Arkansas Tech University
MATH 3243: Differential Equations I
Dr. Marcel B Finan

4.1 Higher Order Linear ODEs

In this section, we take a look at linear differential equations of order two or more. We start with the following definition: A linear differential equation of order n is a differential equation that can be written in the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0} y=g(x) \tag{4.1.1}
\end{equation*}
$$

The term "linear" is the result of the fact that the function

$$
\mathcal{L}(y)=a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0} y
$$

satisfies the property

$$
\mathcal{L}\left(\alpha y_{1}+\beta y_{2}\right)=\alpha \mathcal{L}\left(y_{1}\right)+\beta \mathcal{L}\left(y_{2}\right) .
$$

If the right-hand side of Equation (4.1.1) is 0 then the equation is said to be homogeneous. Otherwise, the equation is said to be non-homogeneous. The defining properties of linearity immediately imply the key facts concerning homogeneous linear differential equations.

Theorem 4.1.1

The sum of two solutions to a homogeneous linear differential equation is again a solution, as is the product of a solution by any constant.

Proof.

Let y_{1}, y_{2} be solutions, meaning that $\mathcal{L}\left(y_{1}\right)=0$ and $\mathcal{L}\left(y_{2}\right)=0$. Then, thanks to linearity,

$$
\mathcal{L}\left(y_{1}+y_{2}\right)=\mathcal{L}\left(y_{1}\right)+\mathcal{L}\left(y_{2}\right)=0,
$$

and hence their sum $y_{1}+y_{2}$ is a solution. Similarly, if α is any constant, and y is any solution, then

$$
\mathcal{L}(\alpha y)=\alpha \mathcal{L}(y)=\alpha 0=0,
$$

and so the scalar multiple αy is also a solution
The following result is known as the superposition principle for homogeneous linear equations. It states that from given solutions to the equation one can create many more solutions.

Theorem 4.1.2

If y_{1}, \cdots, y_{n} are solutions to a common homogeneous linear partial differential equation $\mathcal{L}(y)=0$, then the linear combination $y=c_{1} y_{1}+\cdots+c_{n} y_{n}$ is a solution for any choice of constants c_{1}, \cdots, c_{n}.

Proof.

The key fact is that, thanks to the linearity of \mathcal{L}, for any differentiable functions y_{1}, \cdots, y_{n} and any constants c_{1}, \cdots, c_{n},

$$
\begin{aligned}
\mathcal{L}(y) & =\mathcal{L}\left(c_{1} y_{1}+\cdots+c_{n} y_{n}\right)=\mathcal{L}\left(c_{1} y_{1}\right)+\cdots+\mathcal{L}\left(c_{n-1} y_{n-1}\right)+\mathcal{L}\left(c_{n} y_{n}\right) \\
& =\cdots=c_{1} \mathcal{L}\left(y_{1}\right)+\cdots+c_{n-1} \mathcal{L}\left(y_{-1}\right)+c_{n} \mathcal{L}\left(y_{n}\right) .
\end{aligned}
$$

Since $\mathcal{L}\left(y_{1}\right)=0, \cdots, \mathcal{L}\left(y_{n}\right)=0$, then the right hand side of the above equation vanishes, proving that y is also a solution to the homogeneous equation $\mathcal{L}(y)=0$

As you have noticed by the above discussion, one or more solutions of a linear homogeneous ODE leads to the creation of lots of solutions according to the Principle of Superposition. In contrast, the Principle of Superposition does not apply to non-homogeneous linear ODEs as shown in the next example.

Example 4.1.1

Consider the differential equation $y^{\prime}=1$.
(a) Show that the functions $y_{1}=x$ and $y_{2}=x+1$ are solutions to the given differential equation.
(b) Show that the function $y=y_{1}+y_{2}=2 x+1$ is not a solution.

Solution.

(a) By simple differentiation we find $y_{1}^{\prime}=y_{2}^{\prime}=1$.
(b) Since $y^{\prime}=2 \neq 1$, the function y is not a solution

As we shall see later, the basic building blocks of the general solution to
$\mathcal{L}(y)=0$ are linearly independent solutions, a concept that we introduce next.

