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4.1 Higher Order Linear ODEs

In this section, we take a look at linear differential equations of order two or
more. We start with the following definition: A linear differential equa-
tion of order n is a differential equation that can be written in the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0y = g(x). (4.1.1)

The term “linear” is the result of the fact that the function

L(y) = an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0y

satisfies the property

L(αy1 + βy2) = αL(y1) + βL(y2).

If the right-hand side of Equation (4.1.1) is 0 then the equation is said to be
homogeneous. Otherwise, the equation is said to be non-homogeneous.
The defining properties of linearity immediately imply the key facts concern-
ing homogeneous linear differential equations.

Theorem 4.1.1
The sum of two solutions to a homogeneous linear differential equation is
again a solution, as is the product of a solution by any constant.

Proof.
Let y1, y2 be solutions, meaning that L(y1) = 0 and L(y2) = 0. Then, thanks
to linearity,

L(y1 + y2) = L(y1) + L(y2) = 0,

and hence their sum y1 + y2 is a solution. Similarly, if α is any constant, and
y is any solution, then

L(αy) = αL(y) = α0 = 0,
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and so the scalar multiple αy is also a solution

The following result is known as the superposition principle for homo-
geneous linear equations. It states that from given solutions to the equation
one can create many more solutions.

Theorem 4.1.2
If y1, · · · , yn are solutions to a common homogeneous linear partial differen-
tial equation L(y) = 0, then the linear combination y = c1y1 + · · ·+ cnyn
is a solution for any choice of constants c1, · · · , cn.

Proof.
The key fact is that, thanks to the linearity of L, for any differentiable
functions y1, · · · , yn and any constants c1, · · · , cn,

L(y) =L(c1y1 + · · ·+ cnyn) = L(c1y1) + · · ·+ L(cn−1yn−1) + L(cnyn)

= · · · = c1L(y1) + · · ·+ cn−1L(y−1) + cnL(yn).

Since L(y1) = 0, · · · ,L(yn) = 0, then the right hand side of the above equa-
tion vanishes, proving that y is also a solution to the homogeneous equation
L(y) = 0

As you have noticed by the above discussion, one or more solutions of a
linear homogeneous ODE leads to the creation of lots of solutions according
to the Principle of Superposition. In contrast, the Principle of Superposi-
tion does not apply to non-homogeneous linear ODEs as shown in the next
example.

Example 4.1.1
Consider the differential equation y′ = 1.
(a) Show that the functions y1 = x and y2 = x+ 1 are solutions to the given
differential equation.
(b) Show that the function y = y1 + y2 = 2x+ 1 is not a solution.

Solution.
(a) By simple differentiation we find y′1 = y′2 = 1.
(b) Since y′ = 2 6= 1, the function y is not a solution

As we shall see later, the basic building blocks of the general solution to
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L(y) = 0 are linearly independent solutions, a concept that we introduce
next.

Linearly Independent and Dependent Functions
We say that the functions f1(x), f2(x), · · · , fn(x) are linearly independent
on an interval I if the equation

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0,

for all x in I is true only when all the c′is are equal to zero. If there is at
least one ci 6= 0 then we say that the functions are linearly dependent.

Example 4.1.2
Show that the functions f1(x) = cos2 x, f2(x) = sin2 x, f3(x) = sec2 x and
f4(x) = tan2 x are linearly dependent on

(
−π

2
, π
2

)
.

Solution.
Since cos2 x+ sin2 x = 1 and sec2 x = 1 + tan2 x, we get

c1 cos2 x+ c2 sin2 x+ c3 sec2 x+ c3 tan2 x = 0

for all x in
(
−π

2
, π
2

)
where c1 = c2 = 1, c3 = −1 and c4 = 1. That is, the given

functions are linearly dependent

Theorem 4.1.3
The functions f1(x), f2(x), · · · , fn(x) are linearly dependent if and only if one
of the function is a linear combination of the remaining functions.

Proof.
Suppose first that the functions are linearly dependent. Then there are con-
stants c1, c2, · · · , cn not all zero such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0,

for all x in I. Let’s say that ci 6= 0. Then we can write

fi(x) =

(
−c1
ci

)
f1(x) +

(
−c2
ci

)
f2(x) + · · ·+

(
−ci−1

ci

)
fi−1(x)

+

(
−ci+1

ci

)
fi+1(x) + · · ·+

(
−cn
ci

)
fn(x).
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That is, fi is a linear combination of the remaining functions.
Conversely, suppose that

fi(x) = c1f1(x) + c2f2(x) + · · ·+ ci−1fi−1(x) + ci+1fi+1(x) + · · · cnfn(x)

for all x in I. Then this can be written as

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0,

for all x in I with ci = −1 6= 0. Hence, f1(x), f2(x), · · · , fn(x) are linearly
dependent

It follows from the above theorem, that two functions are linearly dependent
if one is a constant multiple of the other or the ratio of the two functions is
constant.

