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3 Binary Operations

We are used to addition and multiplication of real numbers. These operations
combine two real numbers to generate a unique single real number. So we
can look at these operations as functions on the set

R× R = {(a, b) : a ∈ R and b ∈ R}

defined by
+ : R× R −→ R

(a, b) −→ a + b

and
· : R× R −→ R

(a, b) −→ a · b
These operations are examples of a binary operation. The general definition
of a binary operation is as follows.

Definition 3.1
A binary operation on a set S is a mapping ∗ that assigns to each ordered
pair of elements of S a uniquely determined element of S. That is, ∗ : S ×
S −→ S is a mapping. The set S is said to be closed under the operation ∗.

The image ∗(a, b) will be denoted by a ∗ b.

Example 3.1
Addition and multiplication are binary operations on the set Z of integers
so that this set is closed under these operations. However, Z is not closed
under the operation of division since 1÷ 2 is not an integer.

Example 3.2
The ”ordered pair” statement in Definition 3.1 is critical. For example,
consider the binary operation ∗ defined on the set N by a ∗ b = ab. Then
2 ∗ 3 = 23 = 8 and 3 ∗ 2 = 32 = 9. That is, 2 ∗ 3 6= 3 ∗ 2.
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Example 3.3 (Cayley’s Tables)
The idea of a binary operation is just a way to produce an element of a set
from a given pair of ordered elements of the same set. In the case of a finite
set we could list the rule in a table which we’ll call a multiplication table or
Cayley’s table. For example, the following is the multiplication table of a
binary operation ∗ : {a, b} × {a, b} −→ {a, b}.

* a b
a a b
b b a

In studying binary operations on sets, we tend to be interested in those
operations that have certain properties which we discuss next.

Definition 3.2
A binary operation ∗ on a set S is said to be associative if it satisfies the
associative law:

a ∗ (b ∗ c) = (a ∗ b) ∗ c

for all a, b, c ∈ S.

The associative property allows us to speak of a ∗ b ∗ c without having to
worry about whether we should find the answer to a ∗ b first and then that
answer ”multiplied” by c rather than evaluate b ∗ c first and then ”multiply”
a with that answer. Which ever way we process the expression we end up
with the same element of the set. Note though that it does not say we can
do the product in any order (i.e. a∗b and b∗a may not have the same value).

Example 3.4
1. The operations ” + ” and · on R are associative.
2. The operation ”− ” on R is not associative since 2− (3− 4) 6= (2− 3)− 4.
(Notice that if the associative law fails for just one triple (a, b, c) then the
operation is not associative).
3. The operation ∗ defined by a ∗ b = ab on the set N is not associative since
2 ∗ (3 ∗ 2) = 512 and (2 ∗ 3) ∗ 2 = 64.

Definition 3.3
A binary operation ∗ on a set S is said to be commutative if it satisfies the
condition:

a ∗ b = b ∗ a
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for all a, b,∈ S. In this case, the order in which elements are combined does
not matter.

Remark 3.1
When a set with a binary operation is given by a Cayley’s table then the
operation is commutative if and only if equal elements appear in all positions
that are symmetrically placed relative to the diagonal from upper left to lower
right. That is, to check whether an operation defined by a Cayley’s table is
commutative, simply draw a diagonal line from upper left to lower right, and
see if the table is symmetric about this line. For example, the operation ∗
defined by the table below is commutative.

* a b c d
a a b c d
b b c d a
c c d a b
d d a b c

Example 3.5
The binary operations of addition and multiplication on R are both commu-
tative. However, the binary operation of subtraction on R does not satisfy
the commutative law since 5− 7 6= 7− 5.

Example 3.6
The binary operation on R defined by a ∗ b = a + b− 1 is commutative since

a ∗ b = a + b− 1 = b + a− 1 = b ∗ a.

Example 3.7
Show that the binary operation on R defined by a∗b = 1+ab is commutative
but not associative.

Solution.
For any real numbers a and b we have a ∗ b = 1 + ab = 1 + ba = b ∗ a where
we used the fact that multiplication in R is commutative. Now, by letting
a = 0, b = 1, and c = −1 then a∗ (b∗ c) = a∗ 0 = 1 and (a∗ b)∗ c = 1∗ c = 0.
Thus, ∗ is not associative.
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Definition 3.4
Let S be a set on which there is a binary operation ∗. An element e of this
set is called a left identity if for all a ∈ S, we have e ∗ a = a. Similarly, an
element e is a right identity if a ∗ e = a for each a ∈ S.

