Arkansas Tech University MATH 3243: Differential Equations I Dr. Marcel B Finan

4.6 Method of Variation of Parameters

In the previous section, we were able to find the general solution to homogeneous linear differential equations with constant coefficients which is the complementary function y_c of the non-homogeneous equation

$$y'' + p(x)y' + q(x)y = g(x).$$
(4.6.1)

From Section 4.1, we know that the general solution to the above equation has the structure $y = y_c + y_p$ where y_p is a particular solution to Equation (4.6.1). The purpose of this section is to find y_p . This method has no prior conditions to be satisfied by either p(x), q(x), or g(x).

To use this method, we first find the general solution to the homogeneous equation

$$y_c(x) = c_1 y_1(x) + c_2 y_2(x)$$

Then we replace the parameters c_1 and c_2 by two functions $u_1(x)$ and $u_2(x)$ to be determined. From this the method got its name. Thus, obtaining

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x).$$

Observe that if u_1 and u_2 are constant functions then the above y is just the homogeneous solution to the differential equation.

In order to determine the two functions one has to impose two constraints. Finding the derivative of y_p we obtain

$$y'_p = (y'_1u_1 + y'_2u_2) + (y_1u'_1 + y_2u'_2).$$

Finding the second derivative to obtain

$$y_p'' = y_1'' u_1 + y_1' u_1' + y_2'' u_2 + y_2' u_2' + (y_1 u_1' + y_2 u_2')'.$$

Since it is up to us to choose u_1 and u_2 we decide to do that in such a way to make our computation simple. One way to achieving that is to impose the condition

$$y_1 u_1' + y_2 u_2' = 0. (4.6.2)$$

Under such a constraint y'_p and y''_p are simplified to

$$y'_p = y'_1 u_1 + y'_2 u_2$$

and

$$y_p'' = y_1'' u_1 + y_1' u_1' + y_2'' u_2 + y_2' u_2'.$$

In particular, y''_p does not involve u''_1 and u''_2 . Inserting y_p, y'_p , and y''_p into equation (4.6.1) to obtain

$$[y_1''u_1 + y_1'u_1' + y_2''u_2 + y_2'u_2'] + p(x)(y_1'u_1 + y_2'u_2) + q(x)(u_1y_1 + u_2y_2) = g(x).$$

Rearranging terms,

$$[y_1'' + p(x)y_1' + q(x)y_1]u_1 + [y_2'' + p(x)y_2' + q(x)y_2]u_2 + [u_1'y_1' + u_2'y_2'] = g(x).$$

Since y_1 and y_2 are solutions to the homogeneous equation, the previous equation yields our second constraint

$$u_1'y_1' + u_2'y_2' = g(x). (4.6.3)$$

Combining equation (4.6.2) and (4.6.3) we find the system of two equations in the unknowns u'_1 and u'_2

$$y_1 u'_1 + y_2 u'_2 = 0$$

$$u'_1 y'_1 + u'_2 y'_2 = g(t)$$

Since $\{y_1, y_2\}$ is a fundamental set, the expression $W(x) = y_1y'_2 - y'_1y_2$ is nonzero so that one can find unique u'_1 and u'_2 . Using the method of elimination, these functions are given by

$$u'_1(x) = -\frac{y_2(x)g(x)}{W(x)}$$
 and $u'_2(x) = \frac{y_1(x)g(x)}{W(x)}$.

Computing antiderivatives to obtain

$$u_1(x) = \int -\frac{y_2(x)g(x)}{W(x)} dx$$
 and $u_2(x) = \int \frac{y_1(x)g(x)}{W(x)} dx$.

Example 4.6.1

Find the general solution of

$$y'' - y' - 2y = 2e^{-x}$$

using the method of variation of parameters.

Solution.

The characteristic equation $r^2 - r - 2 = 0$ has roots $r_1 = -1$ and $r_2 = 2$. Thus, $y_1(x) = e^{-x}$, $y_2(x) = e^{2x}$ and $W(x) = 3e^x$. Hence,

$$u_1(x) = -\int \frac{e^{2x} \cdot 2e^{-x}}{3e^x} dx = -\frac{2}{3}x$$

and

$$u_2(x) = \int \frac{e^{-x} \cdot 2e^{-x}}{3e^x} dx = -\frac{2}{9}e^{-3x}.$$

The particular solution is

$$y_p(x) = -\frac{2}{3}xe^{-x} - \frac{2}{9}e^{-x}.$$

The general solution is then given by

$$y(x) = c_1 e^{-x} + c_2 e^{2x} - \frac{2}{3} x e^{-x} - \frac{2}{9} e^{-x} \blacksquare$$

Example 4.6.2

Find the general solution to $(2x-1)y'' - 4xy' + 4y = (2x-1)^2 e^{-x}$ if $y_1(x) = x$ and $y_2(x) = e^{2x}$ form a fundamental set of solutions to the equation.

