to form the general solution
of the given system and we only have one. How do we find a second solution
y2(t) such that {y1,y2} is a fundamental set of solutions?
Let y(t) be a solution. Write

y(t) =

[
y1(t)
y2(t)

]
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Then we have
y′1(t) = y1 + 2y2
y′2(t) = y2

Solving the second equation we find y2(t) = c2e
t. Substituting this into the

first differential equation we find y′1(t) = y1 + 2c2e
t. Solving this equation

using the method of integrating factor we find y1(t) = c1e
t + c2te

t. Therefore
the general solution to y′ = Py is

y(t) =

[
c1e

t + c2te
t

c2e
t

]
= c1e

t

[
1
0

]
+c2

(
et
[

0
1

]
+ tet

[
1
0

])
= c1y1(t)+c2y2(t).

Thus, a second solution to y′ = Py is

y2(t) = et
[

0
1

]
+ tet

[
1
0

]
Finally, letting Ψ(t) = [y1 y2] we find

W (0) = det(Ψ(0)) =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1

so that {y1,y2} is a fundamental set of solutions

Example 39.2
Solve the initial value problem

y′ =

[
13 11
−11 −9

]
y, y(0) =

[
1
2

]
Solution.
The characteristic equation is∣∣∣∣ 13− r 11

−11 −9− r

∣∣∣∣ = (r − 2)2 = 0

and has a repeated root r = 2. We find an eigenvector as follows.[
11 11
−11 −11

] [
x1
x2

]
=

[
11x1 + 11x2
−11x1 − 11x2

]
=

[
0
0

]
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It follows that x2 = −x1. Letting x1 = 1 then an eigenvector is

x1 =

[
1
−1

]
Therefore, one solution of y′ = Py is

y1(t) =

[
e2t

−e2t
]
.

The second solution has the form

y2(t) = te2tx1 + e2tx2

where x2 is to be determined. Substituting y2 into the equation y′ = Py we
find

(1 + 2t)e2tx1 + 2e2tx2 = P(te2tx1 + e2tx2).

We can rewrite this equation as

te2t(Px1 − 2x1) + e2t(Px2 − 2x2 − x1) = 0

But the set {e2t, te2t} is linearly independent so that

Px1 − 2x1 = 0
Px2 − 2x2 = x1

From the second equation we find[
11 11
−11 −11

] [
x1
x2

]
=

[
11x1 + 11x2
−11x1 − 11x2

]
=

[
1
−1

]
This shows that 11x1 + 11x2 = 1. Thus,

x2 =
1

11

[
1− 11x2

11x2

]
=

1

11

[
1
0

]
− x2

[
1
−1

]
Letting x2 = 0 we find

x2 =
1

11

[
1
0

]
Hence,

y2(t) = te2t
[

1
−1

]
+
e2t

11

[
1
0

]
=

[
te2t + e2t

11

−te2t
]
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Computing the Wronskian of the two solutions we find

W (0) =

∣∣∣∣ 1 1
11

−1 0

∣∣∣∣ = − 1

11
6= 0

Therefore, the two solutions form a fundamental set of solutions and the
general solution is given by

y(t) =

[
e2t te2t + e2t

11

−e2t −te2t
] [

c1
c2

]
Imposing the initial condition,

y(0) =

[
1
2

]
=

[
1 1

11

−1 0

] [
c1
c2

]
Solving this system we find c1 = −2 and c2 = 33. Hence, the unique solution
to the initial value problem is

y(t) =

[
e2t + 33te2t

2e2t − 33te2t

]
Multiplicity of an Eigenvalue
As you have seen from the discussion above, when an eigenvalue is repeated
then one worries as to whether there exist enough linearly independent eigen-
vectors. These considerations lead to the following definitions.
Let P be an n× n matrix and

det(P− rI) = (r − r1)n1(r − r2)n2 · · · (r − rk)nk .

The numbers n1, n2, · · · , nk are called the algebraic multiplicities of the
eigenvalues r1, r2, · · · , rk. For example, if det(P−rI) = (r−2)3(r−4)2(r+1)
then we say that 2 is an eigenvalue of P of multiplicity 3, 4 is of multiplicity
2, and −1 is of multiplicity 1.
We define the geometric multiplicity of an eigenvalue to be the number
of linearly independent eigenvectors corresponding to the eigenvalue.

Example 39.3
Find the algebraic and geometric multiplicities of the matrix

P =


2 1 1 1
0 2 0 1
0 0 2 1
0 0 0 3


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Solution.
The characteristic equation is given by∣∣∣∣∣∣∣∣

2− r 1 1 1
0 2− r 0 1
0 0 2− r 1
0 0 0 3− r

∣∣∣∣∣∣∣∣ = (2−r)

∣∣∣∣∣∣
2− r 0 1

0 2− r 1
0 0 3− r

∣∣∣∣∣∣ = (2−r)3(3−r) = 0

Thus, r = 2 is an eigenvalue of algebraic multiplicity 3 and r = 3 is an
eigenvalue of algebraic multiplicity 1.
Next, we find eigenvector(s) associated to r = 2. We have

0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1



x1
x2
x3
x4

 =


0
0
0
0


Solving this system we find

x1
x2
x3
x4

 = x1


1
0
0
0

+ x2


0
−1
1
0


Hence, the linearly independent eigenvectors are

x1 =


1
0
0
0

 , x2 =


0
−1
1
0


It follows that r = 2 has geometric multiplicity 2.
Similarly, we find an eigenvector associated to r = 3.

−1 1 1 1
0 −1 0 1
0 0 −1 1
0 0 0 0



x1
x2
x3
x4

 =


0
0
0
0


Solving this system we find

x3 =


3
1
1
1


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It follows that r = 1 has geometric multiplicity 1

All the above examples discussed thus far suggest the following theorem.
For the proof, we remind the reader of the following definition: A set of
vectors {v1,v2, · · · ,vn} forms a basis of Rn if every vector in Rn is a lin-
ear combination of v1,v2, · · · ,vn and the vectors v1,v2, · · · ,vn are linearly
independent.

Theorem 39.1
Let A be an n×n matrix with eigenvalue r1. Then the geometric multiplicity
of r1 is less than or equal to the algebraic multiplicity of r1.

Proof.
Let r1 be an eigenvalue of A with algebraic multiplicity a and geomet-
ric multiplicity g. Then we have g linearly independent eigenvectors B =
{v1,v2, · · · ,vg} with eigenvalues r1. We next extend B to a basis

{v1,v2, · · · ,vg,wg+1, · · · ,wn}

of Rn as follows. Let W be the set of all linear combinations of the vectors
of B. If g = n then W = Rn and we are done. If g < n then W is a
proper subset of Rn. Then we can find wg+1 that belongs to Rn but not
in W. Then wg+1 6∈ W and the set S1 = {v1,v2, · · · ,vg,wg+1} is linearly
independent. If g+ 1 = n then the set of all linear combinations of elements
of S1 is equal to Rn and we are done. If not, we can continue this extension
process. In n − g steps we will get a set of n linearly independent vectors
{v1,v2, · · · ,vg,wg+1, · · · ,wn} in Rn which will be a basis of Rn.
Now, let

P = [v1 v2 · · · vg wg+1 · · · wn] = [P1 P2]

where P1 is the first g columns and P2 is the last n− g columns. Since the
columns of P form a basis of Rn we have

c1v1 + c2v2 + · · ·+ cgvg + cg+1wg+1 + · · ·+ cnwn = 0

which implies that c1 = c2 = · · · = cn = 0 and therefore P is an invertible
matrix.
Next, write

P−1AP =

[
B11 B12

B21 B22

]
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where B11 is g × g matrix. Now, comparing

AP = [r1v1 r1v2 · · · r1vg Awg+1 · · · Awn] = [r1P1 AP2]

with

P

[
B11 B12

B21 B22

]
= [P1B11 + P2B21 P1B12 + P2B22]

we get B11 = r1Ig and B21 = 0. Thus,

P−1AP =

[
r1Ig B12

0 B22

]
It follows that

det(A− rIn) = det(P−1(A− rIn)P) = det(P−1AP− rI(n−g)×(n−g))

= det(

[
(r1 − r)Ig B12

0 B22 − r1I(n−g)×(n−g)

]
)

= (r1 − r)gdet(B22 − rI(n−g)×(n−g))

In particular, r1 appears as a root of the characteristic polynomial for at
least g times. Since the algebraic multiplicity a is the total number of times
r1 appears as a root, we conclude that a ≥ g

If ki is the geometric multiplicity of an eigenvalue ri of an n × n matrix
P and ni is its algebraic multiplicity such that ki < ni then we say that the
eigenvalue ri is defective (it’s missing some of its eigenvalues) and we call
the matrix P a defective matrix. A matrix that is not defective is said to
have a full set of eigenvectors.
There are important family of square matrices that always have a full set of
eigenvectors, namely, real symmetric matrices and Hermitian matrices that
we discuss next.
The transpose of a matrix P, denoted by PT , is another matrix in which the
rows and columns have been reversed. That is, (PT )ij = (P)ji. For example,
the matrix

P =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


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would have the transpose

PT =

 a11 a21 a31
a12 a22 a32
a13 a23 a33


Theorem 39.2
(a) If P and Q are n× n matrices then (P + Q)T = PT + QT .
(b) If P is an n×m matrix and Q is an m× p matrix then (PQ)T = QTPT .

Proof.
(a) We have [(P + Q)T ]ij = (P + Q)ji = (P)ji + (Q)ji = (PT )ij + (QT )ij.
(b) We have

((PQ)T )ij = (PQ)ji =
∑m

k=1(P)jk(Q)ki
=

∑m
k=1(Q

T )ik(P
T )kj

= (QTPT )ij

An n× n matrix P with real entries and with the property P = PT is called
a real symmetric matrix. For example, the matrix

P =

 1 2 3
2 −4 5
3 5 6


is a real symmetric matrix.
Real symmetric matrices are a special case of a larger class of matrices, known

as Hermitian matrices. An n× n matrix P is called Hermitian if P = P
T
,

where P is the complex conjugate of P(The conjugate of a complex matrix
is the conjugate of all its entries.) For example,

P =

[
3 2 + i

2− i 1

]
is a Hermitian matrix. Note that PT = P

T
when P is real matrix. Also note

that a real symmetric matrix is a Hermitian matrix.

Theorem 39.3
If P is a real symmetric matrix or Hermitian matrix then its eigenvalues are
all real.
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Proof.
We prove the theorem for real Hermitian matrices. Suppose r is an eigen-
value of P with corresponding eigenvector x. We will show that r is real.
That is, r = r. Since Px = rx, we can multiply both sides of this equation
from the left by xT to obtain xTPx = rxTx. On the other hand, we have

P x = r x. Thus, xTP
T
x = r xTx. Since P

T
= P then rxTx = r xTx. Since

xTx = ||x||2 6= 0 , where ||x||2 is the two norm of x,(x is an eigenvector) we
see that r = r, that is, r is real

The following theorem asserts that every Hermitian or real symmetric matrix
has a full set of eigenvectors. Therefore, when we study the homogeneous
linear first order system y′ = Py, where P is an n × n a real symmetric
matrix we know that all solutions forming a fundamental set are of the form
ertx, where (r,x) is an eigenpair.

Theorem 39.4
If P is a Hermitian matrix (or a symmetric matrix) then for each eigenvalue,
the algebraic multiplicity equals the geometric multiplicity.

Proof.
We will prove the result for real symmetric matrices. In Section 41, we will
show that a real symmetric matrix has a set of n linearly independent eigen-
vectors. So if a1, a2, · · · , ak are the algebraic multiplicities with correspond-
ing geometric multiplicities g1, g2, · · · , gk then we have a1 + a2 + · · · + ak =
g1 + g2 + · · ·+ gk = n. By Theorem 39.1, this happens only when ai = gi
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Practice Problems

In Problems 39.1 - 39.4, we consider the initial value problem y′ = Py, y(0) =
y0.
(a) Compute the eigenvalues and the eigenvectors of P.
(b) Construct a fundamental set of solutions for the given differential equa-
tion. Use this fundamental set to construct a fundamental matrix Ψ(t).
(c) Impose the initial condition to obtain the unique solution to the initial
value problem.

Problem 39.1

P =

[
3 2
0 3

]
, y0 =

[
4
1

]
Problem 39.2

P =

[
3 0
1 3

]
, y0 =

[
2
−3

]
Problem 39.3

P =

[
−3 −36
1 9

]
, y0 =

[
0
2

]
Problem 39.4

P =

[
6 1
−1 4

]
, y0 =

[
4
−4

]
Problem 39.5
Consider the homogeneous linear system

y′ =

 2 1 0
0 2 1
0 0 2

y

(a) Write the three component differential equations of y′ = Py and solve
these equations sequentially, first finding y3(t), then y2(t), and then y1(t).
(b) Rewrite the component solutions obtained in part (a) as a single matrix
equation of the form y = Ψ(t)c. Show that Ψ(t) is a fundamental matrix.
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In Problems 39.6 - 39.8, Find the eigenvalues and eigenvectors of P. Give the
geometric and algebraic multiplicity of each eigenvalue. Does P have a full
set of eigenvectors?

Problem 39.6

P =

 5 0 0
1 5 0
1 0 5


Problem 39.7

P =

 5 0 0
0 5 0
0 0 5


Problem 39.8

P =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 1 2


Problem 39.9
Let P be a 2× 2 real matrix with an eigenvalue r1 = a+ ib where b 6= 0. Can
P have a repeated eigenvalue? Can P be defective?

Problem 39.10
Dtermine the numbers x and y so that the following matrix is real and
symmetric.

P =

 0 1 x
y 2 2
6 2 7


Problem 39.11
Dtermine the numbers x and y so that the following matrix is Hermitian.

P =

 2 x+ 3i 7
9− 3i 5 2 + yi

7 2 + 5i 3


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Problem 39.12
(a) Give an example of a 2× 2 matrix P that is not invertible but have a full
set of eigenvectors.
(b) Give an example of a 2× 2 matrix P that is invertible but does not have
a full set of eigenvectors.
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40 Nonhomogeneous First Order Linear Sys-

tems

In this section, we seek the general solution to the nonhomogeneous first
order linear system

y′ = P(t)y + g(t) (25)

where the components of the n × n matrix P(t) and the n × 1 vector g(t)
are continuous on a < t < b.
The solution structure is similar to one for nth order linear nonhomogeneous
equations and is the result of the following theorem.

Theorem 40.1
Let {y1(t),y2(t), · · · ,yn(t)} be a fundamental set of solutions to the ho-
mogeneous equation y′ = P(t)y and yp(t) be a particular solution of the
nonhomogeneous equation y′ = P(t)y + g(t). Then the general solution of
the nonhomogeneous equation is given by

y(t) = yp(t) + c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

Proof.
Let y(t) be any solution to equation (25). Since yp(t) is also a solution, we
have

(y − yp)
′ = y′ − y′p

= P(t)y + g(t)− [P(t)yp + g(t)]
= g(t)− g(t) = 0

Therefore y−yp is a solution to the homogeneous equation. But {y1,y2, · · · ,yn}
is a fundamental set of solutions to the homogeneous equation so that there
exist unique constants c1, c2, · · · , cn such that y(t)−yp(t) = c1y1(t)+c2y2(t)+
· · ·+ cnyn(t). Hence,

y(t) = yp(t) + c1y1(t) + c2y2(t) + · · ·+ cnyn(t)

Since the sum c1y1(t)+ c2y2(t)+ · · ·+ cnyn(t) represents the general solution
to the homogeneous equation then we will denote it by yh so that the general
solution of (25) takes the form

y(t) = yh(t) + yp(t)

Superposition theorem for nth order linear nonhomogeneous equations holds
as well for linear systems.
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Theorem 40.2
Let y1(t) be a solution of y′ = P(t)y + g1(t) and y2(t) a solution of y′ =
P(t)y+g2(t). Then for any constants c1 and c2 the function yp(t) = c1y1(t)+
c2y2(t) is a particular solution of the equation

y′ = P(t)y + c1g1(t) + c2g2(t), a < t < b.

Proof.
We have

y′p = (c1y1(t) + c2y2(t))
′

= c1y
′
1(t) + c2y

′
2(t)

= c1(P(t)y1 + g1(t)) + c2(P(t)y2 + g2(t))
= P(t)(c1y1 + c2y2) + c1g1(t) + c2g2(t)
= P(t)yp + c1g1(t) + c2g2(t)

Example 40.1
Consider the system

y′ =

[
1 2
2 1

]
y +

[
e2t

−2t

]
(a) Find yh(t).
(b) Find yp(t).
(c) Find the general solution to the given system.