Linearly Independent and Dependent Functions

We say that the functions $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ are linearly independent on an interval I if the equation

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for all x in I is true only when all the $c_{i}^{\prime} s$ are equal to zero. If there is at least one $c_{i} \neq 0$ then we say that the functions are linearly dependent.

Example 4.1.2
Show that the functions $f_{1}(x)=\cos ^{2} x, f_{2}(x)=\sin ^{2} x, f_{3}(x)=\sec ^{2} x$ and $f_{4}(x)=\tan ^{2} x$ are linearly dependent on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solution.

Since $\cos ^{2} x+\sin ^{2} x=1$ and $\sec ^{2} x=1+\tan ^{2} x$, we get

$$
c_{1} \cos ^{2} x+c_{2} \sin ^{2} x+c_{3} \sec ^{2} x+c_{3} \tan ^{2} x=0
$$

for all x in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ where $c_{1}=c_{2}=1, c_{3}=-1$ and $c_{4}=1$. That is, the given functions are linearly dependent

Theorem 4.1.3

The functions $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ are linearly dependent if and only if one of the function is a linear combination of the remaining functions.

Proof.

Suppose first that the functions are linearly dependent. Then there are constants $c_{1}, c_{2}, \cdots, c_{n}$ not all zero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for all x in I. Let's say that $c_{i} \neq 0$. Then we can write

$$
\begin{aligned}
f_{i}(x) & =\left(-\frac{c_{1}}{c_{i}}\right) f_{1}(x)+\left(-\frac{c_{2}}{c_{i}}\right) f_{2}(x)+\cdots+\left(-\frac{c_{i-1}}{c_{i}}\right) f_{i-1}(x) \\
& +\left(-\frac{c_{i+1}}{c_{i}}\right) f_{i+1}(x)+\cdots+\left(-\frac{c_{n}}{c_{i}}\right) f_{n}(x)
\end{aligned}
$$

That is, f_{i} is a linear combination of the remaining functions.
Conversely, suppose that

$$
f_{i}(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{i-1} f_{i-1}(x)+c_{i+1} f_{i+1}(x)+\cdots c_{n} f_{n}(x)
$$

for all x in I. Then this can be written as

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for all x in I with $c_{i}=-1 \neq 0$. Hence, $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ are linearly dependent

It follows from the above theorem, that two functions are linearly dependent if one is a constant multiple of the other or the ratio of the two functions is constant.

Example 4.1.3

Show that the functions $f_{1}(x)=\sqrt{x}+5, f_{2}(x)=\sqrt{x}+5 x, f_{3}(x)=x-1$ and $f_{4}(x)=x^{2}$ are linearly dependent on $(0, \infty)$.

Solution.

Since

$$
f_{2}(x)=1 \cdot f_{1}(x)+5 \cdot f_{3}(x)+0 \cdot f_{4}(x)
$$

for all x in $(0, \infty)$, the previous theorem asserts that the functions are linearly dependent

Alternative Way for Testing Solutions for Independence

Besides the definition introduced above for independence, an alternative way is to use the concept of Wronskian which we define next.
Suppose that each of the functions $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ has at least $n-1$ derivatives. The Wronskian of these functions is the determinant

$$
W\left(f_{1}, f_{2}, \cdots, f_{n}\right)=\left|\begin{array}{cccr}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \cdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

Using this concept, we have a criterion for testing the solutions to the homogeneous equation $\mathcal{L}(y)=0$ for independence.

Theorem 4.1.4

The solutions $y_{1}, y_{2}, \cdots, y_{n}$ of $\mathcal{L}(y)=0$ are linearly independent on an interval I if $W\left(y_{1}, y_{2}, \cdots, y_{n}\right) \neq 0$ for every x in I.

Proof.

