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10 The Division Algorithm. Congruence Mod-
ulo n

In this section, we want to introduce an important equivalence relation on
the set of integers Z. This relation depends on the concept of divisibility of
integers which we discuss next.

10.1 Divisibility. The Division Algorithm

In this section we study the divisibility of integers. Our main goal is to
obtain the Division Algorithm. This is achieved by applying the well-ordering
principle which we prove next.

Theorem 10.1 (The Well-Ordering Principle)
If S is a nonempty subset of N then there is an m € S such that m < x for
all x € S. That is, S has a smallest element.

Proof.

We will use contradiction to prove the theorem. That is, by assuming that
S has no smallest element we will prove that S = ().

We will prove that n ¢ S for all n € N. We do this by induction on n.
Since S has no smallest element then 1 € S. Asuume that we have proved
that 1,2,---,n ¢ S. We will show that n +1 ¢ S. If n +1 € S then
since 1,2,3,--- ¢ S then n + 1 would be the smallest element of S and this
contradicts the assumption that S has no smallest element. Thus, we must
have n+1 ¢ S. Hence, by the principle of mathematical induction, n ¢ S for
all n € N. But this leads to S = ). This conclusion contradicts the hypothesis
of the theorem where S is given to be nonempty. This establishes a proof of
the theorem.m

Remark 10.1
The above theorem is false if N is replaced by Z,Q, or R. For example,
{z € Z:x < —1} is a nonempty subset of Z with no smallest element.



Before establishing the Division Algorithm, we introduce the concept of di-
visibility and derive some of its properties.

Definition 10.1

An integer m is divisible by a nonzero integer n if and only if m = nq for
some integer q. We also say that n divides m, n is a divisor of m, m is a
multiple of n, or n is a factor of m. We write n|m. If n does not divide
m we write n { m. A positive integer n with only divisors 1 and n is called
prime.

Example 10.1
Since 8 = 2 -4 then 2| 8 and 4| 8. However, 4 J 6.1

The following theorem discusses some of the properties of divisibility.

Theorem 10.2

(a) If n|m then n|(tm) for any integer ¢.

(b) If n|a and n|b then n|(a £+ b)

(c) If n|m and m|p then n|p. That is, division is associative.

(d) If n/m and m|n then either n = m or n = —m. In particular, if both m
and n are positive integer then m = n.

Proof.

(a) Suppose that n|m. Then m = nq for some ¢ € Z. Multiplying the last
equation by t € Z to obtain tm = tnq = n(tq) = nq’ where ¢’ = tq € Z. This
shows that n|tm.

(b) Suppose that n|a and n|b. Then a = ng and b = ng’ for some ¢, ¢ € Z.
Thus, a £ b = n(q £ ¢'). Hence, n|(a £ b).

(c) Suppose that n|m and m|p. Then m = ng and p = mq’ for some ¢, ¢’ € Z.
Thus, p = n(qq’). Since q¢' € Z then n/|p.

(d) If n|m and m|n then m = nqg and n = mq’ for some ¢,q¢ € Z. Thus,
m = mqq or (1 —qq')m = 0. Since m # 0 then ¢¢’ = 1. This is only true if
eitherg=¢ =1lorq=¢ =—1. Thatis, n=morn = —m.m

With the Well-Ordering Principle we can establish the following theorem.

Theorem 10.3 (Division Algorithm)
If a and b are integers with b # 0 then there exist unique integers ¢ and r
such that

a=bg+r, 0<r<]bl.



Proof.
We first assume that b > 0 so that |b| = b.

Existence
Counsider the sets

S={a—-bt:teZ}, S ={xeS:xz>0}

The set S’ is nonempty. To see this, if @ > 0 then a — 0t € S and a — 0t > 0.
That is, a € S’. If a < 0 then since a — ba € S and a — ba = a(1l —b) > 0 so
that a — ba € S'.

Now, if 0 € S’ then a — ¢gb = 0 for some g € Z and so r = 0 and in this case
the theorem holds. So, assume that 0 ¢ S’. By Theorem10.1, there exist a
smallest element r € S’. That is,

a—qb=r, for someq¢€Z.

Since r € S’ then r > 0. It remains to show that r < b. If we assume the
contrary, i.e. r > b, then

a—blg+1)=a—-bg—b=r—0>0
and this implies that a — b(¢ + 1) € S". But b > 0 so that
a—blg+1)=a—-bg—b<a—-bg=r

and this contradicts the definition of r as being the smallest element of S’.
Thus, we have
a=bqg+r, 0<r<hb.

