Arkansas Tech University
MATH 3243: Differential Equations I (Fall 2021)
Dr. Marcel B Finan

8.3 Non Homogeneous Linear Systems

As in the case of a single non-homogeneous linear equation, the general solution to the non-homogenous linear system

$$
\begin{equation*}
X^{\prime}=A X+F \tag{8.3.1}
\end{equation*}
$$

is the sum of the general solution of the homogeneous system and a particular solution of the non-homogeneous system. That is,

$$
\mathbf{X}=\mathbf{X}_{c}+\mathbf{X}_{p}
$$

where \mathbf{X}_{c} is the complementary solution and \mathbf{X}_{p} is the particular solution. One way for finding \mathbf{X}_{p} is by means of the so-called the method of variation of parameters which we discuss next.
Let the general solution to the homogeneous system be

$$
\mathbf{X}_{c}=c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2}+\cdots+c_{n} \mathbf{X}_{n}=c_{1}\left[\begin{array}{c}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right]+c_{2}\left[\begin{array}{c}
x_{12} \\
x_{22} \\
\vdots \\
x_{n 2}
\end{array}\right]+\cdots+c_{n}\left[\begin{array}{c}
x_{1 n} \\
x_{2 n} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

which can be written as

$$
\mathbf{X}_{c}=\left[\begin{array}{c}
c_{1} x_{11}+c_{2} x_{12}+\cdots+c_{n} x_{1 n} \\
c_{1} x_{21}+c_{2} x_{22}+\cdots+c_{n} x_{2 n} \\
\vdots \\
c_{1} x_{n 1}+c_{2} x_{n 2}+\cdots+c_{n} x_{n n}
\end{array}\right]=\boldsymbol{\Phi}(t) \mathbf{C}
$$

where

$$
\boldsymbol{\Phi}(t)=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & & & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right] \text { and } \mathbf{C}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

We call $\boldsymbol{\Phi}(t)$ the fundamental matrix of the homogeneous system. The following observations about this matrix are important. First, $\boldsymbol{\Phi}(t)$ is the Wronskian of $\mathbf{X}_{1}, \mathbf{X}_{2}, \cdots, \mathbf{X}_{n}$. Since these vectors are linearly independent, for the system $\mathbf{\Phi}(t) \mathbf{X}=\mathbf{0}$ to have a trivial solution the matrix $\mathbf{\Phi}(t)$ must be invertible ${ }^{1}$. That is, the determinant of $\boldsymbol{\Phi}(t)$ is non-zero.
Second, the system $\mathbf{X}^{\prime}=\mathbf{A X}$ implies that $\mathbf{X}_{i}^{\prime}=\mathbf{A} \mathbf{X}_{i}$ for $i=1,2, \cdots, n$. Hence,

$$
\boldsymbol{\Phi}^{\prime}(t)=\left[\begin{array}{llll}
\mathbf{X}_{1}^{\prime} & \mathbf{X}_{2}^{\prime} & \cdots & \mathbf{X}_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{A} \mathbf{X}_{1} & \mathbf{A} \mathbf{X}_{2} & \cdots & \mathbf{A} \mathbf{X}_{n}
\end{array}\right]=\mathbf{A} \boldsymbol{\Phi}(t)
$$

The variation of parameters method seeks a solution of the form $\mathbf{X}_{p}=$ $\boldsymbol{\Phi}(t) \mathbf{U}(t)$ where

$$
\mathbf{U}(t)=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

is to be found. Since \mathbf{X}_{p} is a solution to (8.3.1), we have

$$
\boldsymbol{\Phi}(t) \mathbf{U}^{\prime}(t)+\boldsymbol{\Phi}^{\prime}(t) \mathbf{U}(t)=\mathbf{A} \boldsymbol{\Phi}(t) \mathbf{U}(t)+\mathbf{F}(t)
$$

or

$$
\mathbf{\Phi}(t) \mathbf{U}^{\prime}(t)+\mathbf{A} \mathbf{\Phi}(t) \mathbf{U}(t)=\mathbf{A} \boldsymbol{\Phi}(t) \mathbf{U}(t)+\mathbf{F}(t)
$$

Thus,

$$
\mathbf{\Phi}(t) \mathbf{U}^{\prime}(t)=\mathbf{F}(t)
$$

Since $\boldsymbol{\Phi}(t)$ is invertible, the last equation implies
$\mathbf{U}^{\prime}(t)=\boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) \Rightarrow \mathbf{U}(t)=\int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t \Rightarrow \mathbf{X}_{p}=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t$.

