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3.2 First Order Non-Linear Models

In this section we investigate some nonlinear models.

Mathematical Ecology: Density-Dependent Population Models
A commonly known principle in the study of population models is the princi-
ple of density-dependence which states that the growth rate is more likely
small for a large population. This makes sense since the larger the population
the more scarce the resources become.

Malthus Models
These are Linear models that do not take the density dependence principle
into consideration. Instead, the assumption that the same growth character-
istics always apply to the population regardless of size. In particular, it is
assumed that there are unlimited resources. As a result, linear models are
described by the equation dP

dt
= kP which always predicts one of two types

of behavior: exponential growth for k > 1 and exponential decay to 0 or ex-
tinction for 0 < k < 1. Such models are seldom encountered in the real world.

Verhlust or Logistic Models
These are nonlinear models that take into consideration the principle of
density-dependence and the effects of population growth. It assumes there
is a carrying capacity K for the population, i.e., the largest population
the environment can sustain. If the population is above K, then the pop-
ulation will decrease, but if below, then it will increase. Consequently, the
qualitative behaviors of their solutions are more realistic and reflect the true
population dynamics.
A nonlinear model that embodies the density-dependence principle can be
described by the first order differential equation

dP

dt
= Pf(P ) (3.2.1)
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where the growth rate function f(P ) decreases as P increases. The simplest
type f(P ) is a linear one such as

f(P ) = r

(
1− P

K

)
where r is a constant called the growth rate. Substituting this into Equation
(3.1.1), we obtain the following logistic equation:

dP

dt
= rP

(
1− P

K

)
. (3.2.2)

We call the solution of this differential equation the logistic function and
its graph the logistic curve.

Solving the Logistic Differential Equation
The logistic equation (3.1.2) is a separable differential equation. By separat-
ing the variables we find

dP

P
(
1− P

K

) = rdt.

Using, the method of partial fractions one finds

1

P
(
1− P

K

) =
1

P
+

1

K
(
1− P

K

) =
1

P
+

1

K − P
.

Thus,
dP

P
+

dP

K − P
= rdt.

Integrating both sides of this equation, we find∫
dP

P
+

∫
dP

K − P
=

∫
rdt + C

which yields
ln |P | − ln |K − P | = rt + C

or

ln

∣∣∣∣ P

K − P

∣∣∣∣ = rt + C.

Thus,
P

K − P
= ±ert+C = Cert =⇒ P (t) =

KCert

1 + Cert
.
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If P (0) = P0 then P0 = KC
1+C

=⇒ C = P0

K−P0
and so after substituting and

simplifying, we find

P (t) =
KP0

P0 + (K − P0)e−rt
.

A logistic curve is shown in Figure 3.2.1.

Figure 3.2.1

As is clear from the graph above, a logistic function shows that initial ex-
ponential growth is followed by a period in which growth slows and then
levels off, approaching (but never attaining) a maximum upper limit which
is the carrying capacity. Notice the characteristic S-shape which is typical of
logistic functions.

Example 3.2.1
The number N(t) of supermarkets throughout the country that are using a
computerized checkout system is described by the initial-value problem

dN

dt
= N(1− 0.0002N), N(0) = 1.

(a) Use the phase portrait concept of Section 2.1 to predict how many su-
permarkets are expected to adopt the new procedure over a long period of
time. By hand, sketch a solution curve of the given initial-value problem.
(b) Solve the initial-value problem.
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(c) How many supermarkets are expected to adopt the new technology when
t = 15? (Round your answer to the nearest integer.)

Solution.
(a) The equilibrium solutions are solutions to the equation N(1−0.0002N) =
0. Solving this equation we find N = 0 and N = 5000. Notice that for
0 < N < 5000, dN

dt
> 0. From the phase portrait we see that the equilibrium

solution is stable. The solution curve is shown in Figure 3.2.2.

Figure 3.2.2

(b) We have

1

N(1− 0.0002N)
=

1

N
+

1

5000(1− 0.0002N)
=

1

N
+

1

5000−N∫
dN

N(1− 0.0002N)
=

∫
dt + C∫

dN

N
+

∫
dN

5000−N
=t + C

ln |N | − ln |N − 5000| =t + C

ln

∣∣∣∣ N

N − 5000

∣∣∣∣ =t + C

N

N − 5000
=Cet.
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Since N(0) = 1, we find C = − 1
4999

. Thus,

N = (N − 5000)(−1/4999)et =⇒ N(t) =
5000et

4999 + et
.

(c) We have N(15) = 5000e15

4999+e15
≈ 4992
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