Solution.
(a) The characteristic equation is∣∣∣∣ 1− r 2

2 1− r

∣∣∣∣ = (r − 1)2 − 4 = 0

Thus, the eigenvalues are r1 = −1 and r2 = 3. An eigenvector corresponding
to r1 = −1 is found as follows

(P + I)x1 =

[
2 2
2 2

] [
x1
x2

]
=

[
2x1 + 2x2
2x1 + 2x2

]
=

[
0
0

]
Solving this system we find x2 = −x1. Letting x1 = 1 we find x2 = −1 and
an eigenvector is

x1 =

[
1
−1

]
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Similarly, for r2 = 3 we have

(P− 3I)x2 =

[
−2 2
2 −2

] [
x1
x2

]
=

[
−2x1 + 2x2
2x1 − 2x2

]
=

[
0
0

]
Solving this system we find x2 = x1. Letting x1 = 1 we find x2 = 1 and an
eigenvector is

x2 =

[
1
1

]
Hence,

yh(t) = c1e
−t
[

1
−1

]
+ c2e

3t

[
1
1

]
(b) To find yp(t) we note first that

g(t) =

[
e2t

−2t

]
= e2t

[
1
0

]
+ t

[
0
−2

]
= g1(t) + g2(t).

By Superposition Theorem above, we will find a particular solution to y′ =
P(t)y + g1(t) as well as to y′ = P(t)y + g2(t). For the first equation, we use
the method of undetermined coefficients. That is, we seek a solution of the

form up(t) = e2ta where a =

[
a1
a2

]
is a constant vector to be determined.

Substituting up into the equation y′ = P(t)y + g1(t) to obtain

2e2ta = P(t)(e2t)a + e2t
[

1
0

]
This equation reduces to[

1 −2
−2 1

] [
a1
a2

]
=

[
1
0

]
Solving this system we find a = −1

3

[
1
2

]
. Hence,

up(t) = −1

3
e2t
[

1
2

]
.

Now, for the system y′ = P(t)y + g2(t) we consider the guess function
vp(t) = tb + c where b and c are vectors whose components are to be
determined. Substituting this guess into the differential equation we find

b =

[
1 2
2 1

]
(tb + c) + t

[
0
−2

]
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and this reduces to([
1 2
2 1

]
b +

[
0
−2

])
+ t

([
1 2
2 1

]
c− b

)
= 0

Since the set {1, t} is linearly independent, the last equation implies the two
systems [

1 2
2 1

] [
b1
b2

]
=

[
0
2

]
and [

1 2
2 1

] [
c1
c2

]
=

[
b1
b2

]
Solving these systems we find

b =
2

3

[
2
−1

]
, c =

2

9

[
−4
5

]
Hence,

vp(t) = t
2

3

[
2
−1

]
+

2

9

[
−4
5

]
By the Superposition Theorem, we have

yp(t) = up(t) + vp(t).

(c) The general solution is given by

y(t) = c1e
−t
[

1
−1

]
+ c2e

3t

[
1
1

]
− 1

3
e2t
[

1
2

]
+

2t

3

[
2
−1

]
+

2

9

[
−4
5

]
The Variation of Parameters Method
Next, we consider a method for finding a particular solution to (25) and the
unique solution to the initial-value problem

y′ = P(t) + g(t), y(t0) = y0 (26)

To solve the above initial-value problem, we start by looking at a fundamental
set {y1,y2, · · · ,yn, } of the homogeneous equation. Then we construct the
fundamental matrix Ψ(t) = [y1 y2 · · · yn]. Recall that Ψ(t) (See Section
33) satisfies the differential equation

Ψ′ = P(t)Ψ, a < t < b.
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Now, since
y(t) = c1y1 + c2y2 + · · ·+ cnyn = Ψ(t)c

we “vary the parameter” and look for a solution to the initial-value prob-
lem (26) of the form y = Ψ(t)u(t), where u is an unknown vector to be
determined. Substituting this vector function into (26) to obtain

Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t).

Using the fact that Ψ′ = P(t)Ψ the last equation reduces to

Ψ(t)u′(t) = g(t)

Since Ψ(t) is a fundamental matrix, det(Ψ(t)) 6= 0 and this implies that the
matrix Ψ(t) is invertible. Hence, we can write

u′(t) = Ψ−1(t)g(t).

Integrating both sides we find

u(t) = u(t0) +

∫ t

t0

Ψ−1(s)g(s)ds

where u(t0) is an arbitrary constant vector. It follows that the general solu-
tion to y′ = P(t)y + g(t) is given by

y(t) = Ψ(t)u(t) = Ψ(t)u(t0) + Ψ(t)

∫ t

t0

Ψ−1(s)g(s)ds = yh(t) + yp(t)

where yh(t) = Ψ(t)u(t0) and yp(t) = Ψ(t)
∫ t
t0

Ψ−1(s)g(s)ds. Finally, since

y(t0) = Ψ(t0)u(t0) we have u(t0) = Ψ−1(t0)y(t0) and the unique solution to
the initial value problem is given by

y(t) = Ψ(t)Ψ−1(t0)y(t0) + Ψ(t)

∫ t

t0

Ψ−1(s)g(s)ds.

We refer to the last expression as the variation of parameters formula for
the solution of the initial-value problem.
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Remark 40.1
Consider the initial value problem

y′ = p(t)y + g(t), y(t0) = y0, a < t < b.

Clearly, {e
∫ t
t0
p(s)ds} is a fundamental set. Letting Ψ(t) = e

∫ t
t0
p(s)ds

in the
variation of parameters formula we see that the unique solution is given by

y(t) = y0e
∫ t
t0
p(s)ds

+ e
∫ t
t0
p(s)ds

∫ t

t0

e
−

∫ t
t0
p(s)ds

g(s)ds

which is nothing than the method of integrating factor.

Example 40.2

y′ =

[
1 1
1 1

]
y +

[
e2t

0

]
, y(0) =

[
0
0

]
Solution.

We first find a fundamental matrix of the linear system y′ =

[
1 1
1 1

]
y. The

characteristic equation is∣∣∣∣ 1− r 1
1 1− r

∣∣∣∣ = r(r − 2) = 0

and has eigenvalues r1 = 0 and r2 = 2. We find an eigenvector corresponding
to r1 = 0 as follows.[

1 1
1 1

] [
x1
x2

]
=

[
x1 + x2
x1 + x2

]
=

[
0
0

]
It follows that x1 = −x2. Letting x1 = 1 then x2 = −1 and an eigenvector is

x1 =

[
1
−1

]
An eigenvector corresponding to r2 = 2[

−1 1
1 −1

] [
x1
x2

]
=

[
−x1 + x2
x1 − x2

]
=

[
0
0

]
119



Solving we find x1 = x2. Letting x1 = 1 we find x2 = 1 and an eigenvector is

x2 =

[
1
1

]
Thus, a fundamental matrix is

Ψ =

[
1 e2t

−1 e2t

]
.

Therefore,

Ψ−1 = 0.5

[
1 −1
e−2t e−2t

]
.

But the variation of parameters formula is

y(t) = Ψ(t)Ψ−1(0)y(0) + Ψ(t)

∫ t

0

Ψ−1(s)g(s)ds.

Thus,

y(t) =

[
1 e2t

−1 e2t

] ∫ t
0

0.5

[
e2s

1

]
ds

=

[
1 e2t

−1 e2t

]
(0.25)

[
1e2t − 1

2t

]

= 0.25

[
e2t − 1 + 2te2t

−(e2t − 1) + 2te2t

]
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Practice Problems

In Problems 40.1 - 40.3, we consider the initial value problem y′ = Py +
g(t), y(t0) = y0.
(a) Find the eigenpairs of the matrix P and form the general homogeneous
solution of the differential equation.
(b) Construct a particular solution by assuming a solution of the form sug-
gested and solving for the undetermined constant vectors a,b, and c.
(c) Form the general solution of the nonhomogeneous differential equation.
(d) Find the unique solution to the initial value problem.

Problem 40.1

y′ =

[
−2 1
1 −2

]
y +

[
1
1

]
, y0 =

[
3
1

]
Try yp(t) = a.

Problem 40.2

y′ =

[
0 1
1 0

]
y +

[
t
−1

]
, y0 =

[
2
−1

]
Try yp(t) = ta + b.

Problem 40.3

y′ =

[
−3 −2
4 3

]
y +

[
sin t

0

]
, y0 =

[
0
0

]
Try yp(t) = (sin t)a + (cos t)b.

Problem 40.4
Consider the initial value problem

y′ =

[
0 2
−2 0

]
y + g(t), y

(π
2

)
= y0.

Suppose we know that

y(t) =

[
1 + sin 2t
et + cos 2t

]
is the unique solution. Determine g(t) and y0.
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Problem 40.5
Consider the initial value problem

y′ =

[
1 t
t2 1

]
y + g(t), y(1) =

[
2
−1

]
.

Suppose we know that

y(t) =

[
t+ α
t2 + β

]
is the unique solution. Determine g(t) and the constants α and β.

Problem 40.6
Let P(t) be a 2 × 2 matrix with continuous entries. Consider the differ-

ential equation y′ = P(t)y + g(t). Suppose that y1(t) =

[
1
e−t

]
is the

solution to y′ = P(t)y +

[
−2
0

]
and y2(t) =

[
et

−1

]
is the solution to

y′ = P(t)y +

[
et

−1

]
. Determine P(t). Hint: Form the matrix equation

[y′1 y′2] = P[y1 y2] + [g1 g2].

Problem 40.7
Consider the linear system y′ = Py + b where P is a constant matrix and b
is a constant vector. An equilibrium solution, y(t), is a constant solution
of the differential equation.
(a) Show that y′ = Py + b has a unique equilibrium solution when P is
invertible.
(b) If the matrix P is not invertible, must the differential equation y′ =
Py+b possess an equilibrium solution? If an equilibrium solution does exist
in this case, is it unique?

Problem 40.8
Determine all the equilibrium solutions (if any).

y′ =

[
2 −1
−1 1

]
y +

[
2
−1

]
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Problem 40.9
Determine all the equilibrium solutions (if any).

y′ =

 1 1 0
0 −1 2
0 0 1

y +

 2
3
2


Consider the homogeneous linear system y′ = Py. Recall that any associ-
ated fundamental matrix satisfies the matrix differential equation Ψ′ = PΨ.
In Problems 40.10 - 40.12, construct a fundamental matrix that solves the
matrix initial value problem Ψ′ = PΨ, Ψ(t0) = Ψ0.

Problem 40.10

Ψ′ =

[
1 −1
−1 1

]
Ψ, Ψ(1) =

[
1 0
0 1

]
Problem 40.11

Ψ′ =

[
1 −1
−1 1

]
Ψ, Ψ(0) =

[
1 0
2 1

]
Problem 40.12

Ψ′ =

[
1 4
−1 1

]
Ψ, Ψ

(π
4

)
=

[
1 0
0 1

]
In Problems 40.13 - 40.14, use the method of variation of parameters to solve
the given initial value problem.

Problem 40.13

y′ =

[
9 −4
15 −7

]
y +

[
et

0

]
, y(0) =

[
2
5

]
Problem 40.14

y′ =

[
1 1
0 1

]
y +

[
1
1

]
, y(0) =

[
0
0

]
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41 Solving First Order Linear Systems with

Diagonalizable Constant Coefficients Ma-

trix

In this section we discuss a method for solving the initial value problem

y′ = Py + g(t), y(t0) = y0, a < t < b

where P is a nondefective constant matrix and the entries of g(t) are contin-
uous in a < t < b.. This type of matrices is always diagonalizable, a concept
that we will introduce and discuss below.

Similar Matrices
An n× n matrix A is said to be similar to an n× n matrix B if there is an
invertible n×n matrix T such that T−1AT = B. Note that if we let R = T−1

then B = RAR−1 so whether the inverse comes first or last does not matter.
Also, note that from this definition we can write A = (T−1)−1BT−1 so that
the matrix B is similar to A. That’s why, in the literature one will just say
that A and B are similar matrices.
The first important result of this concept in the following theorem.

Theorem 41.1
If A and B are similar then they have the same characteristic equation and
therefore the same eigenvalues.

Proof.
Since A and B are similar, B = T−1AT for some invertible matrix T. From
this one notices the following

det(A− rI) = det(T−1(A− rI)T) =
= det(T−1(AT− rI) = det(B− rI)

This shows that A and B have the same characteristic equation and there-
fore the same eigenvalues. We point out the following equality that we used
in the above discussion: det(T−1T) = det(T−1)det(T) = det(I) = 1

The second important result is the following.
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Theorem 41.2
Suppose that W(t) is a solution to the system y′ = By and B and A are
similar matrices with B = T−1AT. Then y(t) = TW(t) is a solution to
y′ = Ay.

Proof.
Since W(t) is a solution to y′ = By we have W′ = BW. But B = T−1AT so
we can write W′ = T−1ATW. Thus, TW′ = ATW. That is, (TW(t))′ =
A(TW). But this says that y(t) = TW(t) is a solution to y′ = Ay

Diagonalizable Matrices
An n × n matrix A is said to be diagonalizable if there is an invertible
matrix T such that

T−1AT = D =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
0 0 0 · · · dn


In other words, the matrix A is similar to a diagonal matrix.
Our first question regarding diagonalization is the question of whether every
square matrix is diagonalizable.

Example 41.1
Show that the matrix

A =

[
0 1
0 0

]
is not diagonalizable.

Solution.
If A is diagonalizable then we expect to find an invertible matrix T =[
a b
c d

]
such that T−1AT is a diagonal matrix. But

T−1AT =
1

ad− bc

[
d −b
−c a

] [
0 1
0 0

] [
a b
c d

]
1

ad− bc

[
cd d2

−c2 −cd

]
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Now, if c = 0 then d 6= 0 and therefore the above product does not result
in a diagonal matrix. Similar argument applies if d = 0. Hence, the given
matrix is not diagonalizable

Note that the above matrix does not have a full set of eigenvectors. Indeed,
the characteristic equation of the matrix A is∣∣∣∣ −r 1

0 −r

∣∣∣∣ = 0

Expanding the determinant and simplifying we obtain

r2 = 0.

The only eigenvalue of A is r = 0. Now, an eigenvector is found as follows.[
0 1
0 0

] [
x1
x2

]
=

[
x2
0

]
=

[
0
0

]
Thus, we find that x2 = 0 and x1 is arbitrary. Hence, an eigenvector is

x =

[
1
0

]
Since the geometric multiplicity of r = 0 is less than its algebraic multiplicity,
A is defective.
So, is having a full set of eigenvectors results in the matrix to be diagonaliz-
able? The answer to this question is provided by the following theorem.

Theorem 41.3
An n × n matrix A is diagonalizable if and only if it has a set of n linearly
independent eigenvectors.

Proof.
(=⇒) : Suppose first that A is diagonalizable. Then there are an ivnertible
matrix T and a diagonal matrix D such that T−1AT = D. By Theorem 41.1,
the diagonal entries of D are the eigenvalues of A. Now, let c1, c2, · · · , cn be
the n columns of T so that T = [c1 c2 · · · cn]. Since T−1AT = D we have
AT = TD. That is,

A[c1 c2 · · · cn] = [c1 c2 · · · cn]


r1 0 0 · · · 0
0 r2 0 · · · 0
0 0 r3 · · · 0
...

...
0 0 0 · · · rn


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where r1, r2, · · · , rn are the eigenvalues of A. The above matrix equation is
the same as

[Ac1 Ac2 · · · Acn] = [r1c1 r2c2 · · · rncn]

and this equality yields

Ac1 = r1c1, Ac2 = r2c2, · · · , Acn = rncn.

This shows that the eigenvectors of A are just the columns of T. Now, if

c1c1 + c2Ac2 + · · ·+ cncn = [c1 c2 · · · cn]c = 0

then the invertibility of T forces c = 0. This shows that the columns of T,
and therefore the eigenvectors of A, are linearly independent.
(⇐=) : Now, suppose that A has n linearly independent eigenvectors c1, c2, · · · , cn
with corresponding eigenvalues r1, r2, · · · , rn. Let T = [c1 c2 · · · cn] and D
be the diagonal matrix with diagonal entries r1, r2, · · · , rn. Then AT = TA.
Also, since the eigenvectors are linearly independent, T is invertible and
therefore T−1AT = D. This shows that A is diagonalizable

Remark 41.1
We have seen in Section 39 that real symmetric matrices and Hermitian
matrices have full set of eigenvectors. According to the previous theorem
these matrices are always diagonalizable.

Solution Method of First Order Linear Systems by Uncoupling
We finally describe a method based on matrix diagonalization for solving the
initial value problem

y′ = Py + g(t), y(t0) = y0, a < t < b. (27)

where the components of g(t) are continuous in a < t < b and the matrix P
is a diagonalizable constant matrix, that is, there is an invertible matrix T
such that

T−1PT = D =


r1 0 0 · · · 0
0 r2 0 · · · 0
0 0 r3 · · · 0
...

...
0 0 0 · · · rn


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where r1, r2, · · · , rn are the eigenvalues of P. Thus, P = TDT−1. Substitut-
ing into the differential equation we find

y′ = TDT−1y + g(t)

or
(T−1y)′ = D(T−1y) + T−1g(t).

