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2.3 First Order Linear ODEs

Any differential equation that can be written in the form

Y +px)y =g(x) (2.3.1)

where p(z) and g(x) are continuous functions with common domain a < z <
b, is called a first order linear differential equation. The term linear
is used