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7.3 Shifting Theorems

Properties of the Laplace transform enable us to find Laplace transforms
without having to compute them directly from the definition. In this sec-
tion, we establish properties of Laplace transform that will be useful for
solving ODEs.

Shifting Theorems
The next two results are referred to as the first and second shift theorems.
As with the linearity property, the shift theorems increase the number of
functions for which we can easily find Laplace transforms.

Theorem 7.3.1 (First Shifting Theorem)
If f(t) is a piecewise continuous function for t ≥ 0 and has exponential order
then for any real number α we have

L[eαtf(t)] = F (s− α),

where L[f(t)] = F (s).

Proof.
Wew have

L[eαtf(t)] =

∫ ∞
0

e−steαtf(t)dt =

∫ ∞
0

e−(s−a)tf(t)dt = F (s− a)

Geometrically, the graph of F (s−a) is obtained by shifting the graph of F (s)
a units to the right if a > 0 and to the left if a < 0.

Example 7.3.1
Evaluate: (a) L[e2tt2] (b) L[e3t cos 2t].

Solution.
(a) By Theorem 7.3.1, we have L[e2tt2] = F (s − 2) where L[t2] = 2!

s3
=

F (s), s > 0. Thus, L[e2tt2] = 2
(s−2)3 , s > 2.
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(b) As in part (a), we have L[e3t cos 2t] = F (s − 3) where L[cos 2t] = F (s).
But L[cos 2t] = s

s2+4
, s > 0. Thus,

L[e3t cos 2t] =
s− 3

(s− 3)2 + 4
, s > 3

The next example, illustrates the use of First Shifting in connection with
partial fractions decomposition.

Example 7.3.2

Evaluate: (a) L−1[ 2s+5
(s−3)2 ] (b) L−1[

s
2
+ 5

3

s2+4s+6
].

Solution.
(a) Using the partial fractions decomposition, we can write

2s+ 5

(s− 3)2
=

2

s− 3
+

11

(s− 3)2
.

Thus,

L−1[ 2s+ 5

(s− 3)2
] = 2L−1[ 1

s− 3
] + 11L−1[ 1

(s− 3)2
] = 2e3t + 11te3t

where we used the fact that F (s) = 1
s2

= L[t].
(b) We have

L−1
[ s

2
+ 5

3

s2 + 4s+ 6

]
=L−1

[ 1
2
(s+ 2) + 2

3

(s+ 2)2 + 2

]
=

1

2
L−1

[
s+ 2

(s+ 2)2 + 2

]
+

2

3
√

2
L−1

[ √
2

(s+ 2)2 + 2

]
=

1

2
e−2t cos

√
2t+

2

3
√

2
e−2t sin

√
2t

where we used the fact that L[cos
√

2t] = s
s2+2

and L[sin
√

2t] =
√
2

s2+2

Example 7.3.3
Solve the initial value problem: y′′ − 6y′ + 9y = t2e3t, y(0) = 2, y′(0) = 17.
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Solution.
Taking the Laplace transform of both sides and using the linearity property
of L we can write

L[y′′]− 6L[y′] + 9L[y] = L[t2e3t].

Using the Laplace transform of derivatives and the First Shifting Theorem,
we obtain

s2Y (s)− sY (0)− Y ′(0)− 6[sY (s)− Y (0)] + 9Y (s) =
2

(s− 3)3
.

Using the initial conditions, the above equation can be rearranged as

(s2 − 6s+ 9)Y (s) = 2s+ 5 +
2

(s− 3)3

or

(s− 3)2Y (s) = 2s+ 5 +
2

(s− 3)3
.

Thus,

Y (s) =
2s+ 5

(s− 3)2
+

2

(s− 3)5
=

2

s− 3
+

11

(s− 3)2
+

2

(s− 3)5
.

Hence,

y(t) =L−1
[

2

s− 3
+

11

(s− 3)2
+

2

(s− 3)5

]
=2e3t + 11te3t +

1

12
t4e3t

In order to discuss the Second Shifting Theorem, we need to find the Laplace
transform of a unit step function.
The Heaviside step function is a piecewise continuous function defined by

h(t) =

{
1, t ≥ 0
0, t < 0.

Figure 7.3.1 displays the graph of h(t).
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Figure 7.3.1

Taking the Laplace transform of h(t) we find

L[h(t)] =

∫ ∞
0

h(t)e−stdt =

∫ ∞
0

e−stdt =

[
−e
−st

s

]∞
0

=
1

s
, s > 0.

A Heaviside function at α ≥ 0 is the shifted function h(t−α) (α units to the
right). For this function, the Laplace transform is

L[h(t− α)] =

∫ ∞
0

h(t− α)e−stdt =

∫ ∞
α

e−stdt =

[
−e
−st

s

]∞
α

=
e−αs

s
, s > 0.