Letting z(t) = T−1y then the previous equation reduces to

z′(t) = Dz(t) + T−1g(t).

Letting

z(t) =


z1
z2
...
zn

 , T−1g(t) =


h1
h2
...
hn

 , z(t0) = T−1y0 =


z01
z02
...
z0n


We can write 

z′1
z′2
...
z′n

 =


r1z1
r2z2

...
rnzn

+


h1
h2
...
hn


Thus, for 1 ≤ i ≤ n we have the scalar initial value problem

z′i = rizi + hi, zi(t0) = z0i .

Solving this equation using the method of integrating factor we find

zi(t) = eri(t−t0)z0i +

∫ t

t0

eri(t−s)hi(s)ds, 1 ≤ i ≤ n.

Having found the vector z(t) we then find the solution to the original initial
value problem by forming the matrix product y(t) = Tz(t).

Example 41.2
Solve the following system by making the change of variables y = Tz.

y′ =

[
1 1
2 2

]
y +

[
t

−t+ 3

]
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Solution.
The characteristic equation is∣∣∣∣ 1− r 1

1 2− r

∣∣∣∣ = r(r − 3) = 0

Thus, the eigenvalues are r1 = 0 and r2 = 3. An eigenvector corresponding
to r1 = 0 is found as follows

(P + 0I)x1 =

[
1 1
2 2

] [
x1
x2

]
=

[
x1 + x2

2x1 + 2x2

]
=

[
0
0

]
Solving this system we find x1 = −x2. Letting x2 = −1 we find x1 = 1 and
an eigenvector is

x1 =

[
1
−1

]
Similarly, for r2 = 3 we have

(P− 3I)x2 =

[
−2 1
2 −1

] [
x1
x2

]
=

[
−2x1 + x2
2x1 − x2

]
=

[
0
0

]
Solving this system we find 2x1 = x2. Letting x1 = 1 we find x2 = 2 and an
eigenvector is

x2 =

[
1
2

]
Therefore

T =

[
1 1
−1 2

]
Thus,

T−1 =
1

3

[
2 −1
1 1

]
Letting y = Tz we obtain

z′ =

[
0 0
0 3

]
z +

[
t− 1

1

]
That is,

z′1 = t− 1
z′2 = 3z2 + 1
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Solving this system we find

z(t) =

[
1
2
t2 − t+ c1
−1

3
+ c2e

3t

]
Thus, the general solution is

y(t) = Tz(t) =

[
1 1
−1 2

] [
1
2
t2 − t+ c1
−1

3
+ c2e

3t

]
=

[
1 e3t

−1 2e3t

] [
c1
c2

]
−
[

1
2
t2 − t− 1

3

−1
2
t2 + t− 2

3

]
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Practice Problems

In Problems 41.1 - 41.4, the given matrix is diagonalizable. Find matrices T
and D such that T−1PT = D.

Problem 41.1

P =

[
3 4
−2 −3

]
Problem 41.2

P =

[
2 3
2 3

]
Problem 41.3

P =

[
1 2
2 1

]
Problem 41.4

P =

[
−2 2
0 3

]
In Problems 41.5 - 41.6, you are given the characteristic polynomial for the
matrix P. Determine the geometric and algebraic multiplicities of each eigen-
value. If the matrix P is diagonalizable, find matrices T and D such that
T−1PT = D.

Problem 41.5

P =

 7 −2 2
8 −1 4
−8 4 −1

 , p(r) = (r − 3)2(r + 1).

Problem 41.6

P =

 5 −1 1
14 −3 6
5 −2 5

 , p(r) = (r − 2)2(r − 3).
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Problem 41.7
At leat two (and possibly more) of the following four matrices are diagonal-
izable. You should be able to recognize two by inspection. Choose them and
give a reason for your choice.

(a)

[
5 6
3 4

]
, (b)

[
3 6
6 9

]
, (c)

[
3 0
3 −4

]
, (d)

[
1 3
−1 4

]
Problem 41.8
Solve the following system by making the change of variables y = Tz.

y′ =

[
−4 −6
3 5

]
y +

[
e2t − 2et

e−2t + et

]
Problem 41.9
Solve the following system by making the change of variables y = Tz.

y′ =

[
3 2
1 4

]
y +

[
4t+ 4
−2t+ 1

]
Problem 41.10
Solve the following system by making the change of variables x = Tz.

x′′ =

[
6 7
−15 −16

]
x

Problem 41.11
Solve the following system by making the change of variables x = Tz.

x′′ =

[
4 2
2 1

]
x
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42 Solving First Order Linear Systems Using

Exponential Matrix

The matrix exponential plays an important role in solving systems of linear
differential equations. In this section, we will define such a concept and study
some of its important properties.
Recall from calculus the power series expansion of et given by

et = 1 +
t

1!
+
t2

2!
+
t3

3!
+ · · · =

∞∑
n=0

tn

n!

and this series converges for all real numbers t.
To develop something similar with number t replaced by a matrix A one
proceeds as follows: The absolute value used for measuring the distance
between numbers is now replaced by a matrix norm given by

||A|| =

√√√√ n∑
i=1

n∑
j=1

(aij)2

Next, we construct the sequence of partial sums

S1 = I + A
1!

S2 = I + A
1!

+ A
2!

...
Sn = I + A

1!
+ · · ·+ A

n!

With little effort which we don’t pursue here, it can be shown that the
sequence of partial sums converges and its limit is denoted by eA. That is,

lim
n→∞

Sn = eA

or

eA = I +
A

1!
+

A2

2!
+

A3

3!
+ · · · =

∞∑
n=0

An

n!

and this series converges for any square matrix A.

Example 42.1
Suppose that

A(t) =

[
0 t
t 0

]
Find eA.
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Solution.
One can easily see that for any nonnegative odd integer n we have

An =

[
0 tn

tn 0

]
and for nonnegative even integer n

An =

[
tn 0
0 tn

]
Thus,

eA =

[ ∑∞
n=0

t2n

(2n)!

∑∞
n=0

t2n+1

(2n+1)!∑∞
n=0

t2n+1

(2n+1)!

∑∞
n=0

t2n

(2n)!

]
=

[
cosh t sinh t
sinh t cosh t

]
The following theorem describes some of the important properties of the
exponential matrix.

Theorem 42.1
(i) If AB = BA then eA+B = eAeB.
(ii) For any square matrix A, eA is invertible with (eA)−1 = e−A.
(iii) For any invertible n× n matrix P and any n× n matrix A

eP
−1AP = P−1eAP

(Thus, if A is similar to B; then eA is similar to eB).
(iv) If A has eigenvalues r1, r2, · · · , rn (not necessarily distinct), then eA

has eigenvalues er1 , er2 , · · · , ern .
(v) det(eA) = etr(A).
(vi) AeA = eAA.

When dealing with systems of differential equations, one has often to deal
with expressions like ePt, where P(t) is a matrix and t is a real number or
real variable. With the above formula of the exponential matrix function we
get

ePt = I +
Pt

1!
+

P2t2

2!
+ · · · =

∞∑
n=0

Pntn

n!
.
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Let’s find the derivative of ePt. To prove this, we calculate this derivative via
the usual limit formula:

d

dt
ePt = lim

h→0

eP(t+h) − ePt

h
.

But
eP(t+h) = ePtePh.

since Pt and Ph commute.(These matrices are scalar multiples of the same
matrix P, and P commutes with itself.) Going back to the derivative, we get

d

dt
ePt = lim

h→0

eP(t+h) − ePt

h

=ePt lim
h→0

ePh − I

h

=ePt lim
h→0

1

h

(
Ph+

1

2!
P2h2 +

1

3!
P3h3 + · · ·

)

=ePtP = PePt

Now, consider the initial value problem

y′ = Py + g(t), y(t0) = y0, a < t < b

where P is a constant square matrix and the entries of g(t) are continuous
in a < t < b. Then one has

y′ −Py =g(t)(
e−P(t−t0)y

)′
=e−P(t−t0)g(t)

e−P(t−t0)y =y0 +

∫ t

t0

e−P(s−t0)g(s)ds

y(t) =e(t−t0)Py0 +

∫ t

t0

e(t−s)Pg(s)ds
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Remark 42.1
The above procedure does not apply if the matrix P is not constant! That
is, d

dt
eP(t) 6= P′(t)eP(t). This is due to the fact that matrix multiplication is

not commutative in general.

Example 42.2

Find ePt if P =

[
6 9
−4 −6

]
.

Solution.
Since P2 = 0 we find

eP(t) = I + tP =

[
1 + 6t 9
−4 1− 6t

]
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Practice Problems

Problem 42.1

Find eP(t) if P =

[
0 2
−2 0

]
.

Problem 42.2
Consider the linear differential system

y′ = Py, P =

[
1 4
−1 −3

]
(a) Calculate ePt. Hint: Every square matrix satisfies its characteristic equa-
tion.
(b) Use the result from part (a) to find two independent solutions of the
differential system. Form the general solution.

Problem 42.3
Show that if

D =

 d1 0 0
0 d2 0
0 0 d3


then

eD =

 ed1 0 0
0 ed2 0
0 0 ed3


Problem 42.4
Solve the initial value problem

y′ =

[
3 0
0 −1

]
y, y(0) = y0

Problem 42.5
Show that if r is an eigenvalue of P then er is an eigenvalue of eP.

Problem 42.6
Show that det(eA) = etr(A). Hint: Recall that the determinant of a matrix
is equal to the product of its eigenvalues and the trace is the sume of the
eigenvalues. This follows from the expansion of the characteristic equation
into a polynomial.

137



Problem 42.7
Prove: For any invertible n× n matrix P and any n× n matrix A

eP
−1AP = P−1eAP

(Thus, if A is similar to B; then eA is similar to eB).

Problem 42.8
Prove: If AB = BA then eA+B = eAeB.

Problem 42.9
Prove: For any square matrix A, eA is invertible with (eA)−1 = e−A.

Problem 42.10
Consider the two matrices

A =

[
1 0
0 −1

]
, B =

[
0 1
−1 0

]
Show that AB 6= BA and eA+B 6= eAeA.
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43 The Laplace Transform: Basic Definitions

and Results

Laplace transform is yet another operational tool for solving constant coeffi-
cients linear differential equations. The process of solution consists of three
main steps:
• The given “hard” problem is transformed into a “simple” equation.
• This simple equation is solved by purely algebraic manipulations.
• The solution of the simple equation is transformed back to obtain the so-
lution of the given problem.
In this way the Laplace transformation reduces the problem of solving a dif-
ferential equation to an algebraic problem. The third step is made easier by
tables, whose role is similar to that of integral tables in integration.
The above procedure can be summarized by Figure 43.1

Figure 43.1

In this section we introduce the concept of Laplace transform and discuss
some of its properties.
The Laplace transform is defined in the following way. Let f(t) be defined
for t ≥ 0. Then the Laplace transform of f, which is denoted by L[f(t)]
or by F (s), is defined by the following equation

L[f(t)] = F (s) = lim
T→∞

∫ T

0

f(t)e−stdt =

∫ ∞
0

f(t)e−stdt

The integral which defined a Laplace transform is an improper integral. An
improper integral may converge or diverge, depending on the integrand.
When the improper integral in convergent then we say that the function f(t)
possesses a Laplace transform. So what types of functions possess Laplace
transforms, that is, what type of functions guarantees a convergent improper
integral.

Example 43.1
Find the Laplace transform, if it exists, of each of the following functions

(a) f(t) = eat (b) f(t) = 1 (c) f(t) = t (d) f(t) = et
2
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Solution.
(a) Using the definition of Laplace transform we see that

L[eat] =

∫ ∞
0

e−(s−a)tdt = lim
T→∞

∫ T

0

e−(s−a)tdt.

But ∫ T

0

e−(s−a)tdt =

{
T if s = a

1−e−(s−a)T

s−a if s 6= a.

For the improper integral to converge we need s > a. In this case,

L[eat] = F (s) =
1

s− a
, s > a.

(b) In a similar way to what was done in part (a), we find

L[1] =

∫ ∞
0

e−stdt = lim
T→∞

∫ T

0

e−stdt =
1

s
, s > 0.

(c) We have

L[t] =

∫ ∞
0

te−stdt =

[
−te

−st

s
− e−st

s2

]∞
0

=
1

s2
, s > 0.

(d) Again using the definition of Laplace transform we find

L[et
2

] =

∫ ∞
0

et
2−stdt.

If s ≤ 0 then t2−st ≥ 0 so that et
2−st ≥ 1 and this implies that

∫∞
0
et

2−stdt ≥∫∞
0
. Since the integral on the right is divergent, by the comparison theorem

of improper integrals (see Theorem 43.1 below) the integral on the left is also
divergent. Now, if s > 0 then

∫∞
0
et(t−s)dt ≥

∫∞
s
dt. By the same reasoning

the integral on the left is divergent. This shows that the function f(t) = et
2

does not possess a Laplace transform

The above example raises the question of what class or classes of functions
possess a Laplace transform. Looking closely at Example 43.1(a), we notice
that for s > a the integral

∫∞
0
e−(s−a)tdt is convergent and a critical compo-

nent for this convergence is the type of the function f(t). To be more specific,
if f(t) is a continuous function such that

|f(t)| ≤Meat, t ≥ C (28)
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where M ≥ 0 and a and C are constants, then this condition yields∫ ∞
0

f(t)e−stdt ≤
∫ C

0

f(t)e−stdt+M

∫ ∞
C

e−(s−a)tdt.

Since f(t) is continuous in 0 ≤ t ≤ C, by letting A = max{|f(t)| : 0 ≤ t ≤ C}
we have ∫ C

0

f(t)e−stdt ≤ A

∫ C

0

e−stdt = A

(
1

s
− e−sC

s

)
<∞.

On the other hand, Now, by Example 43.1(a), the integral
∫∞
C
e−(s−a)tdt is

convergent for s > a. By the comparison theorem of improper integrals (see
Theorem 43.1 below) the integral on the left is also convergent. That is, f(t)
possesses a Laplace transform.
We call a function that satisfies condition (28) a function with an exponen-
tial order at infinity. Graphically, this means that the graph of f(t) is
contained in the region bounded by the graphs of y = Meat and y = −Meat

for t ≥ C. Note also that this type of functions controls the negative expo-
nential in the transform integral so that to keep the integral from blowing
up. If C = 0 then we say that the function is exponentially bounded.

Example 43.2
Show that any bounded function f(t) for t ≥ 0 is exponentially bounded.

Solution.
Since f(t) is bounded for t ≥ 0, there is a positive constant M such that
|f(t)| ≤M for all t ≥ 0. But this is the same as (28) with a = 0 and C = 0.
Thus, f(t) has is exponentially bounded

Another question that comes to mind is whether it is possible to relax the
condition of continuity on the function f(t). Let’s look at the following situ-
ation.

Example 43.3
Show that the square wave function whose graph is given in Figure 43.2
possesses a Laplace transform.
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Figure 43.2

Note that the function is periodic of period 2.

Solution.
Since f(t)e−st ≤ e−st, we have

∫∞
0
f(t)e−stdt ≤

∫∞
0
e−stdt. But the integral on

the right is convergent for s > 0 so that the integral on the left is convergent
as well. That is, L[f(t)] exists for s > 0
The function of the above example belongs to a class of functions that we
define next. A function is called piecewise continuous on an interval if
the interval can be broken into a finite number of subintervals on which the
function is continuous on each open subinterval (i.e. the subinterval without
its endpoints) and has a finite limit at the endpoints (jump discontinuities
and no vertical asymptotes) of each subinterval. Below is a sketch of a
piecewise continuous function.

Figure 43.3

Note that a piecewise continuous function is a function that has a finite
number of breaks in it and doesnt blow up to infinity anywhere. A function
defined for t ≥ 0 is said to be piecewise continuous on the infinite in-
terval if it is piecewise continuous on 0 ≤ t ≤ T for all T > 0.

Example 43.4
Show that the following functions are piecewise continuous and of exponential
order at infinity for t ≥ 0
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(a) f(t) = tn (b) f(t) = tn sin at

Solution.
(a) Since et =

∑∞
n=0

tn

n!
≥ tn

n!
, we have tn ≤ n!et. Hence, tn is piecewise con-

tinuous and exponentially bounded.
(b) Since |tn sin at| ≤ n!et, we have tn sin at is piecewise continuous and ex-
ponentially bounded

Next, we would like to establish the existence of the Laplace transform for
all functions that are piecewise continuous and have exponential order at
infinity. For that purpose we need the following comparison theorem from
calculus.

Theorem 43.1
Suppose that f(t) and g(t) are both integrable functions for all t ≥ t0 such
that |f(t)| ≤ |g(t) for t ≥ t0. If

∫∞
t0
g(t)dt is convergent, then

∫∞
t0
f(t)dt is

also convergent. If, on the other hand,
∫∞
t0
f(t)dt is divergent then

∫∞
t0
f(t)dt

is also divergent.