Solution.

First we rewrite the equation in standard form

$$y'' - \frac{4x}{2x-1}y' + \frac{4}{2x-1}y = (2x-1)e^{-x}.$$

Since $W(x) = (2x - 1)e^{2x}$ we find

$$u_1(x) = -\int \frac{e^{2x} \cdot (2x-1)e^{-x}}{(2x-1)e^{2x}} dt = e^{-x}$$

and

$$u_2(x) = \int \frac{x \cdot (2x-1)e^{-x}}{(2x-1)e^{2x}} dx = -\frac{1}{3}xe^{-3x} - \frac{1}{9}e^{-3x}.$$

Thus,

$$y_p(x) = xe^{-x} - \frac{1}{3}xe^{-x} - \frac{1}{9}e^{-x} = \frac{2}{3}xe^{-x} - \frac{1}{9}e^{-x}.$$

The general solution is

$$y(x) = c_1 x + c_2 e^{2x} + \frac{2}{3} x e^{-x} - \frac{1}{9} e^{-x} \blacksquare$$

Example 4.6.3

Find the general solution to the differential equation $y'' + y' = \ln x$, x > 0.

Solution.

The characterisitc equation $r^2 + r = 0$ has roots $r_1 = 0$ and $r_2 = -1$ so that $y_1(x) = 1$, $y_2(x) = e^{-x}$, and $W(x) = -e^{-x}$. Hence,

$$u_1(x) = -\int \frac{e^{-x} \ln x}{-e^{-x}} dx = \int \ln x dx = x \ln x - x$$
$$u_2(x) = \int \frac{\ln x}{-e^{-x}} dx = -\int e^x \ln x dx = -e^x \ln x + \int \frac{e^x}{x} dx$$

Thus,

$$y_p(x) = x \ln x - x - \ln x + e^{-x} \int \frac{e^x}{x} dx$$

and

$$y(x) = c_1 + c_2 e^{-x} + x \ln x - x - \ln x + e^{-x} \int \frac{e^x}{x} dx \blacksquare$$

Example 4.6.4

Find the general solution of

$$y'' + y = \frac{1}{2 + \sin x}.$$

Solution.

Since the characteristic equation $r^2 + 1 = 0$ has roots $r = \pm i$, the general solution of the corresponding homogeneous equation y'' + y = 0 is given by

$$y_c(x) = c_1 \cos x + c_2 \sin x$$

Since W(x) = 1 we find

$$u_1(x) = -\int \frac{\sin x}{2 + \sin x} dx = -x + \int \frac{2}{2 + \sin x} dx$$
$$u_2(x) = \int \frac{\cos x}{2 + \sin x} dx = \ln(2 + \sin x)$$

Hence, the particular solution is

$$y_p(x) = \sin x \ln (2 + \sin x) + \cos x (\int \frac{2}{2 + \sin x} dt - x)$$

and the general solution is

$$y(x) = c_1 \cos x + c_2 \sin x + y_p(x) \blacksquare$$

Example 4.6.5

Find the general solution of

$$y'' - y = \frac{1}{x}.$$

Solution.

The characterisite equation $r^2 - 1 = 0$ has roots $r_1 = -1$ and $r_2 = 1$ so that $y_1(x) = e^x$, $y_2(x) = e^{-x}$, and W(x) = -2. Hence,

$$u_1(x) = \frac{1}{2} \int_{x_0}^x \frac{e^t}{t} dt$$
$$u_2(x) = -\frac{1}{2} \int_{x_0}^x \frac{e^t}{t} dt.$$

Thus,

$$y_p(x) = \frac{1}{2}e^x \int_{x_0}^x \frac{e^t}{t} dt - \frac{1}{2}e^{-x} \int_{x_0}^x \frac{e^t}{t} dt$$

and

$$y(x) = c_1 e^x + c_2 e^{-x} + \frac{1}{2} e^x \int_{x_0}^x \frac{e^t}{t} dt - \frac{1}{2} e^{-x} \int_{x_0}^x \frac{e^t}{t} dt \blacksquare$$