25 Integral Domains. Subrings

In Section 24 we defined the terms unitary rings and commutative rings. These terms together with the concept of zero divisors discussed below are used to define a special type of ring known as an integral domain.

Let R be a ring. Then, by Theorem 24.1(ii), we have $a0 = 0a = 0$ for all $a \in R$. This shows that if a product is zero then one of the factors is 0. The converse is not always true. For example, in \mathbb{Z}_{10}, $[2]$ and $[5]$ are nonzero elements with $[2] \odot [5] = [0]$. The following definition singles out those rings where a product of two (additive) nonidentity elements is the zero element.

Definition 25.1

Let R be a commutative ring. An element $a \in R$, $a \neq 0$ is called a zero divisor in R if there exists an element $b \in R$, $b \neq 0$ such that $ab = 0$.

Example 25.1

1. The ring of integers \mathbb{Z} has no zero divisors.

Remark 25.1

Definition 25.1 is restricted to elements in a commutative ring. It is possible to have noncommutative rings where $ab = 0$ but $ba \neq 0$. Indeed, the ring of all 2×2 matrices is noncommutative. Moreover, we have

\[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\]

The following definition shows that zero divisors can not exist in an integral domain.

Definition 25.2

A commutative ring with unity $e \neq 0$ and no zero divisors is called an integral domain.

Remark 25.2

The requirement $e \neq 0$ means that the ring has at least two elements, the zero element and the unity element.
Example 25.2
1. \(\mathbb{Z}, \mathbb{Q}, \) and \(\mathbb{R} \) are all integral domains.
2. The set \(E \) of evens integers is not an integral domain since it has no unity element.
3. \(\mathbb{Z}_{10} \) is not an integral domain since \(2 \) and \(5 \) are zero divisors.
4. The ring \(M \) of all \(2 \times 2 \) matrices is not an integral domain for two reasons: first, the ring is noncommutative, and second, it has zero divisors. (See Remark 25.1)

Example 25.2(4), shows that \(\mathbb{Z}_{10} \) is a commutative ring with unity but is not an integral domain since \(2 \) and \(5 \) are zero divisors. Note that \(10 = 2 \times 5 \). We can generalize this fact to any composite number \(n \). So if \(n = rs \) where \(r, s > 1 \), then \(|r| \circ |s| = |rs| = |n| = |0| \) so that \(|r| \) and \(|s| \) are zero divisors of \(\mathbb{Z}_n \). That is, \(\mathbb{Z}_n \) is not an integral domain.

The next result provides a condition on \(n \) so that \(\mathbb{Z}_n \) is an integral domain.

Theorem 25.1
For \(n > 1 \), \(\mathbb{Z}_n \) has no zero divisors if and only if \(n \) is prime.

Proof. Suppose first that \(n \) is prime. Let \([a] \circ [b] = [0] \) in \(\mathbb{Z}_n \) with \(|a| \neq |0| \). We will show that \([b] = [0] \) in \(\mathbb{Z}_n \). Since \([a] \circ [b] = [0] \) then \([ab] = [0] \) and this implies that \(n|ab \). Since \(|a| \neq |0| \) then \(n \nmid a \). Since \(n \) is prime then by Lemma 13.3, we must have \(n|b \). That is, \([b] = [0] \). Therefore, \(\mathbb{Z}_n \) has no zero divisors, and is an integral domain.

Conversely, suppose that \(\mathbb{Z}_n \) is an integral domain. Assume that \(n \) is not prime. As pointed out in the discussion preceding the theorem, \(\mathbb{Z}_n \) is not an integral domain, a contradiction. Hence, \(n \) must be prime.

An important consequence of the absence of zeros in an integral domain is that the cancellation law for multiplication must hold.

Theorem 25.2
If \(a, b, \) and \(c \) are elements in integral domain \(D \) such that \(a \neq 0 \) and \(ab = ac \), then \(b = c \).

Proof.
Since \(ab = ac \) then \(a(b - c) = 0 \) with \(a \neq 0 \) in \(D \). But \(D \) is an integral domain so we must have \(b - c = 0 \) or \(b = c \).

The converse of the previous theorem is also true.

Theorem 25.3
If \(D \) is a commutative ring with unity \(e \neq 0 \) such that the cancellation property holds then \(D \) is an integral domain.

Proof. Suppose that for all \(a, b, c \in D, ab = ac \) and \(a \neq 0 \) implies \(b = c \). We will show
that D has no zero divisors. Let $a, b \in D$ be such that $ab = 0$ with $a \neq 0$. Since $a0 = 0$ then $ab = a0$. By the cancellation law, $b = 0$. This shows that D has no zero divisors, so D is an integral domain.

The notion of subring is the obvious analogue of the notion of subgroup.

Definition 25.3

A subring of a ring R is any subset $S \subseteq R$ which forms a ring with respect to the operation of R.

Example 25.3

The set E of even integers is a subring of all integers. The set of integers is a subring of the ring of rational numbers. The set of rational numbers is a subring of the ring of complex numbers.