Theorem 43.2 (Existence)
Suppose that f(t) is piecewise continuous on t ≥ 0 and has an exponential
order at infinity with |f(t)| ≤Meat for t ≥ C. Then the Laplace transform

F (s) =

∫ ∞
0

f(t)e−stdt

exists as long as s > a. Note that the two conditions above are sufficient, but
not necessary, for F (s) to exist.

Proof.
The integral in the definition of F (s) can be splitted into two integrals as
follows ∫ ∞

0

f(t)e−stdt =

∫ C

0

f(t)e−stdt+

∫ ∞
C

f(t)e−stdt.

Since f(t) is piecewise continuous in 0 ≤ t ≤ C, it is bounded there. By
letting A = max{|f(t)| : 0 ≤ t ≤ C} we have∫ C

0

f(t)e−stdt ≤ A

∫ C

0

e−stdt = A

(
1

s
− e−sC

s

)
<∞.
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Now, by Example 43.1(a), the integral
∫∞
C
f(t)e−stdt is convergent for s > a.

By Theorem 43.1 the integral on the left is also convergent. That is, f(t)
possesses a Laplace transform

In what follows, we will denote the class of all piecewise continuous func-
tions with exponential order at infinity by PE . The next theorem shows that
any linear combination of functions in PE is also in PE . The same is true for
the product of two functions in PE .

Theorem 43.3
Suppose that f(t) and g(t) are two elements of PE with

|f(t)| ≤M1e
a1t, t ≥ C1 and |g(t)| ≤M2e

a1t, t ≥ C2.

(i) For any constants α and β the function αf(t) +βg(t) is also a member of
PE . Moreover

L[αf(t) + βg(t)] = αL[f(t)] + βL[g(t)].

(ii) The function h(t) = f(t)g(t) is an element of PE .

Proof.
(i) It is easy to see that αf(t) + βg(t) is a piecewise continuous function.
Now, let C = C1 + C2, a = max{a1, a2}, and M = |α|M1 + |β|M2. Then for
t ≥ C we have

|αf(t) + βg(t)| ≤ |α||f(t)|+ |β||g(t)| ≤ |α|M1e
a1t + |β|M2e

a2t ≤Meat.

This shows that αf(t) + βg(t) is of exponential order at infinity. On the
other hand,

L[αf(t) + βg(t)] = limT→∞
∫ T
0

[αf(t) + βg(t)]dt

= α limT→∞
∫ T
0
f(t)dt+ β limT→∞

∫ T
0
g(t)dt

= αL[f(t)] + βL[g(t)]

(ii) It is clear that h(t) = f(t)g(t) is a piecewise continuous function. Now,
letting C = C1 +C2, M = M1M2, and a = a1 +a2 then we see that for t ≥ C
we have

|h(t)| = |f(t)||g(t)| ≤M1M2e
(a1+a2)t = Meat.
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Hence, h(t) is of exponential order at infinity. By Theorem 43.2 , L[h(t)]
exists for s > a

We next discuss the problem of how to determine the function f(t) if F (s)
is given. That is, how do we invert the transform. The following result on
uniqueness provides a possible answer. This result establishes a one-to-one
correspondence between the set PE and its Laplace transforms. Alterna-
tively, the following theorem asserts that the Laplace transform of a member
in PE is unique.

Theorem 43.4
Let f(t) and g(t) be two elements in PE with Laplace transforms F (s) and
G(s) such that F (s) = G(s) for some s > a. Then f(t) = g(t) for all t ≥ 0
where both functions are continuous.

The standard techniques used to prove this theorem( i.e., complex analysis,
residue computations, and/or Fourier’s integral inversion theorem) are gen-
erally beyond the scope of an introductory differential equations course. The
interested reader can find a proof in the book ”Operational Mathematics”
by Ruel Vance Churchill or in D.V. Widder ”The Laplace Transform”.
With the above theorem, we can now officially define the inverse Laplace
transform as follows: For a piecewise continuous function f of exponential
order at infinity whose Laplace transform is F, we call f the inverse Laplace
transform of F and write f = L−1[F (s)]. Symbolically

f(t) = L−1[F (s)]⇐⇒ F (s) = L[f(t)].

Example 43.5
Find L−1

(
1
s−1

)
, s > 1.

Solution.
From Example 43.1(a), we have that L[eat] = 1

s−a , s > a. In particular, for

a = 1 we find that L[et] = 1
s−1 , s > 1. Hence, L−1

(
1
s−1

)
= et, t ≥ 0 .

The above theorem states that if f(t) is continuous and has a Laplace trans-
form F (s), then there is no other function that has the same Laplace trans-
form. To find L−1[F (s)], we can inspect tables of Laplace transforms of
known functions to find a particular f(t) that yields the given F (s).
When the function f(t) is not continuous, the uniqueness of the inverse
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Laplace transform is not assured. The following example addresses the
uniqueness issue.

Example 43.6
Consider the two functions f(t) = h(t)h(3− t) and g(t) = h(t)− h(t− 3).

(a) Are the two functions identical?
(b) Show that L[f(t)] = L[g(t).

Solution.
(a) We have

f(t) =

{
1, 0 ≤ t ≤ 3
0, t > 3

and

g(t) =

{
1, 0 ≤ t < 3
0, t ≥ 3

So the two functions are equal for all t 6= 3 and so they are not identical.
(b) We have

L[f(t)] = L[g(t)] =

∫ 3

0

e−stdt =
1− e−3s

s
, s > 0.

Thus, both functions f(t) and g(t) have the same Laplace transform even
though they are not identical. However, they are equal on the interval(s)
where they are both continuous

The inverse Laplace transform possesses a linear property as indicated in
the following result.

Theorem 43.5
Given two Laplace transforms F (s) and G(s) then

L−1[aF (s) + bG(s)] = aL−1[F (s)] + bL−1[G(s)]

for any constants a and b.

Proof.
Suppose that L[f(t)] = F (s) and L[g(t)] = G(s). Since L[af(t) + bg(t)] =
aL[f(t)] + bL[g(t)] = aF (s) + bG(s) we have L−1[aF (s) + bG(s)] = af(t) +
bg(t) = aL−1[F (s)] + bL−1[G(s)]
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Practice Problems

Problem 43.1
Determine whether the integral

∫∞
0

1
1+t2

dt converges. If the integral con-
verges, give its value.

Problem 43.2
Determine whether the integral

∫∞
0

t
1+t2

dt converges. If the integral con-
verges, give its value.

Problem 43.3
Determine whether the integral

∫∞
0
e−t cos (e−t)dt converges. If the integral

converges, give its value.

Problem 43.4
Using the definition, find L[e3t], if it exists. If the Laplace transform exists
then find the domain of F (s).

Problem 43.5
Using the definition, find L[t− 5], if it exists. If the Laplace transform exists
then find the domain of F (s).

Problem 43.6
Using the definition, find L[e(t−1)

2
], if it exists. If the Laplace transform

exists then find the domain of F (s).

Problem 43.7
Using the definition, find L[(t − 2)2], if it exists. If the Laplace transform
exists then find the domain of F (s).

Problem 43.8
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =

{
0, 0 ≤ t < 1

t− 1, t ≥ 1
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Problem 43.9
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =


0, 0 ≤ t < 1

t− 1, 1 ≤ t < 2
0, t ≥ 2.

Problem 43.10
Let n be a positive integer. Using integration by parts establish the reduction
formula ∫

tne−stdt = −t
ne−st

s
+
n

s

∫
tn−1e−stdt, s > 0.

Problem 43.11
For s > 0 and n a positive integer evaluate the limits

limt→0 t
ne−st (b) limt→∞ t

ne−st

Problem 43.12
(a) Use the previous two problems to derive the reduction formula for the
Laplace transform of f(t) = tn,

L[tn] =
n

s
L[tn−1], s > 0.

(b) Calculate L[tk], for k = 1, 2, 3, 4, 5.
(c) Formulate a conjecture as to the Laplace transform of f(t), tn with n a
positive integer.

From a table of integrals,∫
eαu sin βudu = eαu α sinβu−β sinβu

α2+β2∫
eαu cos βudu = eαu α cosβu+β sinβu

α2+β2

Problem 43.13
Use the above integrals to find the Laplace transform of f(t) = cosωt, if it
exists. If the Laplace transform exists, give the domain of F (s).

Problem 43.14
Use the above integrals to find the Laplace transform of f(t) = sinωt, if it
exists. If the Laplace transform exists, give the domain of F (s).
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Problem 43.15
Use the above integrals to find the Laplace transform of f(t) = cosω(t− 2),
if it exists. If the Laplace transform exists, give the domain of F (s).

Problem 43.16
Use the above integrals to find the Laplace transform of f(t) = e3t sin t, if it
exists. If the Laplace transform exists, give the domain of F (s).

Problem 43.17
Use the linearity property of Laplace transform to find L[5e−7t + t + 2e2t].
Find the domain of F (s).

Problem 43.18
Consider the function f(t) = tan t.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?

Problem 43.19
Consider the function f(t) = t2e−t.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?

Problem 43.20
Consider the function f(t) = et

2

e2t+1
.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?

Problem 43.21
Consider the floor function f(t) = btc, where for any integer n we have
btc = n for all n ≤ t < n+ 1.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?
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Problem 43.22
Find L−1

(
3
s−2

)
.

Problem 43.23
Find L−1

(
− 2
s2

+ 1
s+1

)
.

Problem 43.24
Find L−1

(
2
s+2

+ 2
s−2

)
.
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44 Further Studies of Laplace Transform

Properties of the Laplace transform enable us to find Laplace transforms
without having to compute them directly from the definition. In this sec-
tion, we establish properties of Laplace transform that will be useful for
solving ODEs.

Laplace Transform of the Heaviside Step Function
The Heaviside step function is a piecewise continuous function defined by

h(t) =

{
1, t ≥ 0
0, t < 0

Figure 44.1 displays the graph of h(t).

Figure 44.1

Taking the Laplace transform of h(t) we find

L[h(t)] =

∫ ∞
0

h(t)e−stdt =

∫ ∞
0

e−stdt =

[
−e
−st

s

]∞
0

=
1

s
, s > 0.

A Heaviside function at α ≥ 0 is the shifted function h(t−α) (α units to the
right). For this function, the Laplace transform is

L[h(t− α)] =

∫ ∞
0

h(t− α)e−stdt =

∫ ∞
α

e−stdt =

[
−e
−st

s

]∞
α

=
e−sα

s
, s > 0.

Laplace Tranform of eat

The Laplace transform for the function f(t) = eat is

L[eat] =

∫ ∞
0

e−(s−a)tdt =

[
−e
−(s−a)t

s− a

]∞
0

=
1

s− a
, s > a.
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Laplace Tranforms of sin at and cos at
Using integration by parts twice we find

L[sin at] =
∫∞
0
e−st sin atdt

=
[
− e−st sin at

s
− ae−st cos at

s2

]∞
0
− a2

s2

∫∞
0
e−st sin atdt

= − a
s2
− a2

s2
L[sin at](

s2+a2

s2

)
L[sin at] = a

s2

L[sin at] = a
s2+a2

, s > 0

A similar argument shows that

L[cos at] =
s

s2 + a2
, s > 0.

Laplace Transforms of cosh at and sinh at
Using the linear property of L we can write

L[cosh at] = 1
2

(L[eat] + L[e−at])

= 1
2

(
1
s−a + 1

s+a

)
, s > |a|

= s
s2−a2 , s > |a|

A similar argument shows that

L[sin at] =
a

s2 − a2
, s > |a|.

Laplace Transform of a Polynomial
Let n be a positive integer. Using integration by parts we can write∫ ∞

0

tne−stdt = −
[
tne−st

s

]∞
0

+
n

s

∫ ∞
0

tn−1e−stdt.

By repeated use of L’Hôpital’s rule we find limt→∞ t
ne−st = limt→∞

n!
snest

= 0
for s > 0. Thus,

L[tn] =
n

s
L[tn−1], s > 0.
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Using induction on n = 0, 1, 2, · · · one can easily eastablish that

L[tn] =
n!

sn+1
, s > 0.

Using the above result together with the linearity property of L one can find
the Laplace transform of any polynomial.
The next two results are referred to as the first and second shift theorems.
As with the linearity property, the shift theorems increase the number of
functions for which we can easily find Laplace transforms.

Theorem 44.1 (First Shifting Theorem)
If f(t) is a piecewise continuous function for t ≥ 0 and has exponential order
at infinity with |f(t)| ≤Meat, t ≥ C, then for any real number α we have

L[eαtf(t)] = F (s− α), s > a+ α

where L[f(t)] = F (s).

Proof.
From the definition of the Laplace transform we have

L[eatf(t)] =

∫ ∞
0

e−steatf(t)dt =

∫ ∞
0

e−(s−a)tf(t)dt.

Using the change of variable β = s− a the previous equation reduces to

L[eatf(t)] =

∫ ∞
0

e−steatf(t)dt =

∫ ∞
0

e−βtf(t)dt = F (β) = F (s−a), s > a+α

Theorem 44.2 (Second Shifting Theorem)
If f(t) is a piecewise continuous function for t ≥ 0 and has exponential order
at infinity with |f(t)| ≤ Meat, t ≥ C, then for any real number α ≥ 0 we
have

L[f(t− α)h(t− α)] = e−αsF (s), s > a

where L[f(t)] = F (s) and h(t) is the Heaviside step function.

Proof.
From the definition of the Laplace transform we have

L[f(t− α)h(t− α)] =

∫ ∞
0

f(t− α)h(s− α)e−stdt =

∫ ∞
α

f(t− α)e−stdt.
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Using the change of variable β = t− α the previous equation reduces to

L[f(t− α)h(t− α)] =
∫∞
0
f(β)e−s(β+α)dβ

= e−sα
∫∞
0
f(β)e−sβdβ = e−sαF (s), s > a

Example 44.1
Find

(a) L[e2tt2] (b) L[e3t cos 2t] (c) L−1[e−2ts2]

Solution.
(a) By Theorem 44.1, we have L[e2tt2] = F (s − 2) where L[t2] = 2!

s3
=

F (s), s > 0. Thus, L[e2tt2] = 2
(s−2)3 , s > 2.

(b) As in part (a), we have L[e3t cos 2t] = F (s−3) where L[cos 2t] = F (s−3).
But L[cos 2t] = s

s2+4
, s > 0. Thus,

L[e3t cos 2t] =
s− 3

(s− 3)2 + 4
, s > 3

(c) Since L[t] = 1
s2
, by Theorem 44.2, we have

e−2t

s2
= L[(t− 2)h(t− 2)].

Therefore,

L−1
[
e−2t

s2

]
= (t− 2)h(t− 2) =

{
0, 0 ≤ t < 2

t− 2, t ≥ 2

The following result relates the Laplace transform of derivatives and integrals
to the Laplace transform of the function itself.

Theorem 44.3
Suppose that f(t) is continuous for t ≥ 0 and f ′(t) is piecewise continuous
of exponential order at infinity with |f ′(t)| ≤Meat, t ≥ C Then

(a) f(t) is of exponential order at infinity.
(b) L[f ′(t)] = sL[f(t)]− f(0) = sF (s)− f(0), s > max{a, 0}+ 1.
(c) L[f ′′(t)] = s2L[f(t)] − sf(0) − f ′(0) = s2F (s) − sf(0) − f(0), s >
max{a, 0}+ 1.

(d) L
[∫ t

0
f(u)du

]
= L[f(t)]

s
= F (s)

s
, s > max{a, 0}+ 1.
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Proof.
(a) By the Fundamental Theorem of Calculus we have f(t) = f(0)−

∫ t
0
f ′(u)du.

Also, since f ′ is piecewise continuous, |f ′(t)| ≤ T for some T > 0 and all
0 ≤ t ≤ C. Thus,

|f(t)| =
∣∣∣f(0)−

∫ t
0
f ′(u)du

∣∣∣ = |f(0)−
∫ C
0
f ′(u)du−

∫ t
C
f ′(u)du|

≤ |f(0)|+ TC +M
∫ t
C
eaudu

Note that if a > 0 then∫ t

C

eaudu =
1

a
(eat − eaC) ≤ eat

a

and so

|f(t)| ≤ [|f(0)|+ TC +
M

a
]eat.

If a = 0 then ∫ t

C

eaudu = t− C

and therefore

|f(t)| ≤ |f(0)|+ TC +M(t− C) ≤ (|f(0)|+ TC +M)et.

Now, if a < 0 then ∫ t

C

eaudu =
1

a
(eat − eaC) ≤ 1

|a|

so that

|f(t)| ≤ (|f(0)|+ TC +
M

|a|
)et

It follows that
|f(t)| ≤ Nebt, t ≥ 0

where b = max{a, 0}+ 1.