The equation

$$
c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}=0
$$

leads to the system

$$
\left[\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & \cdots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

If $W\left(y_{1}, y_{2}, \cdots, y_{n}\right) \neq 0$ then the matrix with entries the $y_{i} s$ is invertible and this leads to $c_{1}=c_{2}=\cdots=c_{n}=0$. That is, $y_{1}, y_{2}, \cdots, y_{n}$ are linearly independent
Notice that if $W\left(y_{1}, y_{2}, \cdots, y_{n}\right)=0$ for every x in I then $y_{1}, y_{2}, \cdots, y_{n}$ are linearly dependent. Thus, for a set of solutions $y_{1}, y_{2}, \cdots, y_{n}$ either $W\left(y_{1}, y_{2}, \cdots, y_{n}\right) \neq 0$ for every x in I or $W\left(y_{1}, y_{2}, \cdots, y_{n}\right)=0$ for every x in I. Hence, to show that $y_{1}, y_{2}, \cdots, y_{n}$ are linearly independent it suffices to show that $W\left(y_{1}, y_{2}, \cdots, y_{n}\right)=0$ for some x in I.

Example 4.1.4

Using Wronskian, show that the solutions $y_{1}(x)=\frac{\cos (2 \ln x)}{x^{3}}$ and $y_{2}(x)=$ $\frac{\sin (2 \ln x)}{x^{3}}$ of the homogeneous equation

$$
x^{2} y^{\prime \prime}+7 x y^{\prime}+13 y=0
$$

are linearly independent on $(0, \infty)$.

Solution.

We have

$$
\begin{aligned}
& y_{1}(x)=\frac{\cos (2 \ln x)}{x^{3}} \\
& y_{1}(1)=1
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}^{\prime}(x)=\frac{-2 x^{2} \sin (2 \ln x)-3 x^{2} \cos (2 \ln x)}{x^{6}} \\
& y_{1}^{\prime}(1)=-3 \\
& y_{2}(x)=\frac{\sin (2 \ln x)}{x^{3}} \\
& y_{2}(1)=0 \\
& y_{2}^{\prime}(x)=\frac{2 x^{2} \cos (2 \ln x)-3 x^{2} \sin (2 \ln x)}{x^{6}} \\
& y_{2}^{\prime}(1)=2 .
\end{aligned}
$$

Thus,

$$
W\left(y_{1}(1), y_{2}(1)\right)=\left|\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right|=2 \neq 0 .
$$

Hence, y_{1}, y_{2} are linearly independent
Any n linearly independent solution set is called a fundamental set. Fundamental sets are the building blocks for finding the general solution to $n^{\text {th }}$ order linear homogeneous differential equations.

Theorem 4.1.5

Let $y_{1}, y_{2}, \cdots, y_{n}$ be a fundamental set of $\mathcal{L}(y)=0$ on an interval I. Then the general solution of the equation on I is given by

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+y_{n}
$$

where $c_{1}, c_{2}, \cdots, c_{n}$ are arbitrary constants.

Proof.

We will prove the result for $n=2$. Let $\left\{y_{1}, y_{2}\right\}$ be a fundamental set of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$. We want to show that every solution y to the differential equation can be written as a linear combination of y_{1} and y_{2}. That is,

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Since y_{1} and y_{2} are linearly independent, we can find x_{0} in I such that $W\left(y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right) \neq 0$.
So the problem reduces to finding the constants c_{1} and c_{2}. These are found
by solving the following linear system of two equations in the unknowns c_{1} and c_{2} :

$$
\begin{gathered}
c_{1} y_{1}\left(x_{0}\right)+c_{2} y_{2}\left(x_{0}\right)=y\left(x_{0}\right) \\
c_{1} y_{1}^{\prime}\left(x_{0}\right)+c_{2} y_{2}^{\prime}\left(x_{0}\right)=y^{\prime}\left(x_{0}\right) .
\end{gathered}
$$

By the method of elimination we find

$$
c_{1}=\frac{y\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y^{\prime}\left(x_{0}\right) y_{2}\left(x_{0}\right)}{W\left(y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right)}
$$

and

$$
c_{2}=\frac{y^{\prime}\left(x_{0}\right) y_{1}\left(x_{0}\right)-y\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right)}{W\left(y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right)} .
$$

Note that c_{1} and c_{2} exist since $W\left(y_{1}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right) \neq 0$ ■

Example 4.1.5

Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}+4 y=0 . \tag{4.1.2}
\end{equation*}
$$

(a) Show that $y_{1}(x)=\cos 2 x$ and $y_{2}(x)=\sin 2 x$ are solutions to (4.1.2).
(b) Show that $\{\cos 2 x, \sin 2 x\}$ is a fundamental set of solutions.
(c) Write the solution $y(x)=3 \cos \left(2 x+\frac{\pi}{4}\right)$ as a linear combination of y_{1} and y_{2}.