As in groups, we can reduce the number of axioms one has to check when proving that something is a subring.

Theorem 25.4

Let R be a ring and S a subset of R. Then S is a subring of R if and only if

(i) $S \neq \emptyset$;

(ii) For all $a, b \in S$ we have $a - b \in S$ and $ab \in S$.

Proof.

Suppose first that S is a subring of R. Then S being a ring itself, it must contain the zero element of R. Thus, $S \neq \emptyset$. Now, let $a, b \in S$. Since S is a ring then $(S, +)$ is a group so that $a - b \in S$. Also, S is closed with respect to multiplication so that $ab \in S$.

Conversely, suppose that S is a subset of R satisfying conditions (i) and (ii). Since S is nonempty and $a - b \in S$ for all $a, b \in S$ then by Theorem 7.5, $(S, +)$ is a group. By (ii), S is closed with respect to multiplication. Since multiplication is associative in R and S is closed then multiplication is associative when restricted to S. Thus, S is a ring and hence a subring of R.

Example 25.4

Consider the subset of the ring M of all 2×2 matrices:

$S = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$

We will show that S is a subring of M. Since the zero matrix is in S then $S \neq \emptyset$.

Since

$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} - \begin{pmatrix} d & e \\ 0 & f \end{pmatrix} = \begin{pmatrix} a-d & b-e \\ 0 & c-f \end{pmatrix} \in S$

and

$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} d & e \\ 0 & f \end{pmatrix} = \begin{pmatrix} ad & ae+bf \\ 0 & cf \end{pmatrix} \in S$

then by Theorem 25.4, S is a subring of M.\[\square\]
Review Problems

Exercise 25.1
Find the zero divisors of \(\mathbb{Z}_6 \).

Exercise 25.2
Verify that \(([2], [0])\) is a zero divisor in \(\mathbb{Z}_3 \times \mathbb{Z}_3 \).

Exercise 25.3
Which elements of \(\mathbb{Z} \times \mathbb{Z} \) are zero divisors?

Exercise 25.4
Prove that if an element \(a \) in a ring \(R \) has a multiplicative inverse in \(R \), then \(a \) is not a zero divisor in \(R \).

Exercise 25.5
Show that a zero divisor can not have a multiplicative inverse.

Exercise 25.6
Let \(R \) be a commutative ring with unity \(e \). Let \(a \in R \) be such that \(a^n = 0 \) for some \(n \in \mathbb{N} \). Prove that \(a \) is either 0 or a zero divisor.

Exercise 25.7
Let \(D \) be an integral domain. Show that if \(a \in D \) such that \(a^2 = a \) and \(a \neq e \) then \(a \) is a zero divisor.

Exercise 25.8
Let \(R \) be a commutative ring. For each \(a \in R \) let \(H_a = \{ x \in R : ax = 0 \} \). Show that for all \(x, y \in H_a \), we have \(xy \in H_a \).

Exercise 25.9
Show that \(\mathbb{Z}[(\sqrt{2})] \) (Exercise 24.3) is an integral domain.

Exercise 25.10
Show that the ring \(\mathcal{M}(\mathbb{R}) \) of all mappings from \(\mathbb{R} \) to \(\mathbb{R} \) is not an integral domain. (See Exercise 24.4.)

Exercise 25.11
State and prove a theorem giving a necessary and sufficient condition for a subset of an integral domain to be an integral domain.

Exercise 25.12
Prove that if \(D \) is an integral domain and \(a^2 = e \) then \(a = \pm e \).

Exercise 25.13
Let \(R \) and \(S \) be integral domains. Prove that \(R \times S \) is also an integral domain.

Exercise 25.14
Let \(R \) be a ring with unity \(e \). Let \(S \) be the collection of all elements in \(R \) with multiplicative inverse. Prove that \((S, \cdot) \) is a group.
Exercise 25.15
Let R be a commutative ring with unity e such that every nonzero element of R has a multiplicative inverse. Show that R is an integral domain.

Exercise 25.16
Let $C(\mathbb{R})$ denote the collection of all continuous functions from \mathbb{R} to \mathbb{R}. Show that $C(\mathbb{R})$ is a subring of $\mathcal{M}(\mathbb{R})$.

Exercise 25.17
Prove that $\{(a,a) : a \in R\}$ is a subring of $R \times R$.

Exercise 25.18
Let R be a ring with identity e and S a subring of R such that $e \in S$. Prove that if u is a unit in S then u is a unit in R. Show by an example that the converse is false.

Exercise 25.19
The center of a ring R is defined to be $\{c \in R : cr = rc \, \forall r \in R\}$. Prove that the center of a ring is a subring. What is the center of a commutative ring?

Exercise 25.20
Let \mathcal{C} be the collection of all subrings of a ring R. Prove that $\bigcap_{H \in \mathcal{C}} H$ is a subring of R.

Exercise 25.21
Show that the set
$$S = \left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \right\}$$
is not a subring of the ring \mathcal{M} of all 2×2 matrices.