(b) From the definition of Laplace transform we can write

L[f ′(t)] = lim
A→∞

∫ A

0

f ′(t)e−stdt.
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Since f ′(t) may have jump discontinuities at t1, t2, · · · , tN in the interval
0 ≤ t ≤ A, we can write∫ A

0

f ′(t)e−stdt =

∫ t1

0

f ′(t)e−stdt+

∫ t2

t1

f ′(t)e−stdt+ · · ·+
∫ A

tN

f ′(t)e−stdt.

Integrating each term on the RHS by parts and using the continuity of f(t)
to obtain∫ t1

0
f ′(t)e−stdt = f(t1)e

−st1 − f(0) + s
∫ t1
0
f(t)e−stdt∫ t2

t1
f ′(t)e−stdt = f(t2)e

−st2 − f(t1)e
−st1 + s

∫ t2
t1
f(t)e−stdt

...∫ tN
tN−1

f ′(t)e−stdt = f(tN)e−stN − f(tN−1)e
−stN−1 + s

∫ tN
tN−1

f(t)e−stdt

∫ A
tN
f ′(t)e−stdt = f(A)e−sA − f(tN)e−stN + s

∫ A
tN
f(t)e−stdt

Also, by the continuity of f(t) we can write∫ A

0

f(t)e−stdt =

∫ t1

0

f(t)e−stdt+

∫ t2

t1

f(t)e−stdt+ · · ·+
∫ A

tN

f(t)e−stdt.

Hence, ∫ A

0

f ′(t)e−stdt = f(A)e−sA − f(0) + s

∫ A

0

f(t)e−stdt.

Since f(t) has exponential order at infinity,limA→∞ f(A)e−sA = 0. Hence,

L[f ′(t)] = sL[f(t)]− f(0).

(c) Using part (b) we find

L[f ′′(t)] = sL[f ′(t)]− f ′(0)
= s(sF (s)− f(0))− f ′(0)
= s2F (s)− sf(0)− f ′(0), s > max{a, 0}+ 1

(d) Since d
dt

(∫ t
0
f(u)du

)
= f(t), by part (b) we have

F (s) = L[f(t)] = sL
{∫ t

0

f(u)du

}
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and therefore

L
[∫ t

0

f(u)du

]
=
L[f(t)]

s
=
F (s)

s
, s > max{a, 0}+ 1

The argument establishing part (b) of the previous theorem can be extended
to higher order derivatives.

Theorem 44.4
Let f(t), f ′(t), · · · , f (n−1)(t) be continuous and f (n)(t) be piecewise continu-
ous of exponential order at infinity with |f (n)(t)| ≤Meat, t ≥ C. Then

L[f (n)(t)] = snL[f(t)]−sn−1f(0)−sn−2f ′(0)−· · ·−f (n−1)(0), s > max{a, 0}+1.

We next illustrate the use of the previous theorem in solving initial value
problems.

Example 44.2
Solve the initial value problem

y′′ − 4y′ + 9y = t, y(0) = 0, y′(0) = 1.

Solution.
We apply Theorem 44.4 that gives the Laplace transform of a derivative. By
the linearity property of the Laplace transform we can write

L[y′′]− 4L[y′] + 9L[y] = L[t].

Now since

L[y′′] = s2L[y]− sy(0)− y′(0) = s2Y (s)− 1
L[y′] = sY (s)− y(0) = sY (s)
L[t] = 1

s2

where L[y] = Y (s), we obtain

s2Y (s)− 1− 4sY (s) + 9Y (s) =
1

s2
.

Rearranging gives

(s2 − 4s+ 9)Y (s) =
s2 + 1

s2
.
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Thus,

Y (s) =
s2 + 1

s2(s2 − 4s+ 9)

and

y(t) = L−1
[

s2 + 1

s2(s2 − 4s+ 9)

]
In the next section we will discuss a method for finding the inverse Laplace
transform of the above expression.

Example 44.3
Consider the mass-spring oscillator without friction: y′′ + y = 0. Suppose
we add a force which corresponds to a push (to the left) of the mass as it
oscillates. We will suppose the push is described by the function

f(t) = −h(t− 2π) + u(t− (2π + a))

for some a > 2π which we are allowed to vary. (A small a will correspond
to a short duration push and a large a to a long duration push.) We are
interested in solving the initial value problem

y′′ + y = f(t), y(0) = 1, y′(0) = 0.

Solution.
To begin, determine the Laplace transform of both sides of the DE:

L[y′′ + y] = L[f(t)]

or

s2Y − sy(0)− y′(0) + Y (s) = −1

s
e−2πs +

1

s
e−(2π+a)s.

Thus,

Y (s) =
e−(2π+a)s

s(s2 + 1)
− e−2πs

s(s2 + 1)
+

s

s2 + 1
.

Now since 1
s(s2+1)

= 1
s
− s

s2+1
we see that

Y (s) = e−(2π+a)s
[

1

s
− s

s2 + 1

]
− e−2πs

[
1

s
− s

s2 + 1

]
+

s

s2 + 1
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and therefore

y(t) = h(t− (2π + a))
[
L−1

(
1
s
− s

s2+1

)]
(t− (2π + a))

− h(t− 2π)
[
L−1

(
1
s
− s

s2+1

)]
(t− 2π) + cos t

= h(t− (2π + a))[1− cos (t− (2π + a))]− u(t− 2π)[1− cos (t− 2π)]
+ cos t

We conclude this section with the following table of Laplace transform pairs.

f(t) F(s)

h(t) =

{
1, t ≥ 0
0, t < 0

1
s
, s > 0

tn, n = 1, 2, · · · n!
sn+1 , s > 0

eαt s
s−α , s > α

sin (ωt) ω
s2+ω2 , s > 0

cos (ωt) s
s2+ω2 , s > 0

sinh (ωt) ω
s2−ω2 , s > |ω|

cosh (ωt) s
s2−ω2 , s > |ω|

eαtf(t), with |f(t)| ≤Meat F (s− α), s > α + a

eαth(t) 1
s−α , s > α

eαttn, n = 1, 2, · · · n!
(s−α)n+1 , s > α

eαt sin (ωt) ω
(s−α)2+ω2 , s > α

eαt cos (ωt) s−α
(s−α)2+ω2 , s > α

f(t− α)h(t− α), α ≥ 0 e−αsF (s), s > a
with |f(t)| ≤Meat
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f(t) F(s) (continued)

h(t− α), α ≥ 0 e−αs

s
, s > 0

tf(t) -F ′(s)

t
2ω

sinωt s
(s2+ω2)2

, s > 0

1
2ω3 [sinωt− ωt cosωt] 1

(s2+ω2)2
, s > 0

f ′(t), with f(t) continuous sF (s)− f(0)
and |f ′(t)| ≤Meat s > max{a, 0}+ 1

f ′′(t), with f ′(t) continuous s2F (s)− sf(0)− f ′(0)
and |f ′′(t)| ≤Meat s > max{a, 0}+ 1

f (n)(t), with f (n−1)(t) continuous snF (s)− sn−1f(0)− · · ·
and |f (n)(t)| ≤Meat -sf (n−2)(0)− f (n−1)(0)

s > max{a, 0}+ 1∫ t
0
f(u)du, with |f(t)| ≤Meat F (s)

s
, s > max{a, 0}+ 1

Table L

160



Practice Problems

Problem 44.1
Use Table L to find L[2et + 5].

Problem 44.2
Use Table L to find L[e3t−3h(t− 1)].

Problem 44.3
Use Table L to find L[sin2 ωt].

Problem 44.4
Use Table L to find L[sin 3t cos 3t].

Problem 44.5
Use Table L to find L[e2t cos 3t].

Problem 44.6
Use Table L to find L[e4t(t2 + 3t+ 5)].

Problem 44.7
Use Table L to find L−1[ 10

s2+25
+ 4

s−3 ].

Problem 44.8
Use Table L to find L−1[ 5

(s−3)4 ].

Problem 44.9
Use Table L to find L−1[ e−2s

s−9 ].

Problem 44.10
Use Table L to find L−1[ e

−3s(2s+7)
s2+16

].

Problem 44.11
Graph the function f(t) = h(t − 1) + h(t − 3) for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].

Problem 44.12
Graph the function f(t) = t[h(t− 1)− h(t− 3)] for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].
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Problem 44.13
Graph the function f(t) = 3[h(t− 1)− h(t− 4)] for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].

Problem 44.14
Graph the function f(t) = |2− t|[h(t− 1)− h(t− 3)] for t ≥ 0, where h(t) is
the Heaviside step function, and use Table L to find L[f(t)].

Problem 44.15
Graph the function f(t) = h(2− t) for t ≥ 0, where h(t) is the Heaviside step
function, and use Table L to find L[f(t)].

Problem 44.16
Graph the function f(t) = h(t − 1) + h(4 − t) for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].

Problem 44.17
The graph of f(t) is given below. Represent f(t) as a combination of Heav-
iside step functions, and use Table L to calculate the Laplace transform of
f(t).

Problem 44.18
The graph of f(t) is given below. Represent f(t) as a combination of Heav-
iside step functions, and use Table L to calculate the Laplace transform of
f(t).
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Problem 44.19
Using the partial fraction decomposition find L−1

[
12

(s−3)(s+1)

]
.

Problem 44.20
Using the partial fraction decomposition find L−1

[
24e−5s

s2−9

]
.

Problem 44.21
Use Laplace transform technique to solve the initial value problem

y′ + 4y = g(t), y(0) = 2

where

g(t) =


0, 0 ≤ t < 1
12, 1 ≤ t < 3
0, t ≥ 3

Problem 44.22
Use Laplace transform technique to solve the initial value problem

y′′ − 4y = e3t, y(0) = 0, y′(0) = 0.

Problem 44.23
Obtain the Laplace transform of the function

∫
2
tf(λ)dλ in terms of L[f(t)] =

F (s) given that
∫ 2

0
f(λ)dλ = 3.
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45 The Laplace Transform and the Method

of Partial Fractions

In the last example of the previous section we encountered the equation

y(t) = L−1
[

s2 + 1

s2(s2 − 4s+ 9)

]
.

We would like to find an explicit expression for y(t). This can be done using
the method of partial fractions which is the topic of this section. According

to this method, finding L−1
(
N(s)
D(s)

)
, where N(s) and D(s) are polynomials,

require decomposing the rational function into a sum of simpler expressions
whose inverse Laplace transform can be recognized from a table of Laplace
transform pairs.
The method of integration by partial fractions is a technique for integrating
rational functions, i.e. functions of the form

R(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials.
The idea consists of writing the rational function as a sum of simpler frac-
tions called partial fractions. This can be done in the following way:

Step 1. Use long division to find two polynomials r(s) and q(s) such that

N(s)

D(s)
= q(s) +

r(s)

D(s)
.

Note that if the degree of N(s) is smaller than that of D(s) then q(s) = 0
and r(s) = N(s).

Step 2. Write D(s) as a product of factors of the form (as + b)n or (as2 +
bs+c)n where as2+bs+c is irreducible, i.e. as2+bs+c = 0 has no real zeros.

Step 3. Decompose r(s)
D(s)

into a sum of partial fractions in the following
way:
(1) For each factor of the form (s− α)k write

A1

s− α
+

A2

(s− α)2
+ · · ·+ Ak

(s− α)k
,
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where the numbers A1, A2, · · · , Ak are to be determined.
(2) For each factor of the form (as2 + bs+ c)k write

B1s+ C1

as2 + bs+ c
+

B2s+ C2

(as2 + bs+ c)2
+ · · ·+ Bks+ Ck

(as2 + bs+ c)k
,

where the numbers B1, B2, · · · , Bk and C1, C2, · · · , Ck are to be determined.

Step 4. Multiply both sides by D(s) and simplify. This leads to an ex-
pression of the form

r(s) = a polynomial whose coefficients are combinations of Ai,Bi, and Ci.

Finally, we find the constants, Ai, Bi, and Ci by equating the coefficients of
like powers of s on both sides of the last equation.

Example 45.1
Decompose into partial fractions R(s) = s3+s2+2

s2−1 .

Solution.
Step 1. s3+s2+2

s2−1 = s+ 1 + s+3
s2−1 .

Step 2. s2 − 1 = (s− 1)(s+ 1).
Step 3. s+3

(s+1)(s−1) = A
s+1

+ B
s−1 .

Step 4. Multiply both sides of the last equation by (s− 1)(s+ 1) to obtain

s+ 3 = A(s− 1) +B(s+ 1).

Expand the right hand side, collect terms with the same power of s, and
identify coefficients of the polynomials obtained on both sides:

s+ 3 = (A+B)s+ (B − A).

Hence, A+B = 1 and B −A = 3. Adding these two equations gives B = 2.
Thus, A = −1 and so

s3 + s2 + 2

s2 − 1
= s+ 1− 1

s+ 1
+

2

s− 1
.

Now, after decomposing the rational function into a sum of partial fractions
all we need to do is to find the Laplace transform of expressions of the form

A
(s−α)n or Bs+C

(as2+bs+c)n
.
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Example 45.2

Find L−1
[

1
s(s−3)

]
.

Solution.
We write

1

s(s− 3)
=
A

s
+

B

s− 3
.

Multiply both sides by s(s− 3) and simplify to obtain

1 = A(s− 3) +Bs

or
1 = (A+B)s− 3A.

Now equating the coefficients of like powers of s to obtain −3A = 1 and
A+B = 0. Solving for A and B we find A = −1

3
and B = 1

3
. Thus,

L−1
[

1
s(s−3)

]
= −1

3
L−1

[
1
s

]
+ 1

3
L−1

[
1
s−3

]
= −1

3
h(t) + 1

3
e3t, t ≥ 0

where h(t) is the Heaviside unit step function

Example 45.3
Find L−1

[
3s+6
s2+3s

]
.

Solution.
We factor the denominator and split the integrand into partial fractions:

3s+ 6

s(s+ 3)
=
A

s
+

B

s+ 3
.

Multiplying both sides by s(s+ 3) to obtain

3s+ 6 = A(s+ 3) +Bs
= (A+B)s+ 3A

Equating the coefficients of like powers of x to obtain 3A = 6 and A+B = 3.
Thus, A = 2 and B = 1. Finally,

L−1
[

3s+ 6

s2 + 3s

]
= 2L−1

[
1

s

]
+ L−1

[
1

s+ 3

]
= 2h(t) + e−3t, t ≥ 0.
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Example 45.4

Find L−1
[

s2+1
s(s+1)2

]
.

Solution.
We factor the denominator and split the rational function into partial frac-
tions:

s2 + 1

s(s+ 1)2
=
A

s
+

B

s+ 1
+

C

(s+ 1)2
.

Multiplying both sides by s(s+ 1)2 and simplifying to obtain

s2 + 1 = A(s+ 1)2 +Bs(s+ 1) + Cs
= (A+B)s2 + (2A+B + C)s+ A.

Equating coefficients of like powers of s we find A = 1, 2A + B + C = 0
and A + B = 1. Thus, B = 0 and C = −2. Now finding the inverse Laplace
transform to obtain

L−1
[
s2 + 1

s(s+ 1)2

]
= L−1

[
1

s

]
− 2L−1

[
1

(s+ 1)2

]
= h(t)− 2te−t, t ≥ 0.

Example 45.5
Use Laplace transform to solve the initial value problem

y′′ + 3y′ + 2y = e−t, y(0) = y′(0) = 0.

Solution.
By the linearity property of the Laplace transform we can write

L[y′′] + 3L[y′] + 2L[y] = L[e−t].

Now since
L[y′′] = s2L[y]− sy(0)− y′(0) = s2Y (s)
L[y′] = sY (s)− y(0) = sY (s)
L[e−t] = 1

s+1

where L[y] = Y (s), we obtain

s2Y (s) + 3sY (s) + 2Y (s) =
1

s+ 1
.
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Rearranging gives

(s2 + 3s+ 2)Y (s) =
1

s+ 1
.

Thus,

Y (s) =
1

(s+ 1)(s2 + 3s+ 2)
.

and

y(t) = L−1
[

1

(s+ 1)(s2 + 3s+ 2)

]
.

Using the method of partial fractions we can write

1

(s+ 1)(s2 + 3s+ 2)
=

1

s+ 2
− 1

s+ 1
+

1

(s+ 1)2
.

Thus,

y(t) = L−1
[

1

s+ 2

]
−L−1

[
1

s+ 1

]
+L−1

[
1

(s+ 1)2

]
= e−2t−e−t+te−t, t ≥ 0
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Practice Problems

In Problems 45.1 - 45.4, give the form of the partial fraction expansion for
F (s). You need not evaluate the constants in the expansion. However, if the
denominator has an irreducible quadratic expression then use the completing
the square process to write it as the sum/difference of two squares.

Problem 45.1

F (s) =
s3 + 3s+ 1

(s− 1)3(s− 2)2
.

Problem 45.2

F (s) =
s2 + 5s− 3

(s2 + 16)(s− 2)
.

Problem 45.3

F (s) =
s3 − 1

(s2 + 1)2(s+ 4)2
.

Problem 45.4

F (s) =
s4 + 5s2 + 2s− 9

(s2 + 8s+ 17)(s− 2)2
.

