Arkansas Tech University
MATH 3243: Differential Equations I (Fall 2021)
Dr. Marcel B Finan

8.2 Homogeneous Linear Systems

Given an $n \times n$ matrix A and a constant λ. The equation

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccccc}
a_{11}-\lambda & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33}-\lambda & \cdots & a_{3 n} \\
\vdots & & & & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}-\lambda
\end{array}\right|=0
$$

is called the characteristic equation of the matrix A; its solutions are called the eigenvalues of \mathbf{A}.
If λ is an eigenvalue of A and \mathbf{x} is a $n \times 1$ non-zero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ then we call \mathbf{x} and eigenvector of λ.
Now, consider a homogeneous system $X^{\prime}=A X$. We seek solutions of the form $X=e^{\lambda t} \mathbf{K}$ where \mathbf{K} is a non-zero vector. Thus, $\lambda e^{\lambda t} \mathbf{K}=e^{\lambda t} A \mathbf{K}$ which can be written as

$$
\begin{equation*}
(A-\lambda I) \mathbf{K}=0 \tag{8.2.1}
\end{equation*}
$$

where

$$
I=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

For the system in (8.2.1) to have a non-trivial solution, λ must be an eigenvalue of A.

Distinct Real Eigenvalues

If the matrix A has n distinct real eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ with corresponding eigenvectors $\mathbf{K}_{\mathbf{1}}, \mathbf{K}_{\mathbf{2}}, \cdots, \mathbf{K}_{\mathbf{n}}$ then the vectors

$$
\mathbf{X}_{\mathbf{1}}=e^{\lambda_{1} t} \mathbf{K}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}=e^{\lambda_{2} t} \mathbf{K}_{\mathbf{2}}, \cdots, \mathbf{X}_{\mathbf{n}}=e^{\lambda_{n} t} \mathbf{K}_{\mathbf{n}}
$$

form a fundamental set of solutions to the homogeneous system and the general solution is given by

$$
\mathbf{X}(t)=c_{1} e^{\lambda_{1} t} \mathbf{K}_{\mathbf{1}}+c_{2} e^{\lambda_{2} t} \mathbf{K}_{\mathbf{2}}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{K}_{\mathbf{n}}
$$

Example 8.2.1

Solve the initial value problem

$$
\mathbf{X}^{\prime}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right] \mathbf{X}, \quad \mathbf{X}(0)=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

Solution.
We first find the eigenvalues of A by solving the characteristic equation

$$
\left|\begin{array}{cc}
\frac{1}{2}-\lambda & 0 \\
1 & -\frac{1}{2}-\lambda
\end{array}\right|=-\left(\frac{1}{2}-\lambda\right)\left(\frac{1}{2}+\lambda\right)=0
$$

and so the eigenvalues are $\lambda_{1}=\frac{1}{2}$ and $\lambda_{2}=-\frac{1}{2}$.
Now for $\lambda_{1}=\frac{1}{2}$ the equation

$$
\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

gives $k_{1}-k_{2}=0$. Choose $k_{1}=1$ so that $k_{2}=1$ and

$$
\mathbf{K}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Likewise, for $\lambda_{2}=-\frac{1}{2}$ the equation

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

gives $k_{1}=0$ and k_{2} arbitrary. Choose $k_{2}=1$ so that

$$
\mathbf{K}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Hence, the general solution is

$$
\mathbf{X}(t)=c_{1} e^{\frac{t}{2}} \mathbf{K}_{\mathbf{1}}+c_{2} e^{-\frac{t}{2}} \mathbf{K}_{\mathbf{2}} .
$$

Using the initial condition, we find

$$
\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

which implies $c_{1}=3$ and $c_{1}+c_{2}=5$. That is, $c_{1}=3$ and $c_{2}=2$. The solution to the initial value problem is

$$
\mathbf{X}(t)=3 e^{\frac{t}{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2 e^{-\frac{t}{2}}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Repeated Eigenvalues

When the characteristic equation has a factor of the form $(a-\lambda)^{n}$ then we say that λ is an eigen value of multiplicity n. In the case $n=2$, one solution is $\mathbf{X}_{\mathbf{1}}=e^{\lambda t} \mathbf{K}$ and a second solution is $\mathbf{X}_{\mathbf{2}}=e^{\lambda t} t \mathbf{K}+e^{\lambda t} \mathbf{P}$. Note that since this is a solution to the homogeneous equation, by substitution we find

$$
(A \mathbf{K}-\lambda \mathbf{K}) t e^{\lambda t}+(A \mathbf{P}-\lambda \mathbf{P}-\mathbf{K}) e^{\lambda t}=\mathbf{0}
$$

which implies that \mathbf{P} satisfies the equation $(A-\lambda \mathbf{I}) \mathbf{P}=\mathbf{K}$.