Solution.
(a) A simple calculation shows

$$
\begin{aligned}
& y_{1}^{\prime \prime}+4 y_{1}=-4 \cos 2 x+4 \cos 2 x=0 \\
& y_{2}^{\prime \prime}+4 y_{2}=-4 \sin 2 x+4 \sin 2 x=0
\end{aligned}
$$

(b) For any x we have

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left|\begin{array}{cc}
\cos 2 x & \sin 2 x \\
-2 \sin 2 x & 2 \cos 2 x
\end{array}\right|=2 \cos ^{2} 2 x+2 \sin ^{2} 2 x=2 \neq 0
$$

Thus, $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions.
(c) Using the formulas for c_{1} and c_{2} with $x_{0}=0$ we find

$$
\begin{aligned}
c_{1} & =\frac{y(0) y_{2}^{\prime}(0)-y^{\prime}(0) y_{2}(0)}{W\left(y_{1}(0), y_{2}(0)\right)} \\
& =\frac{6 \cos \frac{\pi}{4} \cos 0+6 \sin \frac{\pi}{4} \sin 0}{2}=\frac{3 \sqrt{2}}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{y^{\prime}(0) y_{1}(0)-y(0) y_{1}^{\prime}(0)}{W\left(y_{1}(0), y_{2}(0)\right)} \\
& =\frac{-6 \sin \frac{\pi}{4} \cos 0+6 \cos \frac{\pi}{4} \sin 0}{2}=-\frac{3 \sqrt{2}}{2}
\end{aligned}
$$

General Solution to Non-Homogeneous Equation

Next, we consider the question of finding the general solution to the differential equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0} y=g(x) \tag{4.1.3}
\end{equation*}
$$

where $g(x) \neq 0$. The following theorem provides the structure of the general solution to equation (4.1.3).

Theorem 4.1.6

Let $\left\{y_{1}(x), y_{2}(x), \cdots, y_{n}(x)\right\}$ be a fundamental set of solutions to the homogeneous equation $\mathcal{L} y=0$ and $y_{p}(x)$ be a particular solution of the nonhomogeneous equation $\mathcal{L}\left(y_{p}\right)=g(x)$. The general solution of the non-homogeneous equation is given by

$$
y(x)=y_{p}(x)+c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

for constants $c_{1}, c_{2}, \cdots, c_{n}$.

Proof.

Let $y(x)$ be a solution to the non-homogeneous equation. Let $u(x)=y(x)-$ $y_{p}(x)$. Then

$$
\mathcal{L}(u)=\mathcal{L}(y)-\mathcal{L}\left(y_{p}\right)=g(x)-g(x)=0 .
$$

Hence, u is a solution to the homogeneous equation so that

$$
u(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+y_{n}(x)
$$

for some constants $c_{1}, c_{2}, \cdots, c_{n}$ and so

$$
y(x)-y_{p}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+y_{n}(x)
$$

or

$$
y(x)=y_{p}(x)+c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+y_{n}(x)
$$

The general solution to the homogeneous equation $y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+$ $\cdots+y_{n}(x)$ will be called the complementary function for Equation (4.1.3). It follows from the above theorem that in finding the general solution to the non-homogeneous equation, we first solve the associated homogeneous equation and then find a particular solution to the non-homogeneous equation. The general solution to the non-homogenous equation is then the sum of the complementary function and the particular solution.

Example 4.1. 6

Consider the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=-9 x-3
$$

(a) Show that $y_{1}(x)=e^{-x}$ and $y_{2}(x)=e^{3 x}$ is a fundamental set.
(b) Show that $y_{p}(x)=3 x-1$ is a solution to the non-homogeneous equation.
(c) Find the general solution to the non-homogeneous equation.