Problem 45.5
Find L−1

[
1

(s+1)3

]
.

Problem 45.6
Find L−1

[
2s−3

s2−3s+2

]
.

Problem 45.7
Find L−1

[
4s2+s+1
s3+s

]
.

Problem 45.8
Find L−1

[
s2+6s+8
s4+8s2+16

]
.
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Problem 45.9
Use Laplace transform to solve the initial value problem

y′ + 2y = 26 sin 3t, y(0) = 3.

Problem 45.10
Use Laplace transform to solve the initial value problem

y′ + 2y = 4t, y(0) = 3.

Problem 45.11
Use Laplace transform to solve the initial value problem

y′′ + 3y′ + 2y = 6e−t, y(0) = 1, y′(0) = 2.

Problem 45.12
Use Laplace transform to solve the initial value problem

y′′ + 4y = cos 2t, y(0) = 1, y′(0) = 1.

Problem 45.13
Use Laplace transform to solve the initial value problem

y′′ − 2y′ + y = e2t, y(0) = 0, y′(0) = 0.

Problem 45.14
Use Laplace transform to solve the initial value problem

y′′ + 9y = g(t), y(0) = 1, y′(0) = 0

where

g(t) =

{
6, 0 ≤ t < π
0, π ≤ t <∞

Problem 45.15
Determine the constants α, β, y0, and y′0 so that Y (s) = 2s−1

s2+s+2
is the Laplace

transform of the solution to the initial value problem

y′′ + αy′ + βy = 0, y(0) = y0, y
′(0) = y′0.

Problem 45.16
Determine the constants α, β, y0, and y′0 so that Y (s) = s

(s+1)2
is the Laplace

transform of the solution to the initial value problem

y′′ + αy′ + βy = 0, y(0) = y0, y
′(0) = y′0.
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46 Laplace Transforms of Periodic Functions

In many applications, the nonhomogeneous term in a linear differential equa-
tion is a periodic function. In this section, we derive a formula for the Laplace
transform of such periodic functions.
Recall that a function f(t) is said to be T−periodic if we have f(t+T ) = f(t)
whenever t and t + T are in the domain of f(t). For example, the sine and
cosine functions are 2π−periodic whereas the tangent and cotangent func-
tions are π−periodic.
If f(t) is T−periodic for t ≥ 0 then we define the function

fT (t) =

{
f(t), 0 ≤ t ≤ T

0, t > T

The Laplace transform of this function is then

L[fT (t)] =

∫ ∞
0

fT (t)e−stdt =

∫ T

0

f(t)e−stdt.

The Laplace transform of a T−periodic function is given next.

Theorem 46.1
If f(t) is a T−periodic, piecewise continuous fucntion for t ≥ 0 then

L[f(t)] =
L[fT (t)]

1− e−sT
, s > 0.

Proof.
Since f(t) is piecewise continuous, it is bounded on the interval 0 ≤ t ≤ T.
By periodicity, f(t) is bounded for t ≥ 0. Hence, it has an exponential order
at infinity. By Theorem 43.2, L[f(t)] exists for s > 0. Thus,

L[f(t)] =

∫ ∞
0

f(t)e−stdt =
∞∑
n=0

∫ T

0

fT (t− nT )h(t− nT )e−stdt,

where the last sum is the result of decomposing the improper integral into a
sum of integrals over the constituent periods.
By the Second Shifting Theorem (i.e. Theorem 44.2) we have

L[fT (t− nT )h(t− nT )] = e−nTsL[fT (t)], s > 0
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Hence,

L[f(t)] =
∞∑
n=0

e−nTsL[fT (t)] = L[fT (t)]

(
∞∑
n=0

e−nTs

)
.

Since s > 0, it follows that 0 < e−nTs < 1 so that the series
∑∞

n=0 e
−nTs is a

convergent geoemetric series with limit 1
1−e−sT . Therefore,

L[f(t)] =
L[fT (t)]

1− e−sT
, s > 0

Example 46.1
Determine the Laplace transform of the function

f(t) =


1, 0 ≤ t ≤ T

2

f(t+ T ) = f(t), t ≥ 0.
0, T

2
< t < T

Solution.
The graph of f(t) is shown in Figure 46.1.

Figure 46.1

By Theorem 46.1,

L[f(t)] =

∫ T
2

0
e−stdt

1− e−sT
, s > 0.

Evaluating this last integral, we find

L[f(t)] =
1−e−

sT
2

s

1− e−sT
=

1

s(1 + e−
sT
2 )
, s > 0

Example 46.2
Find the Laplace transform of the sawtooth curve shown in Figure 46.2
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Figure 46.2

Solution.
The given function is periodic of period b. For the first period the function
is defined by

fb(t) =
a

b
t[h(t)− h(t− b)].

So we have
L[fb(t)] = L[a

b
t(h(t)− h(t− b))]

= −a
b
d
ds
L[h(t)− h(t− b)]

But
L[h(t)− h(t− b)] = L[h(t)]− L[h(t− b)]

= 1
s
− e−bs

s
, s > 0

Hence,

L[fb(t)] =
a

b

(
1

s2
− bse−bs + e−bs

s2

)
.

Finally,

L[f(t)] =
L[fb(t)]

1− e−bs
=
a

b

[
1− e−bs − bse−bs

s2(1− e−bs)

]
Example 46.3

Find L−1
[

1
s2
− e−s

s(1−e−s)

]
.

Solution.
Note first that

1

s2
− e−s

s(1− e−s)
=

1− e−s − se−s

s2(1− e−s)
.
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According to the previous example with a = 1 and b = 1 we find that

L−1
[

1
s2
− e−s

s(1−e−s)

]
is the sawtooth function shown in Figure 46.2

Linear Time Invariant Systems and the Transfer Function
The Laplace transform is a powerful technique for analyzing linear time-
invariant systems such as electrical circuits, harmonic oscillators, optical de-
vices, and mechanical systems, to name just a few. A mathematical model
described by a linear differential equation with constant coefficients of the
form

any
(n) +an−1y

(n−1) + · · ·+a1y
′+a0y = bmu

(m) + bm−1u
(m−1) + · · ·+ b1u

′+ b0u

is called a linear time invariant system. The function y(t) denotes the
system output and the function u(t) denotes the system input. The system is
called time-invariant because the parameters of the system are not changing
over time and an input now will give the same result as the same input later.
Applying the Laplace transform on the linear differential equation with null
initial conditions we obtain

ans
nY (s)+an−1s

n−1Y (s)+· · ·+a0Y (s) = bms
mU(s)+bm−1s

m−1U(s)+· · ·+b0U(s).

The function

Φ(s) =
Y (s)

U(s)
=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

is called the system transfer function. That is, the transfer function of
a linear time-invariant system is the ratio of the Laplace transform of its
output to the Laplace transform of its input.

Example 46.4
Consider the mathematical model described by the initial value problem

my′′ + γy′ + ky = f(t), y(0) = 0, y′(0) = 0.

The coefficients m, γ, and k describe the properties of some physical system,
and f(t) is the input to the system. The solution y is the output at time t.
Find the system transfer function.
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Solution.
By taking the Laplace transform and using the initial conditions we obtain

(ms2 + γs+ k)Y (s) = F (s).

Thus,

Φ(s) =
Y (s)

F (s)
=

1

ms2 + γs+ k
(29)

Parameter Identification
One of the most useful applications of system transfer functions is for system
or parameter identification.

Example 46.5
Consider a spring-mass system governed by

my′′ + γy′ + ky = f(t), y(0) = 0, y′(0) = 0. (30)

Suppose we apply a unit step force f(t) = h(t) to the mass, initially at
equilibrium, and you observe the system respond as

y(t) = −1

2
e−t cos t− 1

2
e−t sin t+

1

2
.

What are the physical parameters m, γ, and k?

Solution.
Start with the model (30)) with f(t) = h(t) and take the Laplace transform of
both sides, then solve to find Y (s) = 1

s(ms2+γs+k)
. Since f(t) = h(t), F (s) = 1

s
.

Hence

Φ(s) =
Y (s)

F (s)
=

1

ms2 + γs+ k
.

On the other hand, for the input f(t) = h(t) the corresponding observed
output is

y(t) = −1

2
e−t cos t− 1

2
e−t sin t+

1

2
.

Hence,
Y (s) = L[−1

2
e−t cos t− 1

2
e−t sin t+ 1

2
]

= −1
2

s+1
(s+1)2+1

− 1
2

1
(s+1)2+1

+ 1
2s

= 1
s(s2+2s+2)
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Thus,

Φ(s) =
Y (s)

F (s)
=

1

s2 + 2s+ 2
.

By comparison we conclude that m = 1, γ = 2, and k = 2
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Practice Problems

Problem 46.1
Find the Laplace transform of the periodic function whose graph is shown.

Problem 46.2
Find the Laplace transform of the periodic function whose graph is shown.

Problem 46.3
Find the Laplace transform of the periodic function whose graph is shown.
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Problem 46.4
Find the Laplace transform of the periodic function whose graph is shown.

Problem 46.5
State the period of the function f(t) and find its Laplace transform where

f(t) =


sin t, 0 ≤ t < π

f(t+ 2π) = f(t), t ≥ 0.
0, π ≤ t < 2π

Problem 46.6
State the period of the function f(t) = 1− e−t, 0 ≤ t < 2, f(t+ 2) = f(t),
and find its Laplace transform.

Problem 46.7
Using Example 44.3 find

L−1
[
s2 − s
s3

+
e−s

s(1− e−s)

]
.

Problem 46.8
An object having massm is initially at rest on a frictionless horizontal surface.
At time t = 0, a periodic force is applied horizontally to the object, causing
it to move in the positive x-direction. The force, in newtons, is given by

f(t) =


f0, 0 ≤ t ≤ T

2

f(t+ T ) = f(t), t ≥ 0.
0, T

2
< t < T

The initial value problem for the horizontal position, x(t), of the object is

mx′′(t) = f(t), x(0) = x′(0) = 0.
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(a) Use Laplace transforms to determine the velocity, v(t) = x′(t), and the
position, x(t), of the object.
(b) Let m = 1 kg, f0 = 1 N, and T = 1 sec. What is the velocity, v, and
position, x, of the object at t = 1.25 sec?

Problem 46.9
Consider the initial value problem

ay′′ + by′ + cy = f(t), y(0) = y′(0) = 0, t > 0

Suppose that the transfer function of this system is given by Φ(s) = 1
2s2+5s+2

.
(a) What are the constants a, b, and c?
(b) If f(t) = e−t, determine F (s), Y (s), and y(t).

Problem 46.10
Consider the initial value problem

ay′′ + by′ + cy = f(t), y(0) = y′(0) = 0, t > 0

Suppose that an input f(t) = t, when applied to the above system produces
the output y(t) = 2(e−t − 1) + t(e−t + 1), t ≥ 0.
(a) What is the system transfer function?
(b) What will be the output if the Heaviside unit step function f(t) = h(t)
is applied to the system?

Problem 46.11
Consider the initial value problem

y′′ + y′ + y = f(t), y(0) = y′(0) = 0,

where

f(t) =


1, 0 ≤ t ≤ 1

f(t+ 2) = f(t)
−1, 1 < t < 2

(a) Determine the system transfer function Φ(s).
(b) Determine Y (s).

Problem 46.12
Consider the initial value problem

y′′′ − 4y = et + t, y(0) = y′(0) = y′′(0) = 0.

(a) Determine the system transfer function Φ(s).
(b) Determine Y (s).
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Problem 46.13
Consider the initial value problem

y′′ + by′ + cy = h(t), y(0) = y0, y
′(0) = y′0, t > 0.

Suppose that L[y(t)] = Y (s) = s2+2s+1
s3+3s2+2s

. Determine the constants b, c, y0,
and y′0.
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47 Convolution Integrals

We start this section with the following problem.

Example 47.1
A spring-mass system with a forcing function f(t) is modeled by the following
initial-value problem

mx′′ + kx = f(t), x(0) = x0, x
′(0) = x′0.

Find solution to this initial value problem using the Laplace transform method.

Solution.
Apply Laplace transform to both sides of the equation to obtain

ms2X(s)−msx0 −mx′0 + kX(s) = F (s).

Solving the above algebraic equation for X(s) we find

X(s) = F (s)
ms2+k

+ msx0
ms2+k

+
mx′0
ms2+k

= 1
m

F (s)

s2+ k
m

+ sx0
s2+ k

m

+
x′0

s2+ k
m

Apply the inverse Laplace transform to obtain

x(t) = L−1[X(s)]

= 1
m
L−1

{
F (s)

s2+ k
m

}
+ x0L−1

{
s

s2+ k
m

}
+ x′0L−1

{
1

s2+ k
m

}
= 1

m
L−1

{
F (s) · 1

s2+ k
m

}
+ x0 cos

(√
k
m

)
t+ x′0

√
m
k

sin
(√

k
m

)
t

Finding L−1
{
F (s) · 1

s2+ k
m

}
,i.e., the inverse Laplace transform of a product,

requires the use of the concept of convolution, a topic we discuss in this
section
Convolution integrals are useful when finding the inverse Laplace transform
of products H(s) = F (s)G(s). They are defined as follows: The convolution
of two scalar piecewise continuous functions f(t) and g(t) defined for t ≥ 0
is the integral

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds.
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Example 47.2
Find f ∗ g where f(t) = e−t and g(t) = sin t.

Solution.
Using integration by parts twice we arrive at

(f ∗ g)(t) =
∫ t
0
e−(t−s) sin sds

= 1
2

[
e−(t−s)(sin s− cos s)

]t
0

= e−t

2
+ 1

2
(sin t− cos t)

Graphical Interpretation of Convolution Operation
For the convolution

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds

we perform the following:
Step 1. Given the graphs of f(s) and g(s).(Figure 47.1(a) and (b))
Step 2. Time reverse f(−s). (See Figure 47.1(c))
Step 3. Shift f(−s) right by an amount t to get f(t−s). (See Figure 47.1(d))
Step 4. Determine the product f(t− s)g(s). (See Figure 47.1(e))
Step 5. Determine the area under the graph of f(t− s)g(s) between 0 and t.
(See Figure 47.1(e))

Figure 47.1

Next, we state several properties of convolution product, which resemble
those of ordinary product.
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Theorem 47.1
Let f(t), g(t), and k(t) be three piecewise continuous scalar functions defined
for t ≥ 0 and c1 and c2 are arbitrary constants. Then
(i) f ∗ g = g ∗ f (Commutative Law)
(ii) (f ∗ g) ∗ k = f ∗ (g ∗ k) (Associative Law)
(iii) f ∗ (c1g + c2k) = c1f ∗ g + c2f ∗ k (Distributive Law)

Proof.
(i) Using the change of variables τ = t− s we find

(f ∗ g)(t) =
∫ t
0
f(t− s)g(s)ds

= −
∫ 0

t
f(τ)g(t− τ)dτ

=
∫ t
0
g(t− τ)f(τ)dτ = (g ∗ f)(t)

(ii) By definition, we have

[(f ∗ g) ∗ k)](t) =
∫ t
0
(f ∗ g)(t− u)k(u)du

=
∫ t
0

[∫ t−u
0

f(t− u− w)g(w)k(u)dw
]
du

For the integral in the bracket, make change of variable w = s− u. We have

[(f ∗ g) ∗ k)](t) =

∫ t

0

[∫ t

u

f(t− s)g(s− u)k(u)ds

]
du.

This multiple integral is carried over the region

{(s, u) : 0 ≤ u ≤ s ≤ t}

as depicted by shaded region in the following graph.

Figure 47.2
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Changing the order of integration, we have

[(f ∗ g) ∗ k)](t) =
∫ t
0

[∫ s
0
f(t− s)g(s− u)k(u)du

]
ds

=
∫ t
0
f(t− s)(g ∗ k)(s)ds

= [f ∗ (g ∗ k)](t)

(iii) We have

(f ∗ (c1g + c2k))(t) =
∫ t
0
f(t− s)(c1g(s) + c2k(s))ds

= c1
∫ t
0
f(t− s)g(s)ds+ c2

∫ t
0
f(t− s)k(s)ds

= c1(f ∗ g)(t) + c2(f ∗ k)(t)

Example 47.3
Express the solution to the initial value problem y′ + αy = g(t), y(0) = y0
in terms of a convolution integral.

Solution.
Solving this initial value problem by the method of integrating factor we find

y(t) = e−αty0 +

∫ t

0

e−α(t−s)g(s)ds = e−αty0 + e−αt ∗ g(t)

Example 47.4
If f(t) is an m×n matrix function and g(t) is an n× p matrix function then
we define

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds, t ≥ 0.

Express the solution to the initial value problem y′ = Ay + g(t), y(0) = y0

in terms of a convolution integral.

