17 Lagrange’s Theorem

A very important corollary to the fact that the left cosets of a subgroup partition a group is Lagrange’s Theorem. This theorem gives a relationship between the order of a finite group G and the order of any subgroup of G (in particular, if $|G| < \infty$ and $H \subseteq G$ is a subgroup, then $|H| \mid |G|$).

Theorem 17.1 (Lagrange’s Theorem)

Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G.

Proof.

By Theorem 16.1, the right cosets of H form a partition of G. Thus, each element of G belongs to at least one right coset of H in G, and no element can belong to two distinct right cosets of H in G. Therefore every element of G belongs to exactly one right coset of H. Moreover, each right coset of H contains $|H|$ elements (Lemma 16.2). Therefore, $|G| = n|H|$, where n is the number of right cosets of H in G. Hence, $|H| \mid |G|$. This ends a proof of the theorem. ■

Example 17.1

If $|G| = 14$ then the only possible orders for a subgroup are $1, 2, 7,$ and 14. ■

Definition 17.1

The number of different right cosets of H in G is called the **index** of H in G and is denoted by $[G : H]$.

It follows from the above definition and the proof of Lagrange’s theorem that

Example 17.2

Since $|S_3| = 3! = 6$ and $|(12)| = |< (12) >| = 2$ then $[S_3, < (12) >] = \frac{6}{2} = 3$. ■
The rest of this section is devoted to consequences of Lagrange’s theorem; we begin with the order of an element.

Corollary 17.1
If \(G \) is a finite group and \(a \in G \) then \(o(a) \mid |G| \).

Proof.
Since \(<a>\) is a subgroup of \(G \), then \(|<a>|\mid |G|\). By Theorem 14.7, \(o(a) = |<a>| \). Hence, \(o(a) \mid |G| \). □

Corollary 17.2
If \(G \) is a finite group and \(a \in G \) then \(a^{|G|} = e \).

Proof.
By the previous corollary, \(o(a) \mid |G| \). Thus, \(|G| = k \cdot o(a)\) for some positive integer \(k \). Hence, \(a^{|G|} = a^{k \cdot o(a)} = (a^{o(a)})^k = e^k = e \). □

Corollary 17.3 *(Euler’s Theorem)*
If \(a \) and \(n \) are positive integers such that \(gcd(a, n) = 1 \) then \(a^{\phi(n)} \equiv 1 \pmod{n} \).

Proof.
By Theorem 13.4, \(|U_n| = \phi(n)\). By the previous corollary, \([a]^{[U_n]} = [a]^{\phi(n)} = [1]\). Since \([a]^{\phi(n)} = [a^{\phi(n)}] = [1]\) then \(a^{\phi(n)} \equiv 1 \pmod{n} \). □

Corollary 17.4 *(Fermat’s Little Theorem)*
If \(p \) is a prime number and \(p \not|a\) then

1. \(a^{p-1} \equiv 1 \pmod{p} \)
2. \(a^p \equiv a \pmod{p} \) for all \(a \in \mathbb{N} \).

Proof.
1. Since \(p \) is prime then \(\phi(p) = p - 1 \) by Theorem 13.5. Since \(p \not|a\) then \(gcd(a, p) = 1 \). By Euler’s theorem we have \(a^{p-1} \equiv 1 \pmod{p} \).
2. From part (i), we have \(a^{p-1} - 1 = pt \) for some integer \(t \). Thus, \(a^p - a = pt' \) where \(t' = ta \in \mathbb{Z} \). Hence, \(a^p \equiv a \pmod{p} \). □

The above theorem suggests a test of primality for \(p \). Take a number \(n \) such that \(p \not|n \) and raise it to the \((p - 1)\)st power and find its remainder when divided by \(p \). If the remainder is not \(1 \) then we can conclude that \(p \) is not a prime number.
Corollary 17.5
If \(|G| = p\), where \(p\) is prime then the only subgroups of \(G\) are \(\{e\}\) and \(G\).

Proof.
Suppose the contrary, that is \(G\) has a subgroup \(H\) such that \(H \neq \{e\}\) and \(H \neq G\). By Theorem 17.1, \(|H||G|\) with \(1 < |H| < p\). This contradicts the fact that \(p\) is prime. ■

Corollary 17.6
If \(G\) is a group of prime order then it is cyclic. That is, \(G = < a >\) where \(a\) is any nonidentity element of \(G\).

Proof.
Let \(a \in G\) with \(a \neq e\). Then \(< a > \neq \{e\}\). By the previous corollary, \(G = < a >\). ■

Example 17.3
The previous corollary tells that groups of prime order are always cyclic. What about groups of prime-squared order? The group

\[\mathbb{Z}_2 \times \mathbb{Z}_2 = \{([0], [0]), ([0], [1]), ([1], [0]), ([1], [1])\}\]

has order \(4 = 2^2\). Since each element has order 2 then by Theorem 14.7, \(\mathbb{Z}_2 \times \mathbb{Z}_2\) is not cyclic. ■

Example 17.4
Lagrange’s Theorem greatly simplifies the problem of determining all the subgroups of a finite group. For example, consider the group \((\mathbb{Z}_6, \oplus)\). Aside from \(\{[0]\}\) and \(\mathbb{Z}_6\) any subgroup of \(\mathbb{Z}_6\) must have order 2 or 3. There is only one subgroup of order 2, \(< [3] >\). Also, there is only one subgroup of order 3, \(< [2] >\). A subgroup lattice shows the subgroups of \(\mathbb{Z}_6 = < [1] >\) and the inclusion relation between them.

![Subgroup Lattice](image-url)
The Converse of Lagrange’s Theorem
The converse of Lagrange’s theorem is not true in general. That is, if n is a divisor of G then it does not necessarily follow that G has a subgroup of order n.