Uniqueness
Suppose that
a:bq1~|—r1, 0§’l”1<b

and
a:bQQ+T2, 0§T2<b.

We must show that r; = ry and ¢; = ¢o. Indeed, since bgy + r1 = bgy + 1
then b(q; — q2) = ro — r1. This says that b|(ro — r1). But 0 < r; < b and
0<rg<bsothat —b< —ri <rg—ry <ry<b. Thatis, —b<reg—ry <b.
The only multiple of b strictly between —b and b is zero. Hence, vy = ro. But
then b(q; — ¢2) = 0 and since b # 0 then ¢; = ¢o. B
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Example 10.2
Ifa=11and b =4 then ¢ =2 and r = 3.

Remark 10.2

Note that if b < 0 then |b] = —b. Applying the theorem to a and —b > 0 we
can find unique integers ¢ and r such that a = —bg+r with 0 < r < —b. Let
¢ = —q € Z then a = bq' + r with 0 < r < —b.

10.2 Congruence Modulo n.

Divisibility leads to the concept of congruence.

Definition 10.2
Let n be a positive integer. Integers a and b are said to be congruent
modulo n if a — b is divisible by n. This is denoted by writing a = b(mod n).

We call n the modulus. If a is not congruent b modulo n we write a #
b (mod n).

Example 10.3
17 and 65 are congruent modulo 6, because 65 — 17 = 48 is divisible by 6. m

Theorem 10.4
The following statements are all equivalent:

i) a = b(mod n)
ii) n|(a —b)

iii) @ — b = nt for some t € Z
iv) a = b+ nt for some t € Z.

(i) = (ii): Suppose that a = b(mod n). Then from Definition (10.2),
|
i

ii) = (iii): Suppose that n|(a —b). Then by Definition 10.1, there exists a
t € Z such that a — b = nt.

(i) = (iv): Suppose that a — b = nt for some ¢t € Z. Then by adding b to
both sides we get a = b + nt which is the statement of (iv).

(iv) = (i): Suppose that a = b+ nt for some t € Z. Then a — b = nt. By
Definition 10.1, @ — b is divisible by n and so a = b(mod n). m



Congruence modulo n is an equivalence relation on Z as shown in the next
theorem.

Theorem 10.5
For each positive integer n, congruence modulo n is an equivalence relation
on Z.

Proof.

We shall show that = is reflexive, symmetric, and transitive.

Reflexive: Since a — a = 0t for any t € Z then a = a(mod n).

Symmetric: Let a,b € Z be such that a = b(mod n). Then a — b = nt for
some t € Z. Multiplying both sides by —1 to obtain b — a = n(—t). Since
(Z,+) is a group then —t € Z and so b = a(mod n).

Transitive: Suppose that a = b(mod n) and b = c¢(mod n). Then a — b = nt
and b — ¢ = nt’ for some t,t' € Z. Adding these equations together to obtain
a—c=n(t+t). But Z is closed under addition so that ¢t + ¢’ € Z. Hence,
a=c(modn).

Definition 10.3

The equivalence classes for the equivalence relation = are called congruence
classes. They form a partition of Z. The set of all congruence classes is
denoted by Z,.

The following theorem shows that for each positive integer n, there are n
congruence classes and each integer is congruent to either 0,1,2,---,n —
1. Thus, the set {0,1,2,---,n — 1} is a complete set of equivalence class
representatives of the relation =.

Theorem 10.6
Let n be a positive integer. Then each integer is congruent modulo n to

precisely one of the integers 0,1,2,---,n — 1. That is, there are n distinct
congruence classes, [0],[1],---,[n — 1].
Proof.

Let a be any integer. Then by the Division Algorithm there exist unique
integers ¢ and r such that

a=nqg+r, 0<r<n.



This impplies that a — r = ng and so by Theorem 10.4, a = r(mod n). Since
0 < r < n then a is congruent to at least one of the integers,0,1,2,---,n —
1.We will show that a is congruent to exactly one of the integers listed. To
see this, assume that a = s(mod n) where 0 < s < n. Then by Theorem 10.4,
a = nt + s for some t € Z. By uniqueness, we have r = s. This completes a
proof of the theorem.m

Remark 10.3
It follows from the previous theorem that

Ly = {[O]? [1]7 [2]7 B [n - 1]}

Example 10.4
For n = 4 the congruence classes are

[0] = {~~,—8,—4,0,4,8,~~}
[1] = {...7_77_37175797...}
2 = {--,-6,-2,2,6,10,---}
[3] = {---,—5,—1,3,7,11,---}

Thus, Z4 = {[0]7 [1]7 [2]7 [3] }.