Example 8.2.2

Solve

$$
\mathbf{X}^{\prime}=\left[\begin{array}{cc}
3 & -18 \\
2 & -9
\end{array}\right] \mathbf{X}
$$

Solution.

The characteristic equation is

$$
\left|\begin{array}{cc}
3-\lambda & -18 \\
2 & -9-\lambda
\end{array}\right|=(\lambda+3)^{2}=0
$$

so that $\lambda=-3$ is of multiplicity 2 . For $\lambda=-3$, we have

$$
\left[\begin{array}{cc}
6 & -18 \\
2 & -6
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which gives $6 k_{1}-18 k_{2}=0$ and $2 k_{1}-6 k_{2}=0$. Solving, we find $k_{2}=3 k_{2}$. Letting $k_{2}=1$ we find $k_{1}=3$. Hence,

$$
\mathbf{K}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

To find \mathbf{P} we solve the system

$$
\left[\begin{array}{cc}
6 & -18 \\
2 & -6
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

which yields $6 p_{1}-18 p_{2}=3$ and $2 p_{1}-6 p_{2}=1$. Solving this system, we find $6 p_{1}-18 p_{2}=3$. Letting $p_{2}=0$ we find $p_{1}=\frac{1}{2}$. Hence,

$$
\mathbf{P}=\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]
$$

and the general solution is

$$
\mathbf{X}=c_{1} e^{-3 t}\left[\begin{array}{l}
3 \\
1
\end{array}\right]+c_{2}\left(t e^{-3 t}\left[\begin{array}{l}
3 \\
1
\end{array}\right]+e^{-3 t}\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]\right)
$$

Complex Eigenvalues

By a complex number we mean a number that can be written in the form $\lambda=\alpha+i \beta$ where $i=\sqrt{-1}$. We call α the real part pf λ and β the imaginary part. Also, the conjugate of $\lambda=\alpha+i \beta$ is the complex number $\bar{\lambda}=\alpha-i \beta$. We recall that complex solutions to an algebraic equation always appear in conjugate pairs. That is, if $\lambda_{1}=\alpha+i \beta$ is a solution to an equation then $\lambda_{2}=\alpha-i \beta$ is also a solution.
Now, if $\lambda=\alpha+i \beta$ is an eigenvalue of A with complex eigenvector \mathbf{K} then the general solution to the homogeneous equation is given

$$
X(t)=c_{1} e^{\alpha t}\left[\mathbf{B}_{\mathbf{1}} \cos \beta t-\mathbf{B}_{\mathbf{2}} \sin \beta t\right]+c_{2} e^{\alpha t}\left[\mathbf{B}_{\mathbf{2}} \cos \beta t+\mathbf{B}_{\mathbf{1}} \sin \beta t\right]
$$

where $\mathbf{B}_{\mathbf{1}}$ is the real part of \mathbf{K} and $\mathbf{B}_{\mathbf{2}}$ is the imaginary part of \mathbf{K}.

Example 8.2.3

Solve

$$
\mathbf{X}^{\prime}=\left[\begin{array}{cc}
2 & 8 \\
-1 & -2
\end{array}\right] \mathbf{X}
$$

Solution.

The characteristic equation is

$$
\left|\begin{array}{cc}
2-\lambda & 8 \\
-1 & -2-\lambda
\end{array}\right|=\lambda^{2}+4=0
$$

so that $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$. For $\lambda_{1}=2 i$, we have

$$
\left[\begin{array}{cc}
2-2 i & 8 \\
-1 & -2-2 i
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which gives $k_{1}=-2(1+i) k_{2}$. Letting $k_{2}=-1$ we find $k_{1}=2+2 i$. Hence,

$$
\mathbf{K}=\left[\begin{array}{c}
2+2 i \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+i\left[\begin{array}{l}
2 \\
0
\end{array}\right] .
$$

Thus,

$$
\mathbf{B}_{\mathbf{1}}=\operatorname{Re}(\mathbf{K})=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \text { and } \mathbf{B}_{\mathbf{2}}=\operatorname{Im}(\mathbf{K})=\left[\begin{array}{l}
2 \\
0
\end{array}\right] .
$$

The general solution to the given system is

$$
\begin{aligned}
\mathbf{X} & =c_{2}\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \cos 2 t-\left[\begin{array}{l}
2 \\
0
\end{array}\right] \sin 2 t\right)+c_{2}\left(\left[\begin{array}{l}
2 \\
0
\end{array}\right] \cos 2 t-\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \sin 2 t\right) \\
& =c_{1}\left[\begin{array}{c}
2 \cos 2 t-2 \sin 2 t \\
-\cos 2 t
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \cos 2 t+2 \sin 2 t \\
-\sin 2 t
\end{array}\right]
\end{aligned}
$$

