Arkansas Tech University
MATH 3243: Differential Equations I (Fall 2021)
Dr. Marcel B Finan

8.4 Exponential Matrix

In this section we look at a different way for solving the homogeneous system $\mathbf{X}^{\prime}=\mathbf{A X}$ that involves the concept of exponential matrix which we define next.
For any $n \times n$ matrix \mathbf{A} of constant entries, we define the exponential matrix

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\cdots+\frac{\mathbf{A}^{n} t^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{\mathbf{A}^{n} t^{n}}{n!}
$$

where \mathbf{I} is the matrix with 1 on the main diagonal and 0 elsewhere. Also, $\mathbf{A}^{n}=\mathbf{A}\left(\mathbf{A}^{n-1}\right)$.

Example 8.4.1

Find $e^{\mathbf{A} t}$ if $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Solution.

We have

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2^{1}
\end{array}\right] \\
\mathbf{A}^{2} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 2^{2}
\end{array}\right] \\
\mathbf{A}^{3} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 2^{3}
\end{array}\right] \\
\mathbf{A}^{4} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 2^{4}
\end{array}\right]
\end{aligned}
$$

Inductively, we have

$$
\mathbf{A}^{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 2^{k-1}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 2^{k}
\end{array}\right] .
$$

Hence,

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\cdots+\frac{\mathbf{A}^{n} t^{n}}{n!}+\cdots \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \frac{t}{1!}+\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right] \frac{t^{2}}{2!}+\cdots \\
& =\left[\begin{array}{cc}
1+\frac{t}{1!}+\frac{t^{2}}{2!}+\cdots & 0 \\
0 & 1+\frac{(2 t)}{1!}+\frac{(2 t)^{2}}{2!}+\cdots
\end{array}\right]=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right]
\end{aligned}
$$

Next, we find the derivative of $e^{\mathbf{A} t}$. We have

$$
\begin{aligned}
\frac{d}{d t} e^{\mathbf{A} t} & =\frac{d}{d t}\left[\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\cdots+\frac{\mathbf{A}^{n} t^{n}}{n!}+\cdots\right] \\
& =\mathbf{A}+\mathbf{A}^{2} t+\mathbf{A}^{3} \frac{t^{2}}{2!}+\mathbf{A}^{4} \frac{t^{3}}{3!} \cdots \\
& =\mathbf{A}\left[\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\cdots\right]=\mathbf{A} e^{\mathbf{A} t}
\end{aligned}
$$

Next, we will show that $\mathbf{X}=e^{\mathbf{A t}} \mathbf{C}$ is a solution to the homogeneous system $\mathbf{X}^{\prime}=\mathbf{A X}$. Indeed,

$$
\mathbf{X}^{\prime}=\mathbf{A} e^{\mathbf{A} t} \mathbf{C}=\mathbf{A} \mathbf{X}
$$

Example 8.4.2

Using exponential matrices, find the general solution to $\mathbf{X}^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \mathbf{X}$.

Solution.

We have

$$
\mathbf{X}=e^{\mathbf{A} t} \mathbf{C}=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=c_{1}\left[\begin{array}{c}
e^{t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
e^{2 t}
\end{array}\right]
$$

Exponential matrices can be used to solve the non-homogeneous system $\mathbf{X}^{\prime}=$ $\mathbf{A X}+\mathbf{F}$. The complementary solution is found as above and the particular solution to the non-homoegenous system is

$$
\mathbf{X}_{p}=e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{F}(s) d s
$$

Indeed,

$$
\mathbf{X}_{p}^{\prime}=e^{\mathbf{A} t} e^{-\mathbf{A} t} \mathbf{F}(t)+\mathbf{A} e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{F}(s) d s=\mathbf{A} \mathbf{X}_{p}+\mathbf{F}
$$

Example 8.4.3

Using exponential matrices, find the general solution to

$$
\mathbf{X}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \mathbf{X}+\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

Solution.