Example 4.1.3
Show that the functions f1(x) =

√
x + 5, f2(x) =

√
x + 5x, f3(x) = x − 1

and f4(x) = x2 are linearly dependent on (0,∞).

Solution.
Since

f2(x) = 1 · f1(x) + 5 · f3(x) + 0 · f4(x)

for all x in (0,∞), the previous theorem asserts that the functions are lin-
early dependent

Alternative Way for Testing Solutions for Independence
Besides the definition introduced above for independence, an alternative way
is to use the concept of Wronskian which we define next.
Suppose that each of the functions f1(x), f2(x), · · · , fn(x) has at least n− 1
derivatives. The Wronskian of these functions is the determinant

W (f1, f2, · · · , fn) =

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
...

... · · · ...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

∣∣∣∣∣∣∣∣∣
Using this concept, we have a criterion for testing the solutions to the homo-
geneous equation L(y) = 0 for independence.
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Theorem 4.1.4
The solutions y1, y2, · · · , yn of L(y) = 0 are linearly independent on an inter-
val I if W (y1, y2, · · · , yn) 6= 0 for every x in I.

Proof.
The equation

c1y1 + c2y2 + · · ·+ cnyn = 0

leads to the system
y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · · ...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n



c1
c2
...
cn

 =


0
0
...
0


If W (y1, y2, · · · , yn) 6= 0 then the matrix with entries the yis is invertible
and this leads to c1 = c2 = · · · = cn = 0. That is, y1, y2, · · · , yn are linearly
independent
Notice that if W (y1, y2, · · · , yn) = 0 for every x in I then y1, y2, · · · , yn
are linearly dependent. Thus, for a set of solutions y1, y2, · · · , yn either
W (y1, y2, · · · , yn) 6= 0 for every x in I or W (y1, y2, · · · , yn) = 0 for every
x in I. Hence, to show that y1, y2, · · · , yn are linearly independent it suffices
to show that W (y1, y2, · · · , yn) = 0 for some x in I.

Example 4.1.4
Using Wronskian, show that the solutions y1(x) = cos (2 lnx)

x3
and y2(x) =

sin (2 lnx)
x3

of the homogeneous equation

x2y′′ + 7xy′ + 13y = 0

are linearly independent on (0,∞).

Solution.
We have

y1(x) =
cos (2 lnx)

x3

y1(1) =1
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y′1(x) =
−2x2 sin (2 lnx)− 3x2 cos (2 lnx)

x6

y′1(1) =− 3

y2(x) =
sin (2 lnx)

x3

y2(1) =0

y′2(x) =
2x2 cos (2 lnx)− 3x2 sin (2 lnx)

x6

y′2(1) =2.

Thus,

W (y1(1), y2(1)) =

∣∣∣∣ 1 0
−3 2

∣∣∣∣ = 2 6= 0.

Hence, y1, y2 are linearly independent

Any n linearly independent solution set is called a fundamental set. Fun-
damental sets are the building blocks for finding the general solution to nth

order linear homogeneous differential equations.

Theorem 4.1.5
Let y1, y2, · · · , yn be a fundamental set of L(y) = 0 on an interval I. Then
the general solution of the equation on I is given by

y = c1y1 + c2y2 + · · ·+ yn

where c1, c2, · · · , cn are arbitrary constants.

Proof.
We will prove the result for n = 2. Let {y1, y2} be a fundamental set of
a(x)y′′ + b(x)y′ + c(x)y = 0. We want to show that every solution y to the
differential equation can be written as a linear combination of y1 and y2.
That is,

y(x) = c1y1(x) + c2y2(x).

Since y1 and y2 are linearly independent, we can find x0 in I such that
W (y1(x0), y2(x0)) 6= 0.
So the problem reduces to finding the constants c1 and c2. These are found
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by solving the following linear system of two equations in the unknowns c1
and c2:

c1y1(x0) + c2y2(x0) = y(x0)

c1y
′
1(x0) + c2y

′
2(x0) = y′(x0).

By the method of elimination we find

c1 =
y(x0)y

′
2(x0)− y′(x0)y2(x0)

W (y1(x0), y2(x0))

and

c2 =
y′(x0)y1(x0)− y(x0)y

′
1(x0)

W (y1(x0), y2(x0))
.

Note that c1 and c2 exist since W (y1(t0), y2(t0)) 6= 0

Example 4.1.5
Consider the differential equation

y′′ + 4y = 0. (4.1.2)

(a) Show that y1(x) = cos 2x and y2(x) = sin 2x are solutions to (4.1.2).
(b) Show that {cos 2x, sin 2x} is a fundamental set of solutions.
(c) Write the solution y(x) = 3 cos (2x+ π

4
) as a linear combination of y1 and

y2.

