Arkansas Tech University
MATH 3243: Differential Equations I
Dr. Marcel B Finan

4.2 Reduction of Order

In this section, given a non-trivial solution $y_{1}(x)$ defined on an interval I of the homogeneous ODE

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 \tag{4.2.1}
\end{equation*}
$$

we seek a second solution $y_{2}(x)$ defined on I such that $\left\{y_{1}, y_{2}\right\}$ is a fundamental set.
Since $a_{2}(x) \neq 0$, Equation (4.2.1) can be written in the standard form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+g(x) y=0 . \tag{4.2.2}
\end{equation*}
$$

The fact that $\left\{y_{1}, y_{2}\right\}$ is a fundamental set implies that the functions $y_{1}(x)$ and $y_{2}(x)$ are linearly independent. Then $\frac{y_{2}}{y_{1}}$ is non-constant (for otherwise, we would have $\alpha y_{1}-y_{2}=0$ with $\left.\alpha \neq 0\right)$. Hence, $\frac{y_{2}(x)}{y_{1}(x)}=u(x)$ for some function $u(x)$. Finding $u(x)$ will result in finding $y_{2}(x)$. To find $u(x)$, we proceed as follows. Since $y_{2}(x)$ is supposed to be a solution to Equation (4.2.2), it must satisfy that equation. That is,

$$
y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+g(x) y_{2}=0
$$

But $y_{2}^{\prime}(x)=u(x) y_{1}^{\prime}(x)+u^{\prime}(x) y_{1}(x)$ and $y_{2}^{\prime \prime}(x)=u(x) y_{1}^{\prime \prime}(x)+2 u^{\prime}(x) y_{1}^{\prime}(x)+$ $u^{\prime \prime}(x) y_{1}(x)$. Substituting these into the previous equation to obtain
$u(x)\left(y_{1}^{\prime \prime}(x)+p(x) y_{1}^{\prime}(x)+g(x) y_{1}(x)\right)+u^{\prime \prime}(x) y_{1}(x)+u^{\prime}(x)\left(2 y_{1}^{\prime}(x)+p(x) y_{1}(x)\right)=0$
or

$$
\begin{equation*}
u^{\prime \prime}(x) y_{1}(x)+u^{\prime}(x)\left(2 y_{1}^{\prime}(x)+p(x) y_{1}(x)\right)=0 \tag{4.2.3}
\end{equation*}
$$

since $y_{1}(x)$ is a solution to Equation (4.2.2). Now, using the substitution $v(x)=u^{\prime}(x)$, Equation (4.2.3) becomes

$$
v^{\prime}(x) y_{1}(x)+v(x)\left(2 y_{1}^{\prime}(x)+p(x) y_{1}(x)\right)=0 .
$$

Separating the variables and integrating to obtain

$$
\frac{d v}{v}+2 \frac{d y_{1}}{y_{1}}+p(x) d x=0
$$

and

$$
\ln |v|+2 \ln \left|y_{1}\right|+\int p(x) d x=C_{1}
$$

Thus,

$$
\ln \left|v y_{1}^{2}\right|=C_{1}-\int p(x) d x
$$

or

$$
v y_{1}^{2}=C_{1} e^{-\int p(x) d x}
$$

From this, we find $u(x)$ by integration

$$
u(x)=C_{1} \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x+C_{2}
$$

Choosing $C_{1}=1$ and $C_{2}=0$, we obtain

$$
y_{2}(x)=y_{1}(x) \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x
$$

Example 4.2.1

The function $y_{1}(x)=x^{2}$ is a solution to the equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$. Find the general solution on the interval $(0, \infty)$.

Solution.

Writing the given equation in standard form, we find

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0
$$

so that $p(x)=-\frac{3}{x}$ and $g(x)=\frac{4}{x^{2}}$. Hence,

$$
y_{2}(x)=x^{2} \int \frac{e^{\int \frac{3}{x} d x}}{x^{4}} d x=x^{2} \int \frac{d x}{x}=x^{2} \ln x
$$

Hence, the general solution to the differential equation is

$$
y(x)=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

The reduction of order can be used to find the general solution to the nonhomogeneous differential equation

$$
a_{1}(x) y^{\prime \prime}+a_{2}(x) y^{\prime}+a_{1}(x) y=g(x)
$$

whenever a solution $y_{1}(x)$ to the associated homogneous equation is known. We illustrate the process in the example below.

Example 4.2.2

The function $y_{1}(x)=e^{-5 x}$ is a solution to the associated homogeneous equation of the differential equation $y^{\prime \prime}-25 y=5$. Use the method of reduction of order to find a second solution $y_{2}(x)$ of the homogeneous equation and a particular solution $y_{p}(x)$ of the given non-homogeneous equation.

Solution.

Let $y(x)=u(x) e^{-5 x}$ be a solution to the non-homogeneous equation. Then

$$
\begin{aligned}
y^{\prime} & =-5 u e^{-5 x}+u^{\prime} e^{-5 x} \\
y^{\prime \prime} & =25 u e^{-5 x}-10 u^{\prime} e^{-5 x}+u^{\prime \prime} e^{-5 x}
\end{aligned}
$$

Substituting these into the given differential equation, we find

$$
\left(u^{\prime \prime}-10 u^{\prime}\right) e^{-5 x}=5
$$

Letting $v=u^{\prime}$, the above equation becomes

$$
v^{\prime}-10 v=5 e^{5 x}
$$

Solving by the method of integrating factor with $\mu=e^{-\int 10 d x}=e^{-10 x}$ we find

$$
\begin{aligned}
\left(e^{-10 x} v\right)^{\prime} & =5 e^{5 x} e^{-10 x}=5 e^{-5 x} \\
e^{-10 x} v & =\int 5 e^{-5 x} d x+c_{1}=-e^{-5 x}+c_{1} \\
v & =-e^{5 x}+c_{1} e^{10 x}
\end{aligned}
$$

We find u by integrating v,

$$
u=\int\left(-e^{5 x}+c_{1} e^{10 x}\right) d x=-\frac{1}{5} e^{5 x}+c_{1} e^{10 x}+c_{2}
$$

Hence,

$$
y(x)=c_{1} e^{5 x}+c_{2} e^{-5 x}-\frac{1}{5}
$$

which is of the form $y(x)=y_{c}+y_{p}$. Hence, $y_{2}(x)=e^{5 x}$ and $y_{p}=-\frac{1}{5}$