Example 17.5
The set of all even permutations

\[A_4 = \{(1), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)\} \]

is a subgroup of S_4 (and therefore a group itself) of order 12 (See Theorem 7.9). Note that A_4 has three elements of order 2, namely,

\[\{(12)(34), (13)(24), (14)(23)\} \]

and 8 elements of order 3,

\[(123), (132), (124), (142), (134), (143), (234), (243) \}

We will show that A_4 has no subgroup of order 6.

Let H be a subgroup of A_4 of order 6. Then $(1) \in H$. Since A_4 contains only 3 elements of order 2 then H must contain at least one element of order 3 of the form (abc). Then by closure, $(acb) = (abc)(abc) \in H$. If H also contains an element, say of the form $(ab)(cd)$ (or of the form (abd)), then by closure $(abc)(ab)(cd) = (acd) \in H$ and $(acb)(ab)(cd) = (bcd)$. Thus, $(bcd)^{-1} = (bdc) \in H$. In either case, H has more than six elements. Thus, A_4 has no subgroup of order 6.

The converse of Lagrange’s theorem is valid for cyclic groups. To prove this result we need the following two theorems.

Theorem 17.2
Let G be a finite cyclic group of order n and generator a. That is, $G = \{e, a, a^2, \ldots, a^{n-1}\}$

Every subgroup of G is cyclic. That is, a subgroup of a cyclic group is also cyclic.
Proof.
Let H be a subgroup of G. Then elements of H are of the form a^k with $1 \leq k < n$. Let t be the smallest positive integer such that $a^t \in H$. We shall prove that $H = \langle a^t \rangle$. Indeed, let $a^m \in H$. By the Division Algorithm there exist unique integers q and r such that $m = tq + r$ where $0 \leq r < t$. It follows that $a^m = (a^t)^q a^r$ or $a^r = a^m (a^t)^{-q}$. But $a^m \in H$ and $a^t \in H$ then by closure $a^r \in H$. Since t is the smallest positive integer such that $a^t \in H$ then we must have $r = 0$. Hence, $a^m = (a^t)^q$ or $a^m \in \langle a^t \rangle$. Clearly, $\langle a^t \rangle \subseteq H$ since $a^t \in H$ and H is a group.

Theorem 17.3
Let G be as in the statement of Theorem 17.2. If $1 \leq k < n$ then a^k generates a subgroup of order $\frac{n}{\gcd(k,n)}$.

Proof.
Let $d = \gcd(k,n)$. By Theorem 14.6(i), $| \langle a^k \rangle |$ is the smallest positive integer such that $a^{k|\langle a^k \rangle|} = e$. By Theorem 14.6 (ii), $n | k | \langle a^k \rangle |$. That is, $k | \langle a^k \rangle | = nq$ for some integer q. Hence, $\frac{k|\langle a^k \rangle|}{d} = \frac{nq}{d}$ so that $\frac{n}{d} | \frac{k|\langle a^k \rangle|}{d}$. Since $\gcd(\frac{n}{d}, \frac{k}{d}) = 1$ then by Lemma 13.1, we have $\frac{n}{d} | \langle a^k \rangle |$. On the other hand, $(a^k)^\frac{n}{d} = (a^n)^\frac{k}{d} = e$ so that $| \langle a^k \rangle | \frac{n}{d}$. Hence, by Theorem 10.2(d), $| \langle a^k \rangle | \leq \frac{n}{d}$. ■

Theorem 17.4
Let G be a cyclic group of order n and generator a. For each positive divisor d of n, G has exactly one subgroup of order d.

Proof.
Existence: Let d be a positive divisor of n. Then there exists a positive integer $q < n$ such that $n = dq$. Thus, $q|n$ and $\gcd(n,q) = q$. By Theorem 17.3, a^q generates a subgroup of G of order $\frac{n}{\gcd(n,q)} = \frac{n}{q} = d$. Thus, G has at least one subgroup of order d.

Uniqueness: Suppose that G has two subgroups of order d, say H and K. We will show that $H = K$. Let $1 \leq m < n$ be the smallest positive integer such that $a^m \in H$ and $1 \leq k < n$ be the smallest positive integer such that $a^k \in K$. As in the proof of Theorem 17.2, we establish that $H = \langle a^m \rangle$ and $K = \langle a^k \rangle$. By Theorem 17.3, $| \langle a^m \rangle | = \frac{n}{\gcd(n,m)}$ and $| \langle a^k \rangle | = \frac{n}{\gcd(n,k)}$. Thus, $\frac{n}{\gcd(n,m)} = \frac{n}{\gcd(n,k)} = d$ or $\gcd(n,m) = \gcd(n,k)$.
Now, by the Division Algorithm, \(n = mq + r \) with \(0 \leq r < m \). Since \(a^n = e \in H \) then \(a^r = (a^m)^{-q} \in H \). From the definition of \(m \) we see that \(r = 0 \). Hence, \(n = mq \) and \(m|n \). It follows that \(gcd(n, m) = m \). A similar argument shows that \(gcd(n, k) = k \) and therefore \(m = k \). Hence, \(<a^m> = <a^k> \), i.e. \(H = K \). This ends a proof of the theorem.\(\blacksquare \)

Remark 17.1
The converse of Lagrange’s theorem holds also for finite Abelian groups. This topic will not be covered in this book.

Example 17.6
Consider the group \((\mathbb{Z}_{12}, \oplus)\). Since \(|\mathbb{Z}_{12}| = 12\) then the positive divisors of 12 are 1, 2, 3, 4, 6, and 12. The subgroup lattice below shows the different subgroups of \(\mathbb{Z}_{12} = <[1]> \).

![Subgroup Lattice](image_url)

6