Solution.

(a) Finding the second derivatives of $y_{1}(x)$ and $y_{2}(x)$ we find $y_{1}^{\prime}(x)=-e^{-x}, y_{1}^{\prime \prime}(x)=$ $e^{-x}, y_{2}^{\prime}(x)=3 e^{3 x}, y_{2}^{\prime}(x)=9 e^{3 x}$. Thus,

$$
y_{1}^{\prime \prime}-2 y_{1}^{\prime}-3 y_{1}=e^{-x}+2 e^{-x}-3 e^{-x}=0
$$

and

$$
y_{2}^{\prime \prime}-2 y_{2}^{\prime}-3 y_{2}=9 e^{3 x}-6 e^{3 x}-3 e^{3 x}=0 .
$$

Hence, the complementary function is $y_{c}=c_{1} e^{-x}+c_{2} e^{3 x}$.
(b) We have

$$
y_{p}^{\prime \prime}-2 y_{p}^{\prime}-3 y_{p}=0-6-9 x+3=-9 x-3
$$

(c) The general solution is $y(x)=c_{1} e^{-x}+c_{2} e^{3 x}+3 x-1$

As we pointed earlier in the section adding two solutions to a non-homogeneous equation does not necessarily yield a new solution. That is, the Principle of Superposition of homogeneous equations does not hold for non-homogeneous equations. However, we can have a property of superposition of non-homogeneous if one is adding two solutions of two different non-homogeneous equations. More precisely, we have

Theorem 4.1.7

Let $y_{1}(x)$ be a solution of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=g_{1}(x)$ and $y_{2}(x)$ a solution of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=g_{2}(x)$. Then for any constants c_{1} and c_{2} the function $Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is a solution of the equation

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=c_{1} g_{1}(x)+c_{2} g_{2}(x)
$$

Proof.

We have

$$
\begin{aligned}
a(x) Y^{\prime \prime}+b(x) Y^{\prime}+c(x) Y & =a(x) c_{1} y_{1}^{\prime \prime}+a(x) c_{2} y_{2}^{\prime \prime}+b(x) c_{1} y_{1}^{\prime}+b(x) c_{2} y_{2}^{\prime}+c(x) c_{1} y_{1}+c(x) c_{2} y_{2} \\
& =c_{1}\left(a(x) y_{1}^{\prime \prime}+b(x) y_{1}^{\prime}+c(x) y_{1}\right)+c_{2}\left(a(x) y_{2}^{\prime \prime}+b(x) y_{2}^{\prime}+c(x) y_{2}\right) \\
& =c_{1} g_{1}(x)+c_{2} g_{2}(x)
\end{aligned}
$$

Example 4.1.7

The functions $u_{1}(x)$ and $u_{2}(x)$ are particular solutions to the following differential equations

$$
\begin{aligned}
& a(x) u_{1}^{\prime \prime}+b(x) u_{1}^{\prime}+c(x) u_{1}=2 e^{-x}-x-1 \\
& a(x) u_{2}^{\prime \prime}+b(x) u_{2}^{\prime}+c(x) u_{2}=3 x .
\end{aligned}
$$

Use the functions u_{1} and u_{2} to construct a particular solution of the differential equation

$$
a(x) u^{\prime \prime}+b(x) u^{\prime}+c(x) u=4 e^{-x}-2 .
$$

Solution.

The right-hand side of the given equation can be written as $4 e^{-x}-2=$ $2\left(2 e^{-x}-x-1\right)+\frac{2}{3}(3 x)$ so that by the previous theorem, the function $u(x)=2 u_{1}(x)+\frac{2}{3} u_{2}(x)$ is the required particular solution

Initial Value and Boundary Value Problems

Now, the process of finding y in Equation (4.1.3) requires n integrations which will result in an n-parameter family of solutions. In order to find a particular solution, we need to find specific values of the n parameters. In this case, we need n initial conditions such as

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \cdots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} . \tag{4.1.4}
\end{equation*}
$$

Equation (4.1.3) subject to conditions (4.1.4) is referred to as an initial value problem.