Solution.
The unique solution is given by

y(t) = etAy0 +

∫ t

0

eA(t−s)g(s)ds = etAy0 + etA ∗ g(t)

The following theorem, known as the Convolution Theorem, provides a way
for finding the Laplace transform of a convolution integral and also finding
the inverse Laplace transform of a product.
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Theorem 47.2
If f(t) and g(t) are piecewise continuous for t ≥ 0, and of exponential order
at infinity then

L[(f ∗ g)(t)] = L[f(t)]L[g(t)] = F (s)G(s).

Thus, (f ∗ g)(t) = L−1[F (s)G(s)].

Proof.
First we show that f ∗ g has a Laplace transform. From the hypotheses we
have that |f(t)| ≤ M1e

a1t for t ≥ C1 and |g(t)| ≤ M2e
a2t for t ≥ C2. Let

M = M1M2 and C = C1 + C2. Then for t ≥ C we have

|(f ∗ g)(t)| =
∣∣∣∫ t0 f(t− s)g(s)ds

∣∣∣ ≤ ∫ t0 |f(t− s)||g(s)|ds

≤ M1M2

∫ t
0
ea1(t−s)ea2sds

=

{
Mtea1t, a1 = a2

M ea2t−ea1t
a2−a1 , a1 6= a2

This shows that f ∗ g is of exponential order at infinity. Since f and g are
piecewise continuous, the first fundamental theorem of calculus implies that
f ∗ g is also piecewise continuous. Hence, f ∗ g has a Laplace transform.
Next, we have

L[(f ∗ g)(t)] =
∫∞
0
e−st

(∫ t
0
f(t− τ)g(τ)dτ

)
dt

=
∫∞
t=0

∫ t
τ=0

e−stf(t− τ)g(τ)dτdt

Note that the region of integration is an infinite triangular region and the
integration is done vertically in that region. Integration horizontally we find

L[(f ∗ g)(t)] =

∫ ∞
τ=0

∫ ∞
t=τ

e−stf(t− τ)g(τ)dtdτ.

We next introduce the change of variables β = t−τ . The region of integration
becomes τ ≥ 0, t ≥ 0. In this case, we have

L[(f ∗ g)(t)] =
∫∞
τ=0

∫∞
β=0

e−s(β+τ)f(β)g(τ)dτdβ

=
(∫∞

τ=0
e−sτg(τ)dτ

) (∫∞
β=0

e−sβf(β)dβ
)

= G(s)F (s) = F (s)G(s)
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Example 47.5
Use the convolution theorem to find the inverse Laplace transform of

H(s) =
1

(s2 + a2)2
.

Solution.
Note that

H(s) =

(
1

s2 + a2

)(
1

s2 + a2

)
.

So, in this case we have, F (s) = G(s) = 1
s2+a2

so that f(t) = g(t) = 1
a

sin (at).
Thus,

(f ∗ g)(t) =
1

a2

∫ t

0

sin (at− as) sin (as)ds =
1

2a3
(sin (at)− at cos (at))

Convolution integrals are useful in solving initial value problems with forcing
functions.

Example 47.6
Solve the initial value problem

4y′′ + y = g(t), y(0) = 3, y′(0) = −7

Solution.
Take the Laplace transform of all the terms and plug in the initial conditions
to obtain

4(s2Y (s)− 3s+ 7) + Y (s) = G(s)

or
(4s2 + 1)Y (s)− 12s+ 28 = G(s).

Solving for Y (s) we find

Y (s) = 12s−28
4(s2+ 1

4)
+ G(s)

4(s2+ 1
4)

= 3s

s2+(( 12)
2 − 7

( 1
2)

2

s2+( 1
2)

2 + 1
4
G(s)

( 1
2)

2

s2+( 1
2)

2

Hence,

y(t) = 3 cos

(
t

2

)
− 7 sin

(
t

2

)
+

1

2

∫ t

0

sin
(s

2

)
g(t− s)ds.
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So, once we decide on a g(t) all we need to do is to evaluate the integral and
we’ll have the solution
Practice Problems

Problem 47.1
Consider the functions f(t) = g(t) = h(t), t ≥ 0 where h(t) is the Heaviside
unit step function. Compute f ∗ g in two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Problem 47.2
Consider the functions f(t) = et and g(t) = e−2t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Problem 47.3
Consider the functions f(t) = sin t and g(t) = cos t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Problem 47.4
Use Laplace transform to comput the convolution P ∗ y, where |bfP (t) =[
h(t) et

0 t

]
and y(t) =

[
h(t)
e−t

]
.

Problem 47.5
Compute and graph f ∗ g where f(t) = h(t) and g(t) = t[h(t)− h(t− 2)].

Problem 47.6
Compute and graph f ∗ g where f(t) = h(t)− h(t− 1) and g(t) = h(t− 1)−
2h(t− 2)].

Problem 47.7
Compute t ∗ t ∗ t.

Problem 47.8
Compute h(t) ∗ e−t ∗ e−2t.

187



Problem 47.9
Compute t ∗ e−t ∗ et.

Problem 47.10

Suppose it is known that

n functions︷ ︸︸ ︷
h(t) ∗ h(t) ∗ · · · ∗ h(t) = Ct8. Determine the con-

stants C and the poisitive integer n.

Problem 47.11
Use Laplace transform to solve for y(t) :∫ t

0

sin (t− λ)y(λ)dλ = t2.

Problem 47.12
Use Laplace transform to solve for y(t) :

y(t)−
∫ t

0

e(t−λ)y(λ)dλ = t.

Problem 47.13
Use Laplace transform to solve for y(t) :

t ∗ y(t) = t2(1− e−t).

Problem 47.14
Use Laplace transform to solve for y(t) :

y′ = h(t) ∗ y, y(0) =

[
1
2

]
.

Problem 47.15
Solve the following initial value problem.

y′ − y =

∫ t

0

(t− λ)eλdλ, y(0) = −1.
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48 The Dirac Delta Function and Impulse Re-

sponse

In applications, we are often encountered with linear systems, originally at
rest, excited by a sudden large force (such as a large applied voltage to an
electrical network) over a very short time frame. In this case, the output
corresponding to this sudden force is referred to as the ”impulse response”.
Mathematically, an impulse can be modeled by an initial value problem with
a special type of function known as the Dirac delta function as the external
force, i.e., the nonhomogeneous term. To solve such IVP requires finding the
Laplace transform of the delta function which is the main topic of this section.

An Example of Impulse Response
Consider a spring-mass system with a time-dependent force f(t) applied to
the mass. The situation is modeled by the second-order differential equation

my′′ + γy′ + ky = f(t) (31)

where t is time and y(t) is the displacement of the mass from equilibrium.
Now suppose that for t ≤ 0 the mass is at rest in its equilibrium position, so
y(0) = y′(0) = 0. Hence, the situation is modeled by the initial value problem

my′′ + γy′ + ky = f(t), y(0) = 0, y′(0) = 0. (32)

Solving this equation by the method of variation of parameters one finds the
unique solution

y(t) =

∫ t

0

φ(t− s)f(s)ds (33)

where

φ(t) =

e(−γ/2m)t sin

(
t
√

k
m
− γ2

4m2

)
m
√

k
m
− γ2

4m2

.

Next, we consider the problem of strucking the mass by an ”instantaneous”
hammer blow at t = 0. This situation actually occurs frequently in practice-a
system sustains a forceful, almost-instantaneous input. Our goal is to model
the situation mathematically and determine how the system will respond.
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In the above situation we might describe f(t) as a large constant force applied
on a very small time interval. Such a model leads to the forcing function

fε(t) =

{
1
ε
, 0 ≤ t ≤ ε

0, otherwise

where ε is a small positive real number. When ε is close to zero the applied
force is very large during the time interval 0 ≤ t ≤ ε and zero afterwards. A
possible graph of fε(t) is given in Figure 48.1

Figure 48.1

In this case it’s easy to see that for any choice of ε we have∫ ∞
−∞

fεdt = 1

and

lim
ε→0+

fε(t) = 0, t 6= 0, lim
ε→0+

fε(0) =∞. (34)

Our ultimate interest is the behavior of the solution to equation (31) with
forcing function fε(t) in the limit ε → 0+. That is, what happens to the
system output as we make the applied force progressively ”sharper” and
”stronger?”.
Let yε(t) be the solution to equation (31) with f(t) = fε(t). Then the unique
solution is given by

yε(t) =

∫ t

0

φ(t− s)fε(s)ds.
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For t ≥ ε the last equation becomes

yε(t) =
1

ε

∫ ε

0

φ(t− s)ds.

Since φ(t) is continuous for all t ≥ 0 we can apply the mean value theorem
for integrals and write

yε(t) = φ(t− ψ)

for some 0 ≤ ψ ≤ ε. Letting ε→ 0+ and using the continuity of φ we find

y(t) = lim
ε→0+

yε(t) = φ(t).

We call y(t) the impulse response of the linear system.

The Dirac Delta Function
The problem with the integral∫ t

0

φ(t− s)fε(s)ds

is that limε→0+ fε(0) is undefined. So it makes sense to ask the question of
whether we can find a function δ(t) such that

limε→0+ yε(t) = limε→0+
∫ t
0
φ(t− s)fε(s)ds

=
∫ t
0
φ(t− s)δ(s)ds

= φ(t)

where the role of δ(t) would be to evaluate the integrand at s = 0. Note that
because of Fig 48.1 and (34), we cannot interchange the opeartions of limit
and integration in the above limit process. Such a function δ exist in the
theory of distributions and can be defined as follows:
If f(t) is continuous in a ≤ t ≤ b then we define the function δ(t) by the
integral equation∫ b

a

f(t)δ(t− t0)dt = lim
ε→0+

∫ b

a

f(t)fε(t− t0)dt.

The object δ(t) on the left is called the Dirac Delta function, or just the
delta function for short.
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Finding the Impulse Function Using Laplace Transform
For ε > 0 we can solve the initial value problem (32) using Laplace trans-
forms. To do this we need to compute the Laplace transform of fε(t), given
by the integral

L[fε(t)] =

∫ ∞
0

fε(t)e
−stdt =

1

ε

∫ ε

0

e−stdt =
1− e−εs

εs
.

Note that by using L’Hôpital’s rule we can write

lim
ε→0+

L[fε(t)] = lim
ε→0+

1− e−εs

εs
= 1, s > 0.

Now, to find yε(t), we apply the Laplace transform to both sides of equation
(31) and using the initial conditions we obtain

ms2Y ε(s) + γsYε(s) + kYε(s) =
1− e−εs

εs
.

Solving for Yε(s) we find

Yε(s) =
1

ms2 + γs+ k

1− e−εs

εs
.

Letting ε→ 0+ we find

Y (s) =
1

ms2 + γs+ k

which is the transfer function of the system. Now inverse transform Y (s) to
find the solution to the initial value problem. That is,

y(t) = L−1
(

1

ms2 + γs+ k

)
= φ(t).

Now, impulse inputs are usually modeled in terms of delta functions. Thus,
knowing the Laplace transform of such functions is important when solving
differential equations. The next theorem finds the Laplace transform of the
delta function.
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Theorem 48.1
With δ(t) defined as above, if a ≤ t0 < b∫ b

a

f(t)δ(t− t0)dt = f(t0).

Proof.
We have ∫ b

a
f(t)δ(t− t0) = limε→0+

∫ b
a
f(t)fε(t− t0)dt

= limε→0+
1
ε

∫ t0+ε
t0

f(t)dt

= limε→0+
1
ε
f(t0 + βε)ε = f(t0)

where 0 < β < 1 and the mean-value theorem for integrals has been used

Remark 48.1
Since pε(t−t0) = 1

ε
for t0 ≤ t ≤ t0+ε and 0 otherwise we see that

∫ b
a
f(t)δ(t−

a)dt = f(a) and
∫ b
a
f(t)δ(t− t0)dt = 0 for t0 ≥ b.

It follows immediately from the above theorem that

L[δ(t− t0)] =

∫ ∞
0

e−stδ(t− t0)dt = e−st0 , t0 ≥ 0.

In particular, if t0 = 0 we find

L[δ(t)] = 1.

The following example illustrates the formal use of the delta function.

Example 48.1
A spring-mass system with mass 2, damping 4, and spring constant 10 is
subject to a hammer blow at time t = 0. The blow imparts a total impulse of
1 to the system, which was initially at rest. Find the response of the system.

Solution.
The situation is modeled by the initial value problem

2y′′ + 4y′ + 10y = δ(t), y(0) = 0, y′(0) = 0.
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Taking Laplace transform of both sides we find

2s2Y (s) + 4sY (s) + 10Y (s) = 1.

Solving for Y (s) we find

Y (s) =
1

2s2 + 4s+ 10
.

The impulsive response is

y(t) = L−1
(

1

2

1

(s+ 1)2 + 22

)
=

1

4
e−2t sin 2t

Example 48.2
A 16 lb weight is attached to a spring with a spring constant equal to 2
lb/ft. Neglect damping. The weight is released from rest at 3 ft below the
equilibrium position. At t = 2π sec, it is struck with a hammer, providing an
impulse of 4 lb-sec. Determine the displacement function y(t) of the weight.

Solution.
This situation is modeled by the initial value problem

16

32
y′′ + 2y = 4δ(t− 2π), y(0) = 3, y′(0) = 0.

Apply Laplace transform to both sides to obtain

s2Y (s)− 3s+ 4Y (s) = 8e−2πs.

Solving for Y (s) we find

Y (s) =
3s

s2 + 4
+

e−2πs

s2 + 4
.

Now take the inverse Laplace transform to get

y(t) = L−1[Y (s)] = 3 cos 2t+ 8h(t− 2π)f(t− 2π)

where

f(t) = L−1
{

1

s2 + 4

}
=

1

2
sin 2t.

Hence,

y(t) = 3 cos 2t+ 4h(t− 2π) sin 2(t− 2π) = 3 cos 2t+ 4h(t− 2π) sin 2t

or more explicitly

y(t) =

{
3 cos 2t, t < 2π

3 cos 2t+ 4 sin 2t, t ≥ 2π
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Practice Problems

Problem 48.1
Evaluate

(a)
∫ 3

0
(1 + e−t)δ(t− 2)dt.

(b)
∫ 1

−2(1 + e−t)δ(t− 2)dt.

(c)
∫ 2

−1

[
cos 2t
te−t

]
δ(t)dt.

(d)
∫ 2

−1(e
2t + t)

 δ(t+ 2)
δ(t− 1)
δ(t− 3)

 dt.
Problem 48.2
Let f(t) be a function defined and continuous on 0 ≤ t <∞. Determine

(f ∗ δ)(t) =

∫ t

0

f(t− s)δ(s)ds.

Problem 48.3
Determine a value of the constant t0 such that

∫ 1

0
sin2 [π(t− t0)]δ(t− 1

2
)dt = 3

4
.

Problem 48.4
If
∫ 5

1
tnδ(t− 2)dt = 8, what is the exponent n?

Problem 48.5
Sketch the graph of the function g(t) which is defined by g(t) =

∫ t
0

∫ s
0
δ(u−

1)duds, 0 ≤ t <∞.

Problem 48.6
The graph of the function g(t) =

∫ t
0
eαtδ(t − t0)dt, 0 ≤ t < ∞ is shown.

Determine the constants α and t0.
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Problem 48.7
(a) Use the method of integarting factor to solve the initial value problem
y′ − y = h(t), y(0) = 0.
(b) Use the Laplace transform to solve the initial value problem φ′ − φ =
δ(t), φ(0) = 0.
(c) Evaluate the convolution φ∗h(t) and compare the resulting function with
the solution obtained in part(a).

Problem 48.8
Solve the initial value problem

y′ + y = 2 + δ(t− 1), y(0) = 0, 0 ≤ t ≤ 6.

Graph the solution on the indicated interval.

Problem 48.9
Solve the initial value problem

y′′ = δ(t− 1)− δ(t− 3), y(0) = 0, y′(0) = 0, 0 ≤ t ≤ 6.

Graph the solution on the indicated interval.

Problem 48.10
Solve the initial value problem

y′′ − 2y′ = δ(t− 1), y(0) = 1, y′(0) = 0, 0 ≤ t ≤ 2.

Graph the solution on the indicated interval.

Problem 48.11
Solve the initial value problem

y′′ + 2y′ + y = δ(t− 2), y(0) = 0, y′(0) = 1, 0 ≤ t ≤ 6.

Graph the solution on the indicated interval.

196



49 Solving Systems of Differential Equations

Using Laplace Transform

In this section we extend the definition of Laplace transform to matrix-valued
functions and apply this extension to solving systems of differential equations.
Let y1(t), y2(t), · · · , yn(t) be members of PE . Consider the vector-valued
function

y(t) =


y1(t)
y2(t)

...
yn(t)


The Laplace transform of y(t) is

L[y(t)] =
∫∞
0

y(t)e−stdt

=


∫∞
0
y1(t)e

−stdt∫∞
0
y2(t)e

−stdt
...∫∞

0
yn(t)e−stdt



=


L[y1(t)]
L[y2(t)]

...
L[yn(t)]


In a similar way, we define the Laplace transform of an m × n matrix to
be the m× n matrix consisting of the Laplace transforms of the component
functions. If the Laplace transform of each component exists then we say
y(t) is Laplace transformable.