Solution.
(a) A simple calculation shows

y′′1 + 4y1 = −4 cos 2x+ 4 cos 2x = 0

y′′2 + 4y2 = −4 sin 2x+ 4 sin 2x = 0.

(b) For any x we have

W (y1(x), y2(x)) =

∣∣∣∣ cos 2x sin 2x
−2 sin 2x 2 cos 2x

∣∣∣∣ = 2 cos2 2x+ 2 sin2 2x = 2 6= 0.

Thus, {y1, y2} is a fundamental set of solutions.
(c) Using the formulas for c1 and c2 with x0 = 0 we find

c1 =
y(0)y′2(0)− y′(0)y2(0)

W (y1(0), y2(0))

=
6 cos π

4
cos 0 + 6 sin π

4
sin 0

2
=

3
√

2

2
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and

c2 =
y′(0)y1(0)− y(0)y′1(0)

W (y1(0), y2(0))

=
−6 sin π

4
cos 0 + 6 cos π

4
sin 0

2
= −3

√
2

2

General Solution to Non-Homogeneous Equation
Next, we consider the question of finding the general solution to the differ-
ential equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0y = g(x) (4.1.3)

where g(x) 6= 0. The following theorem provides the structure of the general
solution to equation (4.1.3).

Theorem 4.1.6
Let {y1(x), y2(x), · · · , yn(x)} be a fundamental set of solutions to the ho-
mogeneous equation Ly = 0 and yp(x) be a particular solution of the non-
homogeneous equation L(yp) = g(x). The general solution of the non-homogeneous
equation is given by

y(x) = yp(x) + c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

for constants c1, c2, · · · , cn.

Proof.
Let y(x) be a solution to the non-homogeneous equation. Let u(x) = y(x)−
yp(x). Then

L(u) = L(y)− L(yp) = g(x)− g(x) = 0.

Hence, u is a solution to the homogeneous equation so that

u(x) = c1y1(x) + c2y2(x) + · · ·+ yn(x)

for some constants c1, c2, · · · , cn and so

y(x)− yp(x) = c1y1(x) + c2y2(x) + · · ·+ yn(x)

or
y(x) = yp(x) + c1y1(x) + c2y2(x) + · · ·+ yn(x)
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The general solution to the homogeneous equation yc(x) = c1y1(x)+c2y2(x)+
· · ·+yn(x) will be called the complementary function for Equation (4.1.3).
It follows from the above theorem that in finding the general solution to the
non-homogeneous equation, we first solve the associated homogeneous equa-
tion and then find a particular solution to the non-homogeneous equation.
The general solution to the non-homogenous equation is then the sum of the
complementary function and the particular solution.

Example 4.1.6
Consider the differential equation

y′′ − 2y′ − 3y = −9x− 3.

(a) Show that y1(x) = e−x and y2(x) = e3x is a fundamental set.
(b) Show that yp(x) = 3x−1 is a solution to the non-homogeneous equation.
(c) Find the general solution to the non-homogeneous equation.

Solution.
(a) Finding the second derivatives of y1(x) and y2(x) we find y′1(x) = −e−x, y′′1(x) =
e−x, y′2(x) = 3e3x, y′2(x) = 9e3x. Thus,

y′′1 − 2y′1 − 3y1 = e−x + 2e−x − 3e−x = 0

and
y′′2 − 2y′2 − 3y2 = 9e3x − 6e3x − 3e3x = 0.

Hence, the complementary function is yc = c1e
−x + c2e

3x.
(b) We have

y′′p − 2y′p − 3yp = 0− 6− 9x+ 3 = −9x− 3.

(c) The general solution is y(x) = c1e
−x + c2e

3x + 3x− 1

As we pointed earlier in the section adding two solutions to a non-homogeneous
equation does not necessarily yield a new solution. That is, the Principle of
Superposition of homogeneous equations does not hold for non-homogeneous
equations. However, we can have a property of superposition of non-homogeneous
if one is adding two solutions of two different non-homogeneous equations.
More precisely, we have
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Theorem 4.1.7
Let y1(x) be a solution of a(x)y′′+b(x)y′+c(x)y = g1(x) and y2(x) a solution
of a(x)y′′ + b(x)y′ + c(x)y = g2(x). Then for any constants c1 and c2 the
function Y (x) = c1y1(x) + c2y2(x) is a solution of the equation

a(x)y′′ + b(x)y′ + c(x)y = c1g1(x) + c2g2(x).

