Arkansas Tech University
MATH 3243: Differential Equations I
Dr. Marcel B Finan

4.6 Method of Variation of Parameters

In the previous section, we were able to find the general solution to homogeneous linear differential equations with constant coefficients which is the complementary function y_{c} of the non-homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x) . \tag{4.6.1}
\end{equation*}
$$

From Section 4.1, we know that the general solution to the above equation has the structure $y=y_{c}+y_{p}$ where y_{p} is a particular solution to Equation (4.6.1). The purpose of this section is to find y_{p}. This method has no prior conditions to be satisfied by either $p(x), q(x)$, or $g(x)$.
To use this method, we first find the general solution to the homogeneous equation

$$
y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

Then we replace the parameters c_{1} and c_{2} by two functions $u_{1}(x)$ and $u_{2}(x)$ to be determined. From this the method got its name. Thus, obtaining

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

Observe that if u_{1} and u_{2} are constant functions then the above y is just the homogeneous solution to the differential equation.
In order to determine the two functions one has to impose two constraints. Finding the derivative of y_{p} we obtain

$$
y_{p}^{\prime}=\left(y_{1}^{\prime} u_{1}+y_{2}^{\prime} u_{2}\right)+\left(y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right) .
$$

Finding the second derivative to obtain

$$
y_{p}^{\prime \prime}=y_{1}^{\prime \prime} u_{1}+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime \prime} u_{2}+y_{2}^{\prime} u_{2}^{\prime}+\left(y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right)^{\prime}
$$

Since it is up to us to choose u_{1} and u_{2} we decide to do that in such a way to make our computation simple. One way to achieving that is to impose the condition

$$
\begin{equation*}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 . \tag{4.6.2}
\end{equation*}
$$

Under such a constraint y_{p}^{\prime} and $y_{p}^{\prime \prime}$ are simplified to

$$
y_{p}^{\prime}=y_{1}^{\prime} u_{1}+y_{2}^{\prime} u_{2}
$$

and

$$
y_{p}^{\prime \prime}=y_{1}^{\prime \prime} u_{1}+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime \prime} u_{2}+y_{2}^{\prime} u_{2}^{\prime} .
$$

In particular, $y_{p}^{\prime \prime}$ does not involve $u_{1}^{\prime \prime}$ and $u_{2}^{\prime \prime}$.
Inserting y_{p}, y_{p}^{\prime}, and $y_{p}^{\prime \prime}$ into equation (4.6.1) to obtain
$\left[y_{1}^{\prime \prime} u_{1}+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime \prime} u_{2}+y_{2}^{\prime} u_{2}^{\prime}\right]+p(x)\left(y_{1}^{\prime} u_{1}+y_{2}^{\prime} u_{2}\right)+q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x)$.
Rearranging terms,
$\left[y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}\right] u_{1}+\left[y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}\right] u_{2}+\left[u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right]=g(x)$.
Since y_{1} and y_{2} are solutions to the homogeneous equation, the previous equation yields our second constraint

$$
\begin{equation*}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x) \tag{4.6.3}
\end{equation*}
$$

Combining equation (4.6.2) and (4.6.3) we find the system of two equations in the unknowns u_{1}^{\prime} and u_{2}^{\prime}

$$
\begin{aligned}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime} & =0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} & =g(t) .
\end{aligned}
$$

Since $\left\{y_{1}, y_{2}\right\}$ is a fundamental set, the expression $W(x)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is nonzero so that one can find unique u_{1}^{\prime} and u_{2}^{\prime}. Using the method of elimination, these functions are given by

$$
u_{1}^{\prime}(x)=-\frac{y_{2}(x) g(x)}{W(x)} \text { and } u_{2}^{\prime}(x)=\frac{y_{1}(x) g(x)}{W(x)} .
$$

Computing antiderivatives to obtain

$$
u_{1}(x)=\int-\frac{y_{2}(x) g(x)}{W(x)} d x \text { and } u_{2}(x)=\int \frac{y_{1}(x) g(x)}{W(x)} d x .
$$

Example 4.6.1

Find the general solution of

$$
y^{\prime \prime}-y^{\prime}-2 y=2 e^{-x}
$$

using the method of variation of parameters.

Solution.