From Example 8.4.2, we found

$$
\mathbf{X}_{c}=c_{1}\left[\begin{array}{c}
e^{t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
e^{2 t}
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{t} \\
c_{2} e^{2 t}
\end{array}\right]
$$

The complementary solution is

$$
\begin{aligned}
\mathbf{X}_{p} & =\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right] \int_{0}^{t}\left[\begin{array}{cc}
e^{-s} & 0 \\
0 & e^{-2 s}
\end{array}\right]\left[\begin{array}{c}
3 \\
-1
\end{array}\right] d s \\
& =\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right] \int_{0}^{t}\left[\begin{array}{c}
3 e^{-s} \\
-e^{-2 s}
\end{array}\right] d s \\
& =\left.\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right]\left[\begin{array}{c}
-3 e^{-s} \\
\frac{1}{2} e^{-2 s}
\end{array}\right]\right|_{0} ^{t} \\
& =\left.\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right]\left[\begin{array}{c}
-3 e^{-t}+3 \\
\frac{1}{2} e^{-2 t}-\frac{1}{2}
\end{array}\right]\right|_{0} ^{t} \\
& =\left[\begin{array}{c}
-3+3 e^{t} \\
\frac{1}{2}-\frac{1}{2} e^{2 t}
\end{array}\right]
\end{aligned}
$$

Hence, the general solution is

$$
\mathbf{X}(t)=\left[\begin{array}{c}
c_{1} e^{t} \\
c_{2} e^{2 t}
\end{array}\right]+\left[\begin{array}{c}
-3+3 e^{t} \\
\frac{1}{2}-\frac{1}{2} e^{2 t}
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{t}+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{2 t}+\left[\begin{array}{c}
-3 \\
\frac{1}{2}
\end{array}\right]
$$

Finding $e^{\mathbf{A t} t}$ Using the Laplace Transform
We can find $e^{\mathbf{A} t}$ by using Laplace transform. Indeed, $\mathbf{X}=e^{\mathbf{A} t}$ satisfies the initial value problem $\mathbf{X}^{\prime}=\mathbf{A X}, \quad \mathbf{X}(0)=\mathbf{I}$. Moreover,

$$
s \mathcal{L}(\mathbf{X})-\mathbf{X}(0)=A \mathcal{L}(\mathbf{X}) \Rightarrow(s \mathbf{I}-\mathbf{A}) \mathcal{L}(\mathbf{X})=\mathbf{I}
$$

Thus,

$$
\mathbf{X}=e^{\mathbf{A} t}=\mathcal{L}^{-1}\left[(s \mathbf{I}-\mathbf{A})^{-1}\right] .
$$

Example 8.4.4

Use the Laplace transform to compute $e^{\mathbf{A} t}$ where $\left[\begin{array}{cc}4 & 3 \\ -4 & -4\end{array}\right]$.
Solution.
We have

$$
\begin{aligned}
s \mathbf{I}-\mathbf{A} & =\left[\begin{array}{cc}
s-4 & -3 \\
4 & s+4
\end{array}\right] \\
(s \mathbf{I}-\mathbf{A})^{-1} & =\left[\begin{array}{cc}
\frac{s+4}{s^{2}-4} & \frac{3}{s^{2}-4} \\
-\frac{4}{s^{2}-4} & \frac{s-4}{s^{2}-4}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{3}{2} \\
s-2 & \frac{1}{2} \\
-\frac{1}{s+2} & \frac{3}{4} \\
-\frac{1}{s-2}-\frac{3}{4} & \frac{-\frac{1}{2}}{s+2}+\frac{\frac{3}{2}}{s+2}
\end{array}\right] \\
e^{\mathbf{A} t} & =\mathcal{L}^{-1}\left(\left[\begin{array}{cc}
\frac{3}{2} & \frac{\frac{1}{2}}{s-2} \\
-\frac{1}{s+2} & \frac{3}{4}-\frac{3}{4} \\
-\frac{1}{s+2} \\
s+2 & \frac{-\frac{1}{2}}{s-2}+\frac{\frac{3}{2}}{s+2}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
\frac{3}{2} e^{2 t}-\frac{1}{2} e^{-2 t} & \frac{3}{4} e^{2 t}-\frac{3}{4} e^{-2 t} \\
-e^{2 t}+e^{-2 t} & -\frac{1}{2} e^{2 t}+\frac{3}{2} e^{-2 t}
\end{array}\right]
\end{aligned}
$$

