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7.1 The Laplace Transform: Basic Definitions

Laplace transform is yet another operational tool for solving constant coeffi-
cients linear differential equations. The process of solution consists of three
main steps:
• The given “hard” problem is transformed into a “simple” equation.
• This simple equation is solved by purely algebraic manipulations.
• The solution of the simple equation is transformed back to obtain the so-
lution of the given problem.
In this way the Laplace transformation reduces the problem of solving a dif-
ferential equation to an algebraic problem. The third step is made easier by
tables, whose role is similar to that of integral tables in integration.
The above procedure can be summarized by Figure 7.1.1.

Figure 7.1.1

In this section we introduce the concept of Laplace transform and discuss
some of its properties.
The Laplace transform is defined in the following way. Let f(t) be defined
for t ≥ 0. Then the Laplace transform of f, which is denoted by L[f(t)]
or by F (s), is defined by the following equation

L[f(t)] = F (s) = lim
T→∞

∫ T

0

f(t)e−stdt =

∫ ∞
0

f(t)e−stdt.

The integral which defines a Laplace transform is an improper integral. An
improper integral may converge or diverge, depending on the integrand.
When the improper integral is convergent then we say that the function f(t)
possesses a Laplace transform. The domain of F (s) depends on the function
f(t).
So what types of functions possess Laplace transforms, that is, what type of
functions guarantees a convergent improper integral?
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Example 7.1.1
Find the Laplace transform, if it exists, of each of the following functions.

(a) f(t) = eat (b) f(t) = 1 (c) f(t) = t (d) f(t) = sin (ωt).

Solution.
(a) Using the definition of Laplace transform we see that

L[eat] =

∫ ∞
0

e−(s−a)tdt = lim
T→∞

∫ T

0

e−(s−a)tdt.

But ∫ T

0

e−(s−a)tdt =

{
T if s = a

1−e−(s−a)T

s−a if s 6= a.

For the improper integral to converge we need s > a. In this case,

L[eat] = F (s) =
1

s− a
, s > a.

(b) In a similar way to what was done in part (a), we find

L[1] =

∫ ∞
0

e−stdt = lim
T→∞

∫ T

0

e−stdt =
1

s
, s > 0.

(c) We have

L[t] =

∫ ∞
0

te−stdt =

[
−te

−st

s
− e−st

s2

]∞
0

=
1

s2
, s > 0.

(d) Using integration by parts, we find

L[sin (ωt)] =

∫ ∞
0

e−st sin (ωt)dt =
−e−st sin (ωt)

s

∣∣∣∣∞
0

+
ω

s

∫ ∞
0

e−st cos (ωt)dt

=
ω

s

∫ ∞
0

e−st cos (ωt)dt =
ω

s

[
−e−st cos (ωt)

s

∣∣∣∣∞
0

− ω

s

∫ ∞
0

e−st sin (ωt)dt

=
ω

s2
− ω2

s2

∫ ∞
0

e−st sin (ωt)dt =
ω

s2
− ω2

s2
L[sin (ωt)](

1 +
ω2

s2

)
L[sin (ωt)] =

ω

s2

L[sin (ωt)] =
ω

s2 + ω2
, s > 0
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Remark 7.1.1
Similar to part (d), of the previous example, one can easily show that

L[cos (ωt)] =
s

s2 + ω2
, s > 0.

Example 7.1.2
Find L[tn], n = 1, 2, 3, · · · .

Solution.
Let u′ = e−st and v = tn. Then u = − e−st

s
and v′ = ntn−1. Hence,

L[tn] =

∫ ∞
0

tne−stdt = −t
ne−st

s

∣∣∣∣∞
0

+
n

s

∫ ∞
0

tn−1e−stdt, s > 0.

That is,

L[tn] =
n

s
L[tn−1].

Using this, we have

L[t] =
1

s2

L[t2] =
2

s
L[t] =

2

s3

L[t3] =
3

s
L[t2] =

6

s4

L[t4] =
4

s
L[t3] =

24

s5

L[t5] =
5

s
L[t4] =

120

s5
.

By induction, one can easily show that for n = 0, 1, 2, · · ·

L[tn] =
n!

sn+1
, s > 0

The Laplace transform is a linear transform as shown in the next result.

