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2.4 Exact Differential Equations

We shall now present another technique for solving first order, non-linear,
ordinary differential equations. This technique is a generalization of the one
we used for separable equations.
We have seen that the solution procedure of separable equations consists of
reversing the chain rule. This same procedure works for exact equations but
this time the chain rule is for functions of two variables.

The Extended Chain Rule
You recall the chain rule for functions of one variable: If u is differentiable
at x and f is differentiable at u(x) then the composite function y = f(u(x))
is also differentiable at x with derivative given by

dy

dx
=
dy

du
· du
dx
.

Example 2.4.1
Find the derivative of the function y = e

√
x.

Solution.
Let u(x) =

√
x and f(x) = ex. Then du

dx
= 1

2
√
x

and dy
du

= eu. Hence,

dy

dx
= eu

1

2
√
x

=
e
√
x

2
√
x

The above chain rule can be extended to functions of two variables. Suppose
that u and v are differentiable at x and f is a differentiable function of u
and v. Then the function z(x) = f(u(x), v(x)) is differentiable at x with
derivative

dz

dx
=
∂f

∂u

du

dx
+
∂f

∂v

dv

dx
.

Example 2.4.2
Let z = f(u, v) = u2 + 2u− uv+ v2 where u(x) = x2 + 1 and v(x) = x3− x2.
Find dz

dx

∣∣
x=2

in two different ways.
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Solution.
First notice that u(2) = 5 and v(2) = 4. By using the extended chain rule
we have

dz

dx
=
∂f

∂u

du

dx
+
∂f

∂v

dv

dx
=(2u+ 2− v)(2x) + (2v − u)(3x2 − 2x).

Thus,
dz

dx

∣∣∣∣
x=2

= (10 + 2− 4)(4) + (8− 5)(8) = 56.

A different way for finding the derivative is to write z as only a function of
t obtaining

z(x) = x6 − 3x5 + 3x4 − x3 + 5x2 + 3.

Finding the derivative of z(x)

z′(x) = 6x5 − 15x4 + 12x3 − 3x2 + 10x.

Finally, z′(2) = 56

Exact Differential Equations
The basic idea underlying separable equations is to reverse the chain rule
for functions of one variable. The basic idea underlying exact equations is
to reverse the extended chain rule. To this end, consider the differential
equation

M(x, y) +N(x, y)
dy

dx
= 0. (2.4.1)

Let H(x, y) be a function satisfying the two conditions

∂H

∂x
(x, y) = M(x, y) and

∂H

∂y
(x, y) = N(x, y). (2.4.2)

Then Equation (2.4.1) can be written as

∂H

∂x
+
∂H

∂y

dy

dx
= 0. (2.4.3)

By the extended chain rule, Equation (2.4.3) is the same as

d

dx
H(x, y) = 0.
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Therefore, we obtain an implicitly defined solution given by

H(x, y) = C.

An equation like (2.4.1) is called exact if there is a function H(x, y) satisfy-
ing the conditions in (2.4.2).

Testing a Differentiable Equation for Exactness
The next question is the question of telling whether or not Equation (2.4.1)
is exact. This is answered by the following theorem.

Theorem 2.4.1
Suppose that the functions M(x, y) and N(x, y) in (2.4.1) are continuous and
have continuous first partial derivatives ∂M

∂y
and ∂N

∂x
in an open rectangle

R = {(x, y) : a < x < b, c < y < d}.

Then (2.4.1) is exact in R if and only if

∂M

∂y
=
∂N

∂x

for all (t, y) in R.

Proof.
Suppose that (2.4.1) is exact in R. Then there is a function H(x, y) such that
(2.4.2) is satisfied. Since M(x, y) and N(x, y) are continuous then ∂H

∂x
(x, y)

and ∂H
∂y

(x, y) are conitnuous which imply that

∂2H

∂y∂x
=

∂2H

∂x∂y
.

Thus,

∂M

∂y
=
∂

∂y

(
∂H

∂x

)
=

∂2H

∂y∂x

=
∂2H

∂x∂y
=

∂

∂x

(
∂H

∂y

)
=
∂N

∂x
.

Now suppose that ∂M
∂y

= ∂N
∂x

for all (x, y) in R. Let H(x, y) be a function
such that

3



∂H
∂x

(x, y) = M(x, y) and ∂H
∂y

(x, y) = N(x, y).

