Arkansas Tech University
MATH 3243: Differential Equations I (Fall 2021)
Dr. Marcel B Finan

7.5 The Laplace Transform of the Dirac Delta Function

Mechanical systems are often acted on by an external force. Heaviside functions can be thought of as switches changing a forcing function at specified time. For example, $f(t) h(t-a)$ swiches off to 0 for $t<a$ and switches on to $f(t)$ for $t \geq a$. However, Heaviside functions are really not suited to forcing functions that exert a large force over a small time frame. An example of such a force is the striking of an object by a hammer. In this section, we introduce a function that deals with such kind of forcing functions. Moreover, we will see that the Laplace transform of such a function is 1 .

The Dirac Delta Function

For $a>0$ and $t_{0}>0$, we define the piecewise continuous function

$$
\delta_{a}\left(t-t_{0}\right)=\left\{\begin{array}{cc}
0, & 0 \leq t<t_{0}-a \\
\frac{1}{2 a}, & t_{0}-a \leq t<t_{0}+a \\
0, & t \geq t_{0}+a
\end{array}\right.
$$

The graph of such a function is shown in Figure 7.5.1.

Figure 7.5.1
The area under the graph is 1 . Indeed, we have

$$
\int_{0}^{\infty} \delta_{a}\left(t-t_{0}\right) d t=\int_{t_{0}-a}^{t_{0}+a} \frac{1}{2 a} d t=\left.\frac{t}{2 a}\right|_{t_{0}-a} ^{t_{0}+a}=1
$$

Also, we can express δ_{a} in terms of the Heaviside function. Indeed,

$$
\delta_{a}\left(t-t_{0}\right)=\frac{1}{2 a}\left[h\left(t-\left(t_{0}-a\right)\right)-h\left(t-\left(t_{0}+a\right)\right)\right] .
$$

The behavior of $\delta_{a}\left(t-t_{0}\right.$ as $a \rightarrow \infty$ is shown in Figure 7.5.2.

Figure 7.5.2

The Dirac delta function is defined as

$$
\delta\left(t-t_{0}\right)=\lim _{a \rightarrow 0} \delta_{a}\left(t-t_{0}\right)
$$

or explicitly by

$$
\delta\left(t-t_{0}\right)=\left\{\begin{array}{cc}
\infty, & t=t_{0} \\
0, & t \neq t_{0}
\end{array}\right.
$$

Moreover,

$$
\int_{0}^{\infty} \delta\left(t-t_{0}\right)=\lim _{a \rightarrow 0} \int_{0}^{\infty} \delta_{a}\left(t-t_{0}\right) d t=1
$$

The Dirac Delta function is not a real function in the conventional sense as no function defined on the real numbers has these properties. It is instead an example of something called a generalized function or distribution.

Next, we look for the Laplace transform of $\delta\left(t-t_{0}\right)$. We have

$$
\begin{aligned}
\mathcal{L}\left[\delta_{a}\left(t-t_{0}\right)\right] & =\frac{1}{2 a}\left[\mathcal{L}\left[h\left(t-\left(t_{0}-a\right)\right)\right]-\mathcal{L}\left[h\left(t-\left(t_{0}+a\right)\right)\right]\right. \\
& =\frac{1}{2 a}\left[\frac{e^{-s\left(t_{0}-a\right)}}{s}-\frac{e^{-s\left(t_{0}+a\right)}}{s}\right]=e^{-s t_{0}}\left[\frac{e^{s a}-e^{-s a}}{2 s a}\right] \\
& =e^{-s t_{0}} \frac{\sinh (s a)}{a s} .
\end{aligned}
$$

Thus,

$$
\mathcal{L}\left[\delta\left(t-t_{0}\right)\right]=\lim _{a \rightarrow 0} e^{-s t_{0}} \frac{\sinh (s a)}{a s}=\lim _{a \rightarrow 0} e^{-s t_{0}} \frac{s \cosh (s a)}{s}=e^{-s t_{0}} .
$$

In particular,

$$
\mathcal{L}[\delta(t)]=1
$$

This last result emphasezes the fact that $\delta(t)$ is not a function since we know that for a function $f(t)$ we must have $\lim _{s \rightarrow 0} \mathcal{L}[f(t)]=0$.

Example 7.5.1
Solve the IVB: $y^{\prime \prime}+y=4 \delta(t-2 \pi), \quad y(0)=1, y^{\prime}(0)=0$.

Solution.

Taking the Laplace transoform of both sides, we find

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=4 e^{-2 \pi s} .
$$

Using the initial conditions, we find

$$
Y(s)=\frac{s}{s^{2}+1}+\frac{4 e^{-2 \pi s}}{s^{2}+1}
$$

Taking the inverse Laplace transform, we find

$$
y(t)=\mathcal{L}^{-1}\left[\frac{s}{s^{2}+1}\right]+4 \mathcal{L}^{-1}\left[\frac{e^{-2 \pi s}}{s^{2}+1}\right]=\cos t+4 \sin (t-2 \pi) h(t-2 \pi)
$$