Example 3.8
Given a binary operation on a set.

1. There might be left identities which are not right identities and vice-
versa. For example, the operation a ∗ b = a on the set R has 2 as a right
identity which is not a left identity. The set R with the operation a ∗ b = b
has 2 as a left identity which is not a right identity.

2. There might be many left or right identity elements. The set R with
the operation a ∗ b = a, every number is a right identity. With the operation
a ∗ b = b, every number is a left identity.

3. There might be no left or right identity elements. For example, the
set {2, 3, 4, · · ·} has no left or right identity elements under the operation
a ∗ b = a · b

We tend to be familiar with the situation in which there is a unique iden-
tity. As soon as an operation has both a left and a right identity, they are
necessarily unique and equal as shown in the next theorem.

Theorem 3.1
If S is a set with a binary operation ∗ that has a left identity element e1 and
a right identity element e2 then e1 = e2 = e.

Proof.
Let e1 ∈ S be a left identity element and e2 ∈ S be a right identity element.
Then

e1 = e1 ∗ e2(since e2 is a right identity)
= e2(since e1 is a left identity)

Definition 3.5
An element which is both a right and left identity is called the identity
element(Some authors use the term two sided identity.) Thus, an element
is an identity if it leaves every element unchanged.
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Remark 3.2
Note that an identity (left or right or both) for one operation does not have
to be an identity for another operation. Think of addition and multiplication
on the reals where the identities are 0 and 1 respectively.

Example 3.9
The operation a ∗ b = a + b − 1 on the set of integers has 1 as an identity
element since 1 ∗ a = 1 + a− 1 = a and a ∗ 1 = a + 1− 1 = a for all integer
a.

Example 3.10
Show that the operation a∗b = 1+ab on the set of integers Z has no identity
element.

Solution.
If e is an identity element then we must have a ∗ e = a for all a ∈ Z. In par-
ticular, 1 ∗ e = 1. But this imply that 1 + e = 1 or e = 0. Since 2 ∗ 0 = 1 6= 2
then e does not exist.

Whenever a set has an identity element with respect to a binary operation
on the set, it is then in order to raise the question of inverses.

Definition 3.6
Suppose that an operation ∗ on a set S has an identity element e. Let a ∈ S.
If there is an element b ∈ S such that a ∗ b = e then b is called a right
inverse of a. Similarly, if b ∗ a = e then b is called a left inverse.

Example 3.11
1. An element can have no left or right inverses. For example, the number 2
has no left or right inverse with respect to multiplication on the set of integers.

2. There might be a left inverse which is not a right inverse and vice versa.
For example, consider the set M(Z) of all functions from the set of integers
into itself. Then the operation of composition is a binary operation on M(Z).
Consider the two functions f(n) = 2n and

g(n) =

{
n
2

if n is even
4 if n is odd
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Then (g ◦ f)(n) = n for all n ∈ Z. That is, g is a left inverse of f. However,
since

(f ◦ g)(n) =

{
n if n is even
8 if n is odd

then g is not a right inverse since f ◦ g 6= ιZ

Suppose that an element a ∈ S has both a left inverse and a right inverse
with respect to a binary operation ∗ on S. Under what condition are the two
inverses equal?

Theorem 3.2
Let S be a set with an associative binary operation ∗ and identity element
e. Let a, b, c ∈ S be such that a ∗ b = e and c ∗ a = e. Then b = c.

Proof.
Indeed,

b = e ∗ b
= (c ∗ a) ∗ b
= c ∗ (a ∗ b)
= c ∗ e
= c

Definition 3.7
If a has both a left and right inverse then we say that a has two-sided
inverse or simply an inverse element.

Example 3.12
Consider the operation ∗ on the set of integers defined by a ∗ b = a + b− 1.
We will show that each integer has an inverse under this operation. Indeed,
let x be an integer. Let y be a right inverse of x. Then x ∗ y = 1. That is,
x + y − 1 = 1. Solving for y we find y = −x + 2. This is also a left inverse of
x since (−x + 2) ∗ x = −x + 2 + x− 1 = 1.
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