Integrating the M(x, y) with respect to x, holding y fixed to obtain

H(x, y) =

∫
M(x, y)dx+ f(y). (2.4.4)

Differentiating this equation with respect to y, we find

N(x, y) =
∂H

∂y
(x, y) =

∂

∂y

∫
M(x, y)dx+ f ′(y)

so that

f ′(y) = N(x, y)− ∂

∂y

∫
M(x, y)dx. (2.4.5)

Since the left-hand side of this expression is a function of y only, we must
show, for consistency, that the right-hand side also depends only on y. Taking
the derivative of the right-hand side with respect to x yields

∂

∂x

(
N(x, y)− ∂

∂y

∫
M(x, y)dx

)
=
∂N

∂x
(x, y)− ∂2

∂x∂y

∫
M(x, y)dt

=
∂N

∂x
(x, y)− ∂

∂y

(
∂

∂x

∫
M(x, y)dx

)
=
∂N

∂x
(x, y)− ∂M

∂y
(x, y) = 0

so that the right-hand side of Equation (2.4.5) is a function of y. Now in-
tegrating both sides of Equation (2.4.5) with respect to y to find f(y). The
expression of f(y) is then being inserted in Equation (2.4.4)

Remark 2.4.1
Every separable differential equation is exact. Indeed, since −g(x)+f(y)y′ =
0 we have ∂g

∂y
= 0 and ∂f

∂x
= 0. However, not every exact equation is separable.

For example, the differential equation (2x+ y) + (2y+x)y′ = 0 is exact since
∂M
∂y

= 1 = ∂N
∂x
. This equation is clearly not separable

Example 2.4.3
Determine whether or not the equation is exact.
(a) xy2 + x+ x2yy′ = 0.
(b) y2 + 1 + xyy′ = 0.
(c) cos y + (y2 + x sin y)y′ = 0.
(d) cos y + (y2 − x sin y)y′ = 0.
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Solution.
(a) Since ∂

∂y
(xy2 + x) = 2xy and ∂

∂x
(x2y) = 2xy, the given equation is exact.

(b) Since ∂
∂y

(y2 + 1) = 2y and ∂
∂x

(xy) = y, the given equation is not exact.

(c) Since ∂
∂y

(cos y) = − sin y and ∂
∂x

(y2 + x sin y) = sin y, the given equation
is not exact.
(d) Since ∂

∂y
(cos y) = − sin y and ∂

∂x
(y2 − x sin y) = − sin y, the equation is

exact

Example 2.4.4
Consider the initial value problem

x+ y + (x+ 2y)y′ = 0, y(0) = 1.

Show that the differential equation is exact and solve the IVP.

Solution.
We have M(x, y) = x+ y and N(x, y) = x+ 2y. Since

∂M(x, y)

∂y
=
∂N(x, y)

∂x
= 1

we have by Theorem 2.4.1 that the differential equation is exact. Thus,

H(x, y) =

∫
(x+ y)dx = xy +

x2

2
+ c1(y).

Hence,

x+ 2y =
∂H(x, y)

∂y
= x+ c′1(y).

It follows that

c1(y) =

∫
(2y)dy = y2 + C.

Hence,

xy + y2 +
x2

2
= C.

Since y(0) = 1, we find C = 1. Thus, y satisfies the implicit equation

2xy + 2y2 + x2 = 2
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Converting a Non-exact DE into Exact
Suppose that Equation (2.4.1) is not exact. Let µ(x, y) be a function such
that

µ(x, y)M(x, y) + µ(x, y)N(x, y)y′ = 0

is exact.That is,

∂

∂y
(µ(x, y)M(x, y)) =

∂

∂x
(µ(x, y)N(x, y)).

Using the product rule of differentiation, we find

µ(x, y)
∂

∂y
M(x, y)+

∂

∂y
µ(x, y)M(x, y) = µ(x, y)

∂

∂x
N(x, y)+

∂

∂x
µ(x, y)N(x, y)

which can be written in the form

(My(x, y)−Nx(x, y)µ(x, y) = µx(x, y)N(x, y)− µy(x, y)M(x, y).

This is a partial differential equation, a topic that is not covered in this
course. Instead, we are going to consider the follwoing two scenarios:
• If µ(x, y) = µ(x) and My−Nx

N
is a function of x only then dµ

dx
= My−Nx

N
µ.

Solving this equation by separating the variables yields µ(x) = e
∫ My−Nx

N
dx.

Multiplying the non-exact DE by this function converts it to an exact DE.
• If µ(x, y) = µ(y) and Nx−My

M
is a function of y only then dµ

dy
= Nx−My

M
µ.

Solving this equation by separating the variables yields µ(y) = e
∫ Nx−My

M
dy.

Multiplying the non-exact DE by this function converts it to an exact DE.

Example 2.4.5
Consider the differential equation

xy + (2x2 + 3y2 − 20)y′ = 0.

Show that the differential equation is not exact. With the appropriate inte-
grating factor, convert the DE into an exact differential equation.

Solution.
Since

Nx −My

M
=

4x− x
xy

=
3

y

we choose µ(y) = e
∫

3
y
dy = y3. Multiplying the given DE by µ(y) = y3 gives

the exact differential equation xy4 + (2x2y3 + 3y5 − 20y3)y′ = 0
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