The characteristic equation $r^{2}-r-2=0$ has roots $r_{1}=-1$ and $r_{2}=2$. Thus, $y_{1}(x)=e^{-x}, y_{2}(x)=e^{2 x}$ and $W(x)=3 e^{x}$. Hence,

$$
u_{1}(x)=-\int \frac{e^{2 x} \cdot 2 e^{-x}}{3 e^{x}} d x=-\frac{2}{3} x
$$

and

$$
u_{2}(x)=\int \frac{e^{-x} \cdot 2 e^{-x}}{3 e^{x}} d x=-\frac{2}{9} e^{-3 x}
$$

The particular solution is

$$
y_{p}(x)=-\frac{2}{3} x e^{-x}-\frac{2}{9} e^{-x}
$$

The general solution is then given by

$$
y(x)=c_{1} e^{-x}+c_{2} e^{2 x}-\frac{2}{3} x e^{-x}-\frac{2}{9} e^{-x}
$$

Example 4.6.2

Find the general solution to $(2 x-1) y^{\prime \prime}-4 x y^{\prime}+4 y=(2 x-1)^{2} e^{-x}$ if $y_{1}(x)=x$ and $y_{2}(x)=e^{2 x}$ form a fundamental set of solutions to the equation.

Solution.

First we rewrite the equation in standard form

$$
y^{\prime \prime}-\frac{4 x}{2 x-1} y^{\prime}+\frac{4}{2 x-1} y=(2 x-1) e^{-x}
$$

Since $W(x)=(2 x-1) e^{2 x}$ we find

$$
u_{1}(x)=-\int \frac{e^{2 x} \cdot(2 x-1) e^{-x}}{(2 x-1) e^{2 x}} d t=e^{-x}
$$

and

$$
u_{2}(x)=\int \frac{x \cdot(2 x-1) e^{-x}}{(2 x-1) e^{2 x}} d x=-\frac{1}{3} x e^{-3 x}-\frac{1}{9} e^{-3 x}
$$

Thus,

$$
y_{p}(x)=x e^{-x}-\frac{1}{3} x e^{-x}-\frac{1}{9} e^{-x}=\frac{2}{3} x e^{-x}-\frac{1}{9} e^{-x} .
$$

The general solution is

$$
y(x)=c_{1} x+c_{2} e^{2 x}+\frac{2}{3} x e^{-x}-\frac{1}{9} e^{-x}
$$

Example 4.6.3

Find the general solution to the differential equation $y^{\prime \prime}+y^{\prime}=\ln x, x>0$.

Solution.

The characterisitc equation $r^{2}+r=0$ has roots $r_{1}=0$ and $r_{2}=-1$ so that $y_{1}(x)=1, y_{2}(x)=e^{-x}$, and $W(x)=-e^{-x}$. Hence,

$$
\begin{aligned}
& u_{1}(x)=-\int \frac{e^{-x} \ln x}{-e^{-x}} d x=\int \ln x d x=x \ln x-x \\
& u_{2}(x)=\int \frac{\ln x}{-e^{-x}} d x=-\int e^{x} \ln x d x=-e^{x} \ln x+\int \frac{e^{x}}{x} d x
\end{aligned}
$$

Thus,

$$
y_{p}(x)=x \ln x-x-\ln x+e^{-x} \int \frac{e^{x}}{x} d x
$$

and

$$
y(x)=c_{1}+c_{2} e^{-x}+x \ln x-x-\ln x+e^{-x} \int \frac{e^{x}}{x} d x
$$

Example 4.6.4

Find the general solution of

$$
y^{\prime \prime}+y=\frac{1}{2+\sin x} .
$$

Solution.

Since the characteristic equation $r^{2}+1=0$ has roots $r= \pm i$, the general solution of the corresponding homogeneous equation $y^{\prime \prime}+y=0$ is given by

$$
y_{c}(x)=c_{1} \cos x+c_{2} \sin x
$$

Since $W(x)=1$ we find

$$
\begin{aligned}
& u_{1}(x)=-\int \frac{\sin x}{2+\sin x} d x=-x+\int \frac{2}{2+\sin x} d x \\
& u_{2}(x)=\int \frac{\cos x}{2+\sin x} d x=\ln (2+\sin x)
\end{aligned}
$$

Hence, the particular solution is

$$
y_{p}(x)=\sin x \ln (2+\sin x)+\cos x\left(\int \frac{2}{2+\sin x} d t-x\right)
$$

and the general solution is

$$
y(x)=c_{1} \cos x+c_{2} \sin x+y_{p}(x)
$$

Example 4.6.5

Find the general solution of

$$
y^{\prime \prime}-y=\frac{1}{x}
$$

Solution.

The characterisitc equation $r^{2}-1=0$ has roots $r_{1}=-1$ and $r_{2}=1$ so that $y_{1}(x)=e^{x}, y_{2}(x)=e^{-x}$, and $W(x)=-2$. Hence,

$$
\begin{aligned}
& u_{1}(x)=\frac{1}{2} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t \\
& u_{2}(x)=-\frac{1}{2} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t
\end{aligned}
$$

Thus,

$$
y_{p}(x)=\frac{1}{2} e^{x} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t-\frac{1}{2} e^{-x} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t
$$

and

$$
y(x)=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{2} e^{x} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t-\frac{1}{2} e^{-x} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t
$$