Remark 7.3.1
A function of the form

f(t) =

{
f1(t), 0 ≤ t < a
f2(t), t ≥ a

can be written in terms of h(t) as

f(t) = f1(t)[f2(t)− f1(t)]h(t− a).

Likewise, if

f(t) =


0, 0 ≤ t < a
g(t), a ≤ t < b

0, t ≥ b

then f(t) = g(t)[h(t− a)− h(t− b)].

Example 7.3.4
Graph the function f(t) = h(t − 1) + h(4 − t) for t ≥ 0, where h(t) is the
Heaviside step function, and find L[f(t)].
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Solution.
Note that

f(t) =


1, 0 ≤ t < 1
2, 1 ≤ t ≤ 4
1, t > 4.

The graph of f(t) is shown in Figure 7.3.2.

Figure 7.3.2

Thus,

L[f(t)] = L[h(t−1)]+L[h(4−t)] =
e−s

s
+

∫ 4

0

e−stdt =
1 + e−s − e−4s

s
, s > 0

Theorem 7.3.2 (Second Shifting Theorem)
If F (s) = L[f(t)] and a > 0 then

L[f(t− a)h(t− a)] = e−asF (s).

Proof.
We have

L[f(t− a)h(t− a)] =

∫ ∞
0

e−stf(t− a)h(t− a)dt

=

∫ a

0

e−stf(t− a)h(t− a)dt+

∫ ∞
a

e−stf(t− a)h(t− a)dt

=

∫ ∞
a

e−stf(t− a)dt.

Let v = t− a, then∫ ∞
0

e−s(v+a)f(v)dv = e−as
∫ ∞
0

e−svf(v)dve−asL[f(t)] = e−asF (s)
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Example 7.3.5
Evaluate: L−1[ e−2s

s2
].

Solution.
Since L[t] = 1

s2
, by Theorem 7.3.2, we have

e−2s

s2
= L[(t− 2)h(t− 2)].

Therefore,

L−1
[
e−2s

s2

]
= (t− 2)h(t− 2) =

{
0, 0 ≤ t < 2

t− 2, t ≥ 2

Example 7.3.6
Find a formula for L[f(t)h(t− a)].

Solution.
We have

L[f(t)h(t− a)] =

∫ ∞
0

e−stf(t)h(t− a)dt

=

∫ a

0

e−stf(t)h(t− a)dt+

∫ ∞
a

e−stf(t)h(t− a)dt

=

∫ ∞
a

e−stf(t)dt =

∫ ∞
0

e−s(v+a)f(v + a)dv = e−asL[f(t+ a)]

Example 7.3.7
Evaluate: L[cos th(t− π)].

Solution.
Using the previous example, we find

L[cos th(t− π)] = e−πsL[cos (t+ π)] = e−πsL[− cos t] = − se
−πs

s2 + 1

Example 7.3.8
Use Laplace transform technique to solve the initial value problem

y′ + 4y = g(t), y(0) = 2

where

g(t) =


0, 0 ≤ t < 1
12, 1 ≤ t < 3
0, t ≥ 3
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Solution.
Note first that g(t) = 12[h(t− 1)− h(t− 3)] so that

L[g(t)] = 12L[h(t− 1)]− 12L[h(t− 3)] =
12(e−s − e−3s)

s
, s > 0.

Now taking the Laplace transform of the DE and using linearity we find

L[y′] + 4L[y] = L[g(t)].

But L[y′] = sL[y]− y(0) = sL[y]− 2. Letting L[y] = Y (s) we obtain

sY (s)− 2 + 4Y (s) = 12
e−s − e−3s

s
.

Solving for Y (s) we find

Y (s) =
2

s+ 4
+ 12

e−s − e−3s

s(s+ 4)
.

But

L−1
[

2

s+ 4

]
= 2e−4t

and

L−1
[
12
e−s − e−3s

s(s+ 4)

]
=3L−1

[
(e−s − e−3s)

(
1

s
− 1

s+ 4

)]
=3L−1

[
e−s

s

]
− 3L−1

[
e−3s

s

]
− 3L−1

[
e−s

s+ 4

]
+ 3L−1

[
e−3s

s+ 4

]
=3h(t− 1)− 3h(t− 3)− 3e−4(t−1)h(t− 1) + 3e−4(t−3)h(t− 3).

Hence,

y(t) = 2e−4t+3[h(t−1)−h(t−3)]−3[e−4(t−1)h(t−1)−e−4(t−3)h(t−3)], t ≥ 0
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