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8.3 Non Homogeneous Linear Systems

As in the case of a single non-homogeneous linear equation, the general so-
lution to the non-homogenous linear system

X' =AX 4+ F (8.3.1)

is the sum of the general solution of the homogeneous system and a particular
solution of the non-homogeneous system. That is,

X =X, +X,

where X, is the complementary solution and X, is the particular solution.
One way for finding X, is by means of the so-called the method of variation
of parameters which we discuss next.

Let the general solution to the homogeneous system be
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which can be written as
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We call ®(t) the fundamental matrix of the homogeneous system. The
following observations about this matrix are important. First, ®(¢) is the
Wronskian of Xy, Xy, -+, X,,. Since these vectors are linearly independent,
for the system ®(¢)X = 0 to have a trivial solution the matrix ®(¢) must be
invertible!. That is, the determinant of ®(t) is non-zero.

Second, the system X’ = AX implies that X/; = AX, fori = 1,2,--- ,n.
Hence,

®'(t)=[X] X, - X |=[AX; AX,; --- AX,]=Ad(1).

The variation of parameters method seeks a solution of the form X, =
®(t)U(t) where

is to be found. Since X, is a solution to (8.3.1), we have
(U (t) + @' (1)U(t) = A®(H)U(t) + F(t)

" S(U(t) + AP (H)U(t) = A®(1)U(t) + F(t).
Thus,
®()U'(t) = F(t).

Since ®(t) is invertible, the last equation implies
U'(t) =& '(t)F(t) = U(t) = /q)—l(t)F(t)dt = X, = ®(t) / & (1)F(t)dt.

Example 8.3.1
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Solution.
Indeed, we have
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'An n x n matrix A is invertible if and only if AA=! = A='A =1,,, where I, is the
identity matrix.




Example 8.3.2
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Solution.
First, we find the complementary solution. The characteristic equation is

—3—-A 1
2 —4 -\

‘:o:(A+2)(A+5):O.

Thus, \y = —2 and \y = —5. The eigenvectors of \; satisfy the equation
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which yields the system

—31‘1 + Xy = — 21‘1
21‘1 — 4ZE2 = — 21’2
which gives x1 = z5. Thus, an eigenvector of A\ = —2 is
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Likewise, a solution corresponding to Ay = —5 is
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Hence, using the previous example, we find
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The general solution to the non-homogeneous system is
L o 1 —5t =
X(t)=¢ e+ e+ t—1| 3 | +
1 —2 5
Remark 8.3.1

If an initial value is given, say X(fy) = Xo then the indefinite integral
J @7 (t)F(t)dt is being replaced by [ &!(s)F(s)ds.
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