Proof.
We have

a(x)Y ′′ + b(x)Y ′ + c(x)Y =a(x)c1y
′′
1 + a(x)c2y

′′
2 + b(x)c1y

′
1 + b(x)c2y

′
2 + c(x)c1y1 + c(x)c2y2

=c1(a(x)y′′1 + b(x)y′1 + c(x)y1) + c2(a(x)y′′2 + b(x)y′2 + c(x)y2)

=c1g1(x) + c2g2(x)

Example 4.1.7
The functions u1(x) and u2(x) are particular solutions to the following dif-
ferential equations

a(x)u′′1 + b(x)u′1 + c(x)u1 =2e−x − x− 1

a(x)u′′2 + b(x)u′2 + c(x)u2 =3x.

Use the functions u1 and u2 to construct a particular solution of the differ-
ential equation

a(x)u′′ + b(x)u′ + c(x)u = 4e−x − 2.

Solution.
The right-hand side of the given equation can be written as 4e−x − 2 =
2(2e−x − x − 1) + 2

3
(3x) so that by the previous theorem, the function

u(x) = 2u1(x) + 2
3
u2(x) is the required particular solution

Initial Value and Boundary Value Problems
Now, the process of finding y in Equation (4.1.3) requires n integrations
which will result in an n−parameter family of solutions. In order to find a
particular solution, we need to find specific values of the n parameters. In
this case, we need n initial conditions such as

y(x0) = y0, y
′(x0) = y1, · · · , y(n−1)(x0) = yn−1. (4.1.4)

Equation (4.1.3) subject to conditions (4.1.4) is referred to as an initial
value problem.
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Similar to the existence and uniqueness theorem for first order linear initial
value ODEs (Theorem 2.3.2), we have the following existence and uniqueness
theorem for higher order version.

Theorem 4.1.8
If a0(x), a1(x), · · · , an(x) and g(x) are continuous on an interval I containing
x0 and an(x) 6= 0 for all x in I then the IVP (4.1.3)-(4.1.4) has a unique
solution defined on I.

Example 4.1.8
Show y(x) = 0 is the unique solution to the initial value problem

y′′′ + 3y′′ − 5y′ + 10y = 0, y(1) = y′(1) = y′′(1) = 0

on the interval (−∞,∞).

Solution.
Since all the coefficient functions and the right-hand side function are con-
tinuous in (−∞,∞) and the interval contains 1, Theorem 4.1.8 guarantees
the existence of a unique solution. Clearly, y(x) = 0 is a solution to the IVP
so that it is the only solution

The condition an(x) 6= 0 in the interval I is essential as shown in the next
example.

Example 4.1.9
Show y(x) = cx2 + x+ 3 is a solution to the initial value problem

x2y′′ − 2xy′ + 2y = 6, y(0) = 3, y′(0) = 1

on the interval (−∞,∞) where c is an arbitrary constant.

Solution.
We have

x2y′′ − 2xy′ + 2y =x2(2c)− 2x(2cx+ 1) + 2(cx2 + x+ 3) = 6

y(0) =c(0)2 + 0 + 3 = 3

y′(x) =2cx+ 1

y′(0) =1.
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Thus, the initial value problem has infinite number of solutions. Note that
a2(0) = 0 so that the condition an(x) 6= 0 in Theorem 4.1.8 is violated

We conclude this section by introducing another type of linear differential
equations subject to certain conditions where the function and its deriva-
tives are specified at different values of x. We limit the discussion to ODE of
order 2.
A second order linear ODE

a(x)y′′ + b(x)y′ + c(x)y = g(x)

subject to the conditions

α1y(a) + β1y
′(a) = γ1, α2y(b) + β2y

′(b) = γ2 (4.1.5)

is called an boundary value problem. The conditions (4.1.5) are called
boundary conditions.
A boundary value problem may have several solutions, one solution or no
solution.

Example 4.1.10
The general solution to x′′+16x = 0 is given by x(t) = c1 cos (4t)+c2 sin (4t).
(a) Find the solution, if it exists, satisfying the conditions x(0) = x(π

2
) = 0.

(b) Find the solution, if it exists, satisfying the conditions x(0) = x(π/8) = 0.
(c) Find the solution, if it exists, satisfying the conditions x(0) = 0, x(π/2) =
1.

Solution.
(a) From x(0) = 0, we find 0 = c1 cos 0 = c1. Hence, x(t) = c2 sin (4t). From
the condition x(π/2) = 0, we find c2 sin (2π) = 0. Since sin (2π) = 0, the
parameter c2 can assume any value. Hence, the BVP has infinitely many
solutions.
(b) From x(0) = 0, we find 0 = c1 cos 0 = c1. Hence, x(t) = c2 sin (4t). From
the condition x(π/8) = 0, we find c2 sin (π/2) = 0 so c2 = 0. Hence, the BVP
has the unique solution y(t) = 0.
(b) From x(0) = 0, we find 0 = c1 cos 0 = c1. Hence, x(t) = c2 sin (4t). From
the condition x(π/2) = 1, we find c2 sin (2π) = 1. Since sin (2π) = 0, the
value of c2 does not exist. Hence, the BVP has no solution
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