Example 8.3.1

Show $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{d}{a d-b c} & -\frac{b}{a d-b c} \\ -\frac{c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right]$.

Solution.

Indeed, we have

$$
\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]\left[\begin{array}{cc}
\frac{d}{a d-b c} & -\frac{b}{a d-b c} \\
-\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

[^0]
Example 8.3.2

Solve: $\mathbf{X}^{\prime}=\left[\begin{array}{cc}-3 & 1 \\ 2 & -4\end{array}\right] \mathbf{X}+\left[\begin{array}{c}3 t \\ e^{-t}\end{array}\right]$.
Solution.
First, we find the complementary solution. The characteristic equation is

$$
\left|\begin{array}{cc}
-3-\lambda & 1 \\
2 & -4-\lambda
\end{array}\right|=0 \Rightarrow(\lambda+2)(\lambda+5)=0
$$

Thus, $\lambda_{1}=-2$ and $\lambda_{2}=-5$. The eigenvectors of λ_{1} satisfy the equation

$$
\left[\begin{array}{cc}
-3 & 1 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-2\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

which yields the system

$$
\begin{aligned}
-3 x_{1}+x_{2} & =-2 x_{1} \\
2 x_{1}-4 x_{2} & =-2 x_{2}
\end{aligned}
$$

which gives $x_{1}=x_{2}$. Thus, an eigenvector of $\lambda_{1}=-2$ is

$$
\mathbf{K}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

with corresponding solution

$$
\mathbf{X}_{1}=e^{-2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
e^{-2 t} \\
e^{-2 t}
\end{array}\right] .
$$

Likewise, a solution corresponding to $\lambda_{2}=-5$ is

$$
\mathbf{X}_{2}=\left[\begin{array}{c}
e^{-5 t} \\
-2 e^{-5 t}
\end{array}\right]
$$

Hence, using the previous example, we find

$$
\boldsymbol{\Phi}(t)=\left[\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right] \Rightarrow \boldsymbol{\Phi}^{-1}(t)\left[\begin{array}{cc}
\frac{2}{3} e^{2 t} & \frac{1}{3} e^{2 t} \\
\frac{1}{3} e^{5 t} & -\frac{1}{3} e^{5 t}
\end{array}\right] .
$$

Thus,

$$
\begin{aligned}
\mathbf{X}_{p} & =\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t\left[\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{2}{3} e^{2 t} & \frac{1}{3} e^{2 t} \\
\frac{1}{3} e^{5 t} & -\frac{1}{3} e^{5 t}
\end{array}\right]\left[\begin{array}{c}
3 t \\
e^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right] \int\left[\begin{array}{c}
2 t e^{2 t}+\frac{1}{3} e^{t} \\
t e^{5 t}-\frac{1}{3} e^{4 t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
e^{-2 t} & e^{-5 t} \\
e^{-2 t} & -2 e^{-5 t}
\end{array}\right]\left[\begin{array}{c}
t e^{2 t}-\frac{1}{2} e^{2 t}+\frac{1}{3} e^{t} \\
\frac{1}{5} t e^{5 t}-\frac{1}{25} e^{5 t}-\frac{1}{12} e^{4 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{6}{5} t+\frac{1}{4} e^{-t}-\frac{27}{50} \\
\frac{3}{5} t+\frac{1}{2} e^{-t}-\frac{21}{50}
\end{array}\right] .
\end{aligned}
$$

The general solution to the non-homogeneous system is

$$
\mathbf{X}(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-2 t}+c_{2}\left[\begin{array}{c}
1 \\
-2
\end{array}\right] e^{-5 t}+\left[\begin{array}{c}
\frac{6}{5} \\
\frac{3}{5}
\end{array}\right] t-\left[\begin{array}{c}
\frac{27}{50} \\
\frac{21}{50}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2}
\end{array}\right] e^{-t}
$$

Remark 8.3.1

If an initial value is given, say $\mathbf{X}\left(t_{0}\right)=\mathbf{X}_{0}$ then the indefinite integral $\int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t$ is being replaced by $\int_{t_{0}}^{t} \boldsymbol{\Phi}^{-1}(s) \mathbf{F}(s) d s$.

[^0]: ${ }^{1}$ An $n \times n$ matrix \mathbf{A} is invertible if and only if $\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{n}$, where \mathbf{I}_{n} is the identity matrix.