Example 49.1
Find the Laplace transform of the vector-valued function

y(t) =

 t2

1
et


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Solution.
The Laplace transform is

L[y(t)] =


6
s3

1
s

1
s−1

 , s > 1

The linearity property of the Laplace transform can be used to establish the
following result.

Theorem 49.1
If A is a constant n × n matrix and B is an n × p matrix-valued function
then

L[AB(t)] = AL[B(t)].

Proof.
Let A = (aij) and B(t) = (bij(t)). Then AB(t) = (

∑n
k=1 aikbkp). Hence,

L[AB(t)] = [L(
n∑
k=1

aikbkp)] = [
n∑
k=1

aikL(bkp)] = AL[B(t)]

Theorem 42.3 can be extended to vector-valued functions.

Theorem 49.2
(a) Suppose that y(t) is continuous for t ≥ 0 and let the components of the
derivative vector y′ be members of PE . Then

L[y′(t)] = sL[y(t)]− y(0).

(b) Let y′(t) be continuous for t ≥ 0, and let the entries of y′′(t) be members
of PE . Then

L[y′′(t)] = s2L[y(t)]− sy(0)− y′(0).

(c) Let the entries of y(t) be members of PE . Then

L
{∫ t

0

y(s)ds

}
=
L[y(t)]

s
.
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Proof.
(a) We have

L[y′(t)] =


L[y′1(t)]
L[y′2(t)]

...
L[y′n(t)]



=


sL[y1(t)]− y1(0)
sL[y2(t)]− y2(0)

...
sL[yn(t)]− yn(0)


= sL[y(t)]− y(0)

(b) We have
L[y′′(t)] = sL[y′(t)]− y′(0)

= s(sL[y(t)]− y(0))− y′(0)
= s2L[y(t)]− sy(0)− y′(0)

(c) We have

L[y(t)] = sL
{∫ t

0

y(s)ds

}
so that

L
{∫ t

0

y(s)ds

}
=
L[y(t)]

s

The above two theorems can be used for solving the following initial value
problem

y′(t) = Ay + g(t), y(0) = y0, t > 0 (35)

where A is a constant matrix and the components of g(t) are members of
PE .
Using the above theorems we can write

sY(s)− y0 = AY(s) + G(s)

or
(sI−A)Y(s) = y0 + G(s)
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where L[g(t)] = G(s). If s is not an eigenvalue of A then the matrix sI−A
is invertible and in this case we have

Y(s) = (sI−A)−1[y0 + G(s)]. (36)

To compute y(t) = L−1[Y(s)] we compute the inverse Laplace transform
of each component of Y(s). We illustrate the above discussion in the next
example.

Example 49.2
Solve the initial value problem

y′ =

[
1 2
2 1

]
y +

[
e2t

−2t

]
, y(0) =

[
1
−2

]
Solution.
We have

(sI−A)−1 =
1

(s+ 1)(s− 3)

[
s− 1 2

2 s− 1

]
and

G(s) =

[
1
s−2
− 2
s2

]
.

Thus,
Y(s) = (sI−A)−1[y0 + G(s)]

= 1
(s+1)(s−3)

[
s− 1 2

2 s− 1

] [
1 + 1

s−2
−2− 2

s2

]

=

[
s4−6s3+9s2−4s+8
s2(s+1)(s−2)(s−3)
−2s4+8s3−8s2+6s−4
s2(s+1)(s−2)(s−3)

]
Using the method of partial fractions we can write

Y1(s) = 4
3

1
s2
− 8

9
1
s

+ 7
3

1
s+1
− 1

3
1
s−2 −

1
9

1
s−3

Y2(s) = −2
3

1
s2

+ 10
9

1
s
− 7

3
1
s+1
− 2

3
1
s−2 −

1
9

1
s−3

Therefore

y1(t) = L−1[Y1(s)] = 4
3
t− 8

9
+ 7

3
e−t − 1

3
e2t − 1

9
e3t

y2(t) = L−1[Y2(s)] = −2
3
t+ 10

9
− 7

3
e−t − 2

3
e2t − 1

9
e3t, t ≥ 0
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Hence, for t ≥ 0

y(t) = t

[
4
3

−2
3

]
+

[
−8

9
10
9

]
+ e−t

[
7
3
7
3

]
+ e2t

[
−1

3

−2
3

]
+ e3t

[
−1

9

−1
9

]
System Transfer Matrix and the Laplace Transform of etA

The vector equation (35) is a linear time invariant system whose Laplace
input is given by y0 + G(s) and the Laplace output Y(s). According to
(36) the system tranform matrix is given by (sI −A)−1. We will show that
this matrix is the Laplace transform of the exponential matrix function etA.
Indeed, etA is the solution to the initial value problem

Φ′(t) = AΦ(t), Φ(0) = I,

where I is the n×n identity matrix and A is a constant n×n matrix. Taking
Laplace of both sides yields

sL[Φ(t)]− I = AL[Φ(t)].

Solving for L[Φ(t)] we find

L[Φ(t)] = (sI−A)−1 = L[etA].
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Practice Problems

Problem 49.1
Find L[y(t)] where

y(t) =
d

dt

 e−t cos 2t
0

t+ et


Problem 49.2
Find L[y(t)] where

y(t) =

∫ t

0

 1
u
e−u

 du
Problem 49.3
Find L−1[Y(s)] where

Y(s) =

 1
s
2

s2+2s+2
1

s2+s


Problem 49.4
Find L−1[Y(s)] where

Y(s) =

 1 −1 2
2 0 3
1 −2 1

 L[t3]
L[e2t]
L[sin t]


Problem 49.5
Use the Laplace transform to solve the initial value problem

y′ =

[
5 −4
5 −4

]
y +

[
0
1

]
, y(0) =

[
0
0

]
Problem 49.6
Use the Laplace transform to solve the initial value problem

y′ =

[
5 −4
3 −2

]
y, y(0) =

[
3
2

]
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Problem 49.7
Use the Laplace transform to solve the initial value problem

y′ =

[
1 4
−1 1

]
y +

[
0

3et

]
, y(0) =

[
3
0

]
Problem 49.8
Use the Laplace transform to solve the initial value problem

y′′ =

[
−3 −2
4 3

]
y, y(0) =

[
1
0

]
, y′(0) =

[
0
1

]
Problem 49.9
Use the Laplace transform to solve the initial value problem

y′′ =

[
1 −1
1 −1

]
y +

[
2
1

]
, y(0) =

[
0
1

]
, y′(0) =

[
0
0

]
Problem 49.10
Use the Laplace transform to solve the initial value problem

y′ =

 1 0 0
0 −1 1
0 0 2

y +

 et

1
−2t

 , y(0) =

 0
0
0


Problem 49.11
The Laplace transform was applied to the initial value problem y′ = Ay, y(0) =

y0, where y(t) =

[
y1(t)
y2(t)

]
, A is a 2× 2 constant matrix, and y0 =

[
y1,0
y2,0

]
.

The following transform domain solution was obtained

L[y(t)] = Y(s) =
1

s2 − 9s+ 18

[
s− 2 −1

4 s− 7

] [
y1,0
y2,0

]
.

(a) what are the eigenvalues of A?
(b) Find A.
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50 Numerical Methods for Solving First Or-

der Linear Systems: Euler’s Method

Whenever a mathematical problem is encountered in science or engineering,
which cannot readily or rapidly be solved by a traditional mathematical
method, then a numerical method is usually sought and carried out. In this
section, we study Euler’s method for approximating the solution to the initial
value problem

y′(t) = P (t)y(t) + g(t), y(a) = y0, a ≤ t ≤ b

where P (t) is an n× n matrix.

Euler’s Method for First Order Scalar Differential Equation
We first develop Euler’s method for the scalar equation

y′(t) = f(t, y), y(t0) = y0, a ≤ t ≤ b. (37)

Divide the interval a ≤ t ≤ b to N equal subintervals each of length

h =
b− a
N

using the gride points

a = t0 < t1 < t2 < · · · < tN−1 < tN = b.

Note that for 0 ≤ i ≤ N we have

ti = a+ ih and ti+1 = ti + h, 0 ≤ i ≤ N − 1.

The (unique) exact solution y(t) to Equation(37) is differentiable so that we
can write

y′(t) = lim
h→0

y(t+ h)− y(t)

h
.

This says that for small h we can estimate y′(t) by the difference quotient

y(t+ h)− y(t)

h
≈ y′(t) = f(t, y).

Evaluating the above approximation at the gride points t0, t1, · · · , tN−1 we
can write

y(tk + h) ≈ y(tk) + hf(tk, y(tk)), 0 ≤ k ≤ N − 1.
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If we let yk denote the approximation of y(tk) then the previous equation
becomes

yk+1 = yk + hf(tk, yk), y(t0) = y0. (38)

Equation (38) is known as Euler’s method. We illustrate Euler’s method
in the next example.

Example 50.1
Suppose that y(0) = 1 and dy

dt
= y. Estimate y(0.5) in 5 steps using Euler’s

method.

Solution.
The step size is h = 0.5−0

5
= 0.1. The following chart lists the steps needed:

k tk yk f(tk, yk)h
0 0 1 0.1
1 0.1 1.1 0.11
2 0.2 1.21 0.121
3 0.3 1.331 0.1331
4 0.4 1.4641 0.14641
5 0.5 1.61051

Thus, y(0.5) ≈ 1.61051.Note that the exact value is y(0.5) = e0.5 ≈ 1.6487213

Remark 50.1
1. Euler’s method approximates the value of the solution at a given point; it
does not give an explicit formula of the solution.

2. It can be shown that the error in Euler’s method is proportional to 1
N
.

Thus, doubling the number of mesh points will decrease the error by 1
2
.

Euler’s Method for First Order Linear Systems Next, we want to
extend Euler’s method to the intial value problem

y′(t) = P (t)y(t) + g(t), y(a) = y0, a ≤ t ≤ b. (39)

Let the exact solution be

y(t) =


y1(t)
y2(t)

...
yn(t)


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Then y(t) is differentiable with derivative

y′(t) =


y1(t)
y2(t)

...
yn(t)

 =


limh→0

y1(t+h)−y1(t)
h

limh→0
y2(t+h)−y2(t)

h
...

limh→0
yn(t+h)−yn(t)

h



= lim
h→0

1

h


y1(t+ h)− y1(t)
y2(t+ h)− y2(t)

...
yn(t+ h)− yn(t)


= lim

h→0

1

h
[y(t+ h)− y(t)]

Thus, for small h we can estimate y′ with the difference quotient

lim
h→0

1

h
[y(t+ h)− y(t)] ≈ y′(t) = P (t)y(t) + g(t).

Evaluating the above approximation at the gride points t0, t1, · · · , tN−1 we
can write

y(tk + h) ≈ y(tk) + h[P (tk)y(tk) + g(tk)], 0 ≤ k ≤ N − 1.

Letting yk be an approximation of y(tk), we define

yk+1 = yk + h[P (tk)yk + g(tk)], 0 ≤ k ≤ N − 1. (40)

Iteration (40) is the Euler’s method for the initial value problem (39).

Example 50.2
Consider the initial value problem

y′ =

[
1 2
2 3

]
y +

[
1
1

]
, y(0) =

[
−1
1

]
, 0 ≤ t ≤ 1.

(a) Write the Euler’s method algorithm in explicit form. Specify the starting
values t0 and y0.
(b) Give a formula for the kth t−value, tk. What is the range of the index k
if we choose h = 0.01?
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Solution.
(a) The Euler’s iterations are given by the formula

yk+1 = yk + h[

[
1 2
2 3

]
yk +

[
1
1

]
We have t0 = 0 and

y0 =

[
−1
1

]
.

(b) Since a = t0 = 0, we have tk = kh, 0 ≤ k ≤ N − 1. In the case h = 0.01
and b = 1 we find 0.01 = 1−0

N
which implies that N = 100. So the range of

the index k is k = 0, 1, 2, · · · , 100

Solving Variable-Coefficient Scalar Equations
We conclude this section by using the Euler’s method developped for first
order differential equations to scalar differential equations of any order. We
will illustrate the process by considering the following second order initial
value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0,+y
′(t0) = y′0, a < t < b

where p(t), q(t), and g(t) are continuous in the interval a < t < b and a <
t0 < b.
The above equation can be recast as a first order linear system by using the
substitution

z1(t) = y(t), z2(t) = y′(t) and z(t) =

[
z1(t)
z2(t)

]
Indeed, since

z′1 =y′ = z2

z′2 =y′′ = −p(t)y′ − q(t)y + g(t) = −q(t)z1 − p(t)z2 + g(t)

we can write this as the system

z′ =

[
0 1
−q(t) −p(t)

]
z +

[
0
g(t)

]
, z(t0) =

[
y0
y′0

]
.

This is a first order linear system that can be solved using Euler’s method.
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Example 50.3
Consider the scalar initial value problem

y′′ + y = t
3
2 , y(0) = 1, y′(0) = 0.

(a) Rewrite the given initial value problem as an equivalent initial value prob-
lem for a first order system.
(b) Write the Euler’s method algorithm zk+1 = zk + h[P (tk)zk + g(tk)], in
explicit form. Specify the starting values t0 and z0.
(c) Using a calculator with step size h = 0.01, carry out two steps of Euler’s
method, finding z1 and z2 What are the corresponding numerical approxi-
mations to the solution y(t) at times t = 0.01 and t = 0.02?

Solution.
(a) Let z1 = y and z2 = y′. Then z′1 = y′ = z2 and z′2 = y′′ = −y + t

3
2 =

−z1 + t
3
2 . This leads to the following intial value problem of a first order

system

z′(t) =

[
0 1
−1 0

]
z +

[
0

t
3
2

]
, z(0) =

[
1
0

]
.

(b) The Euler’s method algorithm is

zk+1 = zk + h

{[
0 1
−1 0

]
zk +

[
0

t
3
2
k

]}
, z0 =

[
1
0

]
.

Thus, t0 = 0 and

z0 =

[
1
0

]
.

(c) We have

z1 =

[
1
0

]
+ 0.01

{[
0 1
−1 0

] [
1
0

]
+

[
0
0

]}
=

[
1

−0.01

]
and

z2 =

[
1

−0.01

]
+ 0.01

{[
0 1
−1 0

] [
1

−0.01

]
+

[
0

(0.01)
3
2

]}
=

[
0.9
−0.019

]
Finally, y(0.01) = z1(0.01) = 1 and y(0.02) = z1(0.02) = 0.9
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Practice Problems

In Problems 50.1 - 50.3 answer the following questions:
(a) Solve the differential equation analytically using the appropriate method
of solution.
(b) Write the Euler’s iterates: yk+1 = yk + hf(tk, yk).
(c) Using step size h = 0.1, compute the Euler approximations yk, k = 1, 2, 3
at times tk = a+ kh.
(d) For k = 1, 2, 3 compute the error y(tk)−yk where y(tk) is the exact value
of y at tk.

Problem 50.1

y′ = 2t− 1, y(1) = 0.

Problem 50.2

y′ = −ty, y(0) = 1.

Problem 50.3

y′ = y2, y(0) = 1.

In Problems 50.4 - 50.6 answer the following questions:
(a) Write the Euler’s method algorithm in explicit form. Specify the starting
values t0 and y0.
(b) Give a formula for the kth t−value, tk. What is the range of the index k
if we choose h = 0.01?
(c) Use a calculator to carry out two steps of Euler’s method, finding y1 and
y2.

Problem 50.4

y′ =

[
−t2 t
2− t 0

]
y +

[
1
t

]
, y(1) =

[
2
0

]
, 1 ≤ t ≤ 4.

Problem 50.5

y′ =

 1 0 1
3 2 1
1 2 0

y +

 0
2
t

 , y(−1) =

 1
0
1

 , − 1 ≤ t ≤ 0.
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Problem 50.6

y′ =

[
1
t

sin t
1− t 1

]
y +

[
0
t2

]
, y(1) =

[
0
0

]
, 1 ≤ t ≤ 6.

In Problems 50.7 - 50.8 answer the following questions.
(a) Rewrite the given initial value problem as an equivalent initial value
problem for a first order system, using the substitution z1 = y, z2 = y′, z3 =
y′′, · · · .
(b) Write the Euler’s method algorithm zk+1 = zk + h[P (tk)zk + g(tk)], in
explicit form. Specify the starting values t0 and z0.
(c) Using a calculator with step size h = 0.01, carry out two steps of Euler’s
method, finding z1 and z2 What are the corresponding numerical approxi-
mations to the solution y(t) at times t = 0.01 and t = 0.02?

Problem 50.7

y′′ + y′ + t2y = 2, y(1) = 1, y′(1) = 1.

Problem 50.8

y′′′ + 2y′ + ty = t+ 1, y(0) = 1, y′(0) = −1, y′′(0) = 0.
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