Theorem 7.1.1
Let f(t) and g(t) be two functions that possess a Laplace transform. Then
for any scalars α and β we have

L[αf(t) + βg(t)] = αL[f(t)] + βL[g(t)].
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Proof.
Suppose that L[αf(t)] and L[αf(t)] exist for s > c. That is, the improper in-
tergrals

∫ t

0
e−stf(t)dt and

∫ t

0
e−stg(t)dt converge for s > c. Then the improper

integral
∫ t

0
e−st[αf(t) + βg(t)]dt is also convergent and

L[αf(t) + βg(t)] =

∫ t

0

e−st[αf(t) + βg(t)]dt

=α

∫ t

0

e−stf(t)dt+ β

∫ t

0

e−stg(t)dt = αL[f(t)] + βL[g(t)]

Example 7.1.3
Use the linearity property of Laplace transform to find L[5e−7t+t+2 sin (2t)].
Find the domain of F (s).

Solution.
We have L[e−7t] = 1

s+7
, s > −7, L[t] = 1

s2
, s > 0, and L[sin (2t)] = 2

s2+4
, s >

0. Hence,

L[5e−7t+t+2 sin (2t)] = 5L[e−7t]+L[t]+2L[sin (2t)] =
5

s+ 7
+

1

s2
+

4

s2 + 4
, s > 0

Example 7.1.4
Find L[sinh (ωt)] and L[cosh (ωt)].

Solution.
We have

L[sinh (ωt)] = L
[
eωt − e−ωt

2

]
=

1

2
[L(eωt)− L(e−ωt)]

=
1

2

[
1

s− ω
− 1

s+ ω

]
=

ω

s2 − ω2
.

In a similar way, one can show that L[cosh (ωt)] = s
s2−ω2 , s > ω

The next example provides a function that does not possess a Laplace trans-
form.

Example 7.1.5
Find the Laplace transform, if it exists, of the function f(t) = et

2
.
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Solution.
Using the definition of Laplace transform we find

L[et
2

] =

∫ ∞
0

et
2−stdt.

If s ≤ 0 then t2−st ≥ 0 so that et
2−st ≥ 1 and this implies that

∫∞
0
et

2−stdt ≥∫∞
0
dt. Since the integral on the right is divergent, by the comparison theorem

of improper integrals the integral on the left is also divergent. Now, if s > 0
then

∫∞
0
et(t−s)dt =

∫ s

0
et(t−s)dt +

∫∞
s
et(t−s)dt. But

∫∞
s
et(t−s)dt ≥

∫∞
s
dt. By

the same reasoning the integral on the left is divergent and so
∫∞
0
et(t−s)dt is

divergent. This shows that the function f(t) = et
2

does not possess a Laplace
transform

The above example raises the question of what class or classes of functions
possess a Laplace transform. Looking closely at Example 7.1.1(a), we notice
that for s > a the integral

∫∞
0
e−(s−a)tdt is convergent and a critical compo-

nent for this convergence is the type of the function f(t). To be more specific,
if f(t) is a continuous function such that

|f(t)| ≤Meat, t ≥ C (7.1.1)

where M ≥ 0 and a and C are constants, then this condition yields∫ ∞
0

f(t)e−stdt ≤
∫ C

0

f(t)e−stdt+M

∫ ∞
C

e−(s−a)tdt.

Since f(t) is continuous in 0 ≤ t ≤ C, by letting A = max{|f(t)| : 0 ≤ t ≤ C}
we have ∫ C

0

f(t)e−stdt ≤ A

∫ C

0

e−stdt = A

(
1

s
− e−sC

s

)
<∞.

From the above discussion, we can write

|F (s)| ≤ A

(
1

s
− e−sC

s

)
+

M

s− a
e−(s−a)C .

Hence, lims→∞ F (s) = 0.
Also, by Example 7.1.1(a), the integral

∫∞
C
e−(s−a)tdt is convergent for s > a.
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By the comparison theorem of improper integrals the integral on the left is
also convergent. That is, f(t) possesses a Laplace transform.
We call a function that satisfies condition (7.1.1) a function with an expo-
nential order. Graphically, this means that the graph of f(t) is contained
in the region bounded by the graphs of y = Meat and y = −Meat for t ≥ C.
Note also that this type of functions controls the negative exponential in the
transform integral so that to keep the integral from blowing up. Note that
f has exponential order if limt→∞ e

−atf(t) = 0 for some contant a.