Similar to the existence and uniqueness theorem for first order linear initial value ODEs (Theorem 2.3.2), we have the following existence and uniqueness theorem for higher order version.

Theorem 4.1.8

If $a_{0}(x), a_{1}(x), \cdots, a_{n}(x)$ and $g(x)$ are continuous on an interval I containing x_{0} and $a_{n}(x) \neq 0$ for all x in I then the IVP (4.1.3)-(4.1.4) has a unique solution defined on I.

Example 4.1.8

Show $y(x)=0$ is the unique solution to the initial value problem

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-5 y^{\prime}+10 y=0, y(1)=y^{\prime}(1)=y^{\prime \prime}(1)=0
$$

on the interval $(-\infty, \infty)$.

Solution.

Since all the coefficient functions and the right-hand side function are continuous in $(-\infty, \infty)$ and the interval contains 1, Theorem 4.1.8 guarantees the existence of a unique solution. Clearly, $y(x)=0$ is a solution to the IVP so that it is the only solution

The condition $a_{n}(x) \neq 0$ in the interval I is essential as shown in the next example.

Example 4.1.9

Show $y(x)=c x^{2}+x+3$ is a solution to the initial value problem

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6, y(0)=3, y^{\prime}(0)=1
$$

on the interval $(-\infty, \infty)$ where c is an arbitrary constant.

Solution.

We have

$$
\begin{aligned}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y & =x^{2}(2 c)-2 x(2 c x+1)+2\left(c x^{2}+x+3\right)=6 \\
y(0) & =c(0)^{2}+0+3=3 \\
y^{\prime}(x) & =2 c x+1 \\
y^{\prime}(0) & =1 .
\end{aligned}
$$

Thus, the initial value problem has infinite number of solutions. Note that $a_{2}(0)=0$ so that the condition $a_{n}(x) \neq 0$ in Theorem 4.1.8 is violated

We conclude this section by introducing another type of linear differential equations subject to certain conditions where the function and its derivatives are specified at different values of x. We limit the discussion to ODE of order 2.
A second order linear ODE

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=g(x)
$$

subject to the conditions

$$
\begin{equation*}
\alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=\gamma_{1}, \alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=\gamma_{2} \tag{4.1.5}
\end{equation*}
$$

is called an boundary value problem. The conditions (4.1.5) are called boundary conditions.
A boundary value problem may have several solutions, one solution or no solution.

Example 4.1.10

The general solution to $x^{\prime \prime}+16 x=0$ is given by $x(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t)$.
(a) Find the solution, if it exists, satisfying the conditions $x(0)=x\left(\frac{\pi}{2}\right)=0$.
(b) Find the solution, if it exists, satisfying the conditions $x(0)=x(\pi / 8)=0$.
(c) Find the solution, if it exists, satisfying the conditions $x(0)=0, x(\pi / 2)=$ 1.

Solution.

(a) From $x(0)=0$, we find $0=c_{1} \cos 0=c_{1}$. Hence, $x(t)=c_{2} \sin (4 t)$. From the condition $x(\pi / 2)=0$, we find $c_{2} \sin (2 \pi)=0$. Since $\sin (2 \pi)=0$, the parameter c_{2} can assume any value. Hence, the BVP has infinitely many solutions.
(b) From $x(0)=0$, we find $0=c_{1} \cos 0=c_{1}$. Hence, $x(t)=c_{2} \sin (4 t)$. From the condition $x(\pi / 8)=0$, we find $c_{2} \sin (\pi / 2)=0$ so $c_{2}=0$. Hence, the BVP has the unique solution $y(t)=0$.
(b) From $x(0)=0$, we find $0=c_{1} \cos 0=c_{1}$. Hence, $x(t)=c_{2} \sin (4 t)$. From the condition $x(\pi / 2)=1$, we find $c_{2} \sin (2 \pi)=1$. Since $\sin (2 \pi)=0$, the value of c_{2} does not exist. Hence, the BVP has no solution

