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2.3 First Order Linear ODEs

Any differential equation that can be written in the form

y′ + p(x)y = g(x) (2.3.1)

where p(x) and g(x) are continuous functions with common domain a < x <
b, is called a first order linear differential equation. The term linear
is used because L(y) = y′ + p(x)y is linear in y. That is, L(αy1 + βy2) =
αL(y1) + βL(y2). Indeed, we have

L(αy1 + βy2) =(αy1 + βy2)
′ + p(x)(αy1 + βy2)

=αy′1 + αp(x)y1 + βy′2 + βp(x)y2

=α(y′1 + p(x)y1) + β(y′2 + p(x)y2) = αL(y1) + βL(y2).

An ODE that is not linear is called non-linear.
In mathematics and physics, linear generally means “simple” and non-linear
means “complicated”. The theory for solving linear equations is very well
developed because linear equations are simple enough to be solvable. Non-
linear equations can usually not be solved exactly and are the subject of
much on-going research.
Now, we say that Equation (2.3.1) is homogeneous if g(x) ≡ 0 for all
a < x < b. If there is a a < x < b such that g(x) 6= 0 then Equation (2.3.1) is
called non-homogeneous. Note that a first order linear homogeneous ODE
is also separable ODE.

Example 2.3.1
Classify each of the following first order differential equations as linear or
non-linear. If the equation is linear, decide whether it is homogeneous or
non-homogeneous.
(a) dy

dx
+ y

10
= xy.

(b) x2 − 3y2 + 2x dy
dx

= 0.

(c) x dy
dx

= x2 − 2y.

(d) dy
dx

= x−y
x+y

.
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Solution.
(a) Notice that the given equation can be written as dy

dx
+( 1

10
−x)y = 0 which

is a homogeneous first order linear DE where p(x) = 1
10
− x and g(x) = 0.

(b) This is non-linear because of the term y2.
(c) This is a non-homogeneous first order linear DE since the right-hand side
is not identically zero on any interval. Here, we have p(x) = 2

x
and g(x) = x.

(d) This is non-linear because of the y in the denominator

First order linear differential equations possess important linearity or su-
perposition properties.

Theorem 2.3.1
(a) If y1(x) and y2(x) are any two solutions of the homogeneous equation
y′ + p(x)y = 0 then for any constants c1 and c2 the linear combination
c1y1(x) + c2y2(x) is also a solution of the homogeneous equation.
(b) If y1(x) is a solution to the homogeneous equation y′ + p(x)y = 0 and
y2(x) is a solution to the non-homogeneous equation y′ + p(x)y = g(x) then
Cy1(x) + y2(x) is also a solution to the non-homogeneous equation, where C
is an arbitrary constant.

Proof.
(a) Since y1(x) and y2(x) are solutions to the homogeneous equation, we
have

(c1y1 + c2y2)
′ + p(x)(c1y1 + c2y2) = c1(y

′
1 + p(x)y1) + c2(y

′
2 + p(x)y2) = 0 + 0 = 0.

(b) We have

(Cy1 + y2)
′ + p(x)(Cy1 + y2) = C(y′1 + p(x)y1) + y′2 + p(x)y2 = 0 + g(x) = g(x)

Remark 2.3.1
Part (a) of the previous theorem is not true in general for non-homogeneous equa-
tions. For example, consider the equation y′ = 1. Then y1(1) = x and y2(t) = x+1
are both solutions to the DE. However, y1(x) + y2(x) = 2x + 1 is not a solution
since (y1 + y2)

′ = 2 6= 1

Next, we look for the general solution to Equation (2.3.1). The technique we use
is a well known technique for solving any first order linear ODE known as the
method of integrating factor. Let

µ(x) = e
∫
p(x)dx
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Multiply Equation (2.3.1) by µ(x) and notice that the left hand side is just the
derivative of ye

∫
p(x)dx. That is,

(µ(x)y)′ = µ(x)g(x).

Integrating this last equation to obtain

µ(x)y(x) =

∫
µ(x)g(x)dx+ C.

Thus,

y(x) =
1

e
∫
p(x)dx

∫
e
∫
p(x)dxg(x)dx+

C

e
∫
p(x)dx

. (2.3.2)

This is a one-parameter family of solutions.

One can write the above function (2.3.2) in the form y(x) = Cy1(x) + y2(x) where
y1(x) = e−

∫
p(x)dx and y2(x) = e−

∫
p(x)dx

∫
e
∫
p(x)dxg(x)dx. Notice that y1 is a

solution for the homogeneous equation

y′ + p(x)y = 0.

Indeed,

y′2+p(x)y2 =

(
−
∫
p(x)dx

)′
e−

∫
p(x)dx+p(x)e−

∫
p(x)dx = −p(x)e−

∫
p(x)dx+p(x)e−

∫
p(x)dx = 0.

Also, y2 is a particular solution to the non-homogeneous equation. To see this, we
let yp = e−

∫
p(x)dx

∫
e
∫
p(x)dxg(x)dx. In this case,

y′p + p(x)yp =− p(x)e−
∫
p(x)dx

∫
e
∫
p(x)dxg(x)dx+ e−

∫
p(x)dx · e

∫
p(x)dxg(x)

+p(x)e−
∫
p(x)dx

∫
e
∫
p(x)dxg(x)dx

=g(x).

Thus, the general solution to Equation (2.3.1) is the sum of a particular solution
of the non-homogeneous equation and the general solution of the homogeneous
equation which is consistent with Theorem (2.3.1).

Example 2.3.2
Find the general solution to the equation

y′ +
2

x
y = lnx, x > 0.
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Solution.
The integrating factor is µ(x) = e

∫
2
x
dx = x2. Multiplying the given equation by

x2 to obtain
(x2y)′ = x2 lnx.

Integrating with respect to t we find

x2y =

∫
x2 lnxdx+ C.

The integral on the right-hand side is evaluated using integration by parts with
u = lnx, dv = x2dx, du = dx

x , v = x3

3 obtaining

x2y =
x3

3
lnx− x3

9
+ C.

Thus,

y(x) =
x

3
lnx− x

9
+
C

x2

Next, we look at the conditions that guarantee the existence of a unique solution
to the IVP

y′ + p(x)y = g(x), y(x0) = y0. (2.3.3)

Theorem 2.3.2
If p(x) and g(x) are continuous functions in the open interval I = (a, b) and x0 a
point inside I then the IVP (2.3.3) has a unique solution y(x) defined on I.

Proof.
Let F (x, y) = g(x) − p(x)y. Then ∂F

∂y (x, y) = −p(x). Hence, F (x, y) and ∂F
∂y (x, y)

are continuous in a rectangle containing (x0, y0). By Theorem 1.2.1 of Section 1.2,
there is an interval I0 ⊂ I containing x0 such that the IVP (2.3.3) has a unique
solution. But when x0 is in I, finding a solution to (2.3.3) is just a matter of
finding an appropriate value of c in (2.3.2). But then the resulting solution is
defined for all x is I.That is, the interval of existence of the unique solution is the
entire interval I

Example 2.3.3
Solve the initial-value problem

y′ + y = x y(0) = 4.
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Solution.
By Theorem 2.3.2, the solution exists and is unique on the interval (−∞,∞) since
0 belongs to that interval.
We have p(x) = 1 so that µ(x) = ex. Multiplying the given equation by the
integrating factor and using the product rule we notice that

(exy)′ = xex.

Integrating with respect to x and using integration by parts we find

exy = xex − ex + c.

Solving for y we find that the general solution is given by

y(x) = x− 1 + ce−x.

The condition y(0) = 4 implies c = 5 and hence the unique solution to the IVP is
y(x) = x−1+5e−x, −∞ < x <∞. Note that for c 6= 0, ce−x → 0 as t→∞. That
is, in the long run, all the solutions approach the solution y = x− 1 corresponding
to c = 0. In such a case, we call ce−x a transient term

Remark 2.3.2
Instead of using indefinite integrals in the above discussion one can use definite
integrals. For example, replace

∫
p(x)dx by

∫ x
x0
p(s)ds for some fixed x0. Using

definite integral is proven to be useful when p(x) does not have an elementary
function as an antiderivative. For example, when p(x) = sinx

x or p(x) = e−x
2
. We

illustrate this idea in the next example.

Example 2.3.4
Solve y′ − 2xy = 2, y(0) = 1.

Solution.
Since p(x) = −2x, we find µ(x) = e

∫
(−2x)dx = e−x

2
. Thus,(

e−x
2
y
)′

=

(
2

∫ x

0
e−t

2
dt

)′
e−x

2
y(x) =2

∫ x

0
e−t

2
dt+ C.

Since y(0) = 1, we find C = 1. Hence, y(x) = ex
2

+ 2ex
2 ∫ x

0 e
−t2dt. This last

equation can be written in the form

y(x) = ex
2

[
1 +
√
π

(
2√
π

∫ x

0
e−t

2
dt

)]
= ex

2
[1 +
√
πerf(x)]

where erf(x) is known as the error function
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Example 2.3.5
Solve y′− 1

xy = sinx, y(1) = 3. Express your answer in terms of the sine integral,
Si(x) =

∫ x
0

sin t
t dt.

Solution.
Since p(x) = − 1

x , we find µ(x) = 1
x . Thus,(

1

x
y

)′
=

sinx

x
=

(∫ x

0

sin t

t
dt

)′
1

x
y(x) =Si(x) + C

y(x) =xSi(x) + Cx.

Since y(1) = 3, we find C = 3− Si(1). Hence, y(x) = xSi(x) + (3− Si(1))x

Case when either p(x) or g(x) has a jump discontinuity
Consider the IVP

y′ + p(x)y = g(x), y(a) = y0, a ≤ x ≤ b (2.3.4)

where p(x) and g(x) are continuous in a ≤ x ≤ b except at t = c where either p(x)
or g(x) has a jump discontinuity at a < c < b. We seek a solution y(x) that is
continuous at x = c.
To solve this problem, we first solve the initial value problem on the interval
a ≤ x < c where both p(x) and g(x) are continuous. Let y1(x) be the unique
solution. Since we are seeking a continuous solution to (2.3.4), we expect y1(x) to
have a one-sided limit at c, i.e.,

lim
x→c−

y1(x) = y1(c
−).

Next, we find the unique solution y2(t) to the IVP

y′ + p(x)y = g(x), y(c) = y1(c
−)

where c ≤ x ≤ b. The unique solution to the original IVP is then given by

y(x) =

{
y1(x), if a ≤ x < c
y2(x) if c ≤ x ≤ b.

Thus, we obtain a peicewise-defined solution. We illustrate this process in the next
example.
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Example 2.3.6
Find the solution to the IVP

y′ +
1

x
y = g(x), y(1) = 1

where

g(x) =

{
3x, if 1 ≤ x ≤ 2
0 if 2 < x ≤ 3.

The graph of g(x) is given in Figure 2.3.1(a).

Solution.
First, we solve the IVP

y′ +
1

x
y = 3x, y(1) = 1, 1 ≤ x ≤ 2.

The integrating factor is µ(x) = x and the general solution is y1(x) = x2 + C
x .

Since y(1) = 1, we have C = 0. Hence, y1(x) = x2 and y1(2) = 4.
Next, we solve the IVP

y′ +
1

x
y = 0, y(2) = 4, 2 < x ≤ 3.

The integrating factor is µ(x) = x and the general solution is y2(x) = C
x . Since

y2(2) = 4 we find C = 8. Thus,

y(x) =

{
x2, if 1 ≤ x ≤ 2
8
x if 2 < x ≤ 3.

The graph of y(x) is given in Figure 2.3.1(b). As you can see from the graph, y(x)
is continuous on [1, 3] but not differentiable at x = 2

Figure 2.3.1
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