Example 7.1.6
(a) Show that f(t) = tn where n is a positive integer, has an exponential
order.
(b) Show that f(t) = et

2
is not of exponential order.

Solution.
(a) Let a > 0. Using L’Hôpital’s rule n times we can see that limt→∞ e

−attn =
0. Thus, there is a positive constant C such that e−attn ≤ 1 for all t ≥ C.
That is, tn ≤ eat for all t ≥ C.
(b) Suppose not. That is, let M and C be non-negative constants such that
et

2 ≤ Meat for some constant a and for all t ≥ C. Hence, et
2−at ≤ M for all

t ≥ C. Letting t→∞ we find M ≥ ∞ which is impossible since M <∞. It
follows that f(t) = et

2
is not of exponential order

Another question that comes to mind is whether it is possible to relax the
condition of continuity on the function f(t). Let’s look at the following situ-
ation.

Example 7.1.7
Show that the square wave function whose graph is given in Figure 7.1.2
possesses a Laplace transform.

Figure 7.1.2
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Note that the function is periodic of period 2.

Solution.
Since f(t)e−st ≤ e−st,

∫∞
0
f(t)e−stdt ≤

∫∞
0
e−stdt. But the integral on the

right is convergent for s > 0 so that the integral on the left is convergent as
well. That is, L[f(t)] exists for s > 0
The function of the above example belongs to a class of functions that we
define next.
A function is called piecewise continuous on an interval if it consists of a
finite number of continuous pieces with possibly either removable or jump dis-
continuities (but no inifinite discontinuities). Figure 7.1.3 presents a sketch
of a piecewise continuous function.

Figure 7.1.3

An example of a function that is not piecewise continuous is the function
f(t) = 1

t−1 on the interval [0,∞) since at t = 1 the continuity is infinite.

Example 7.1.8
Show that the following function is piecewise continuous and of exponentially
order.

f(t) =

{
et sin (t−1) if t ≥ 1

1
2

if 0 ≤ t < 1.

Solution.
Since et sin (t−1) = (esin (t−1))t ≤ (e1)t = et for all t ≥ 0, f(t) is piecewise con-
tinuous and exponentially order

The following theorem guarantees the existence of the Laplace transform
for all functions that are piecewise continuous and have exponential order.
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Theorem 7.1.2 (Existence)
Suppose that f(t) is piecewise continuous on t ≥ 0 and has an exponential
order with |f(t)| ≤Meat for t ≥ C. Then the Laplace transform

F (s) =

∫ ∞
0

f(t)e−stdt

exists as long as s > a. Note that the two conditions above are sufficient, but
not necessary, for F (s) to exist.

Proof.
Using the additive property of integrals, we can write

L[f(t)] =

∫ C

0

f(t)e−stdt+

∫ ∞
C

f(t)e−stdt ≤
∫ C

0

f(t)e−stdt+M

∫ ∞
C

e−(s−a)tdt.

Now, the integral
∫ C

0
f(t)e−stdt exists being the sum of integrals over intervals

where f(t)e−st is continuous. Also,∫ ∞
C

e−(s−a)tdt ≤
∫ ∞
0

e−(s−a)tdt = L[eat] <∞, s > a.

Hence, by the comparison test of integrals, L[f(t)] exists

Example 7.1.9
Show that the floor function f(t) = btc, where for any integer n we have
btc = n for all n ≤ t < n+ 1 possesses a Laplace transform.

Solution.
The floor function is a piecewise continuous function on 0 ≤ t < ∞. Since
btc ≤ t < et for 0 ≤ t <∞ we find M = 1 and a = 1 so that the floor function
has an exponential order. Hence, by Theorem 7.1.2, the floor function has a
Laplace transform

Example 7.1.10
Evaluate L[f(t)] where

f(t) =

{
0, 0 ≤ t < 3
1, t ≥ 3

Solution.
We have

L[f(t)] =

∫ ∞
3

e−stdt = − e−st

s

∣∣∣∣∞
3

=
e−3s

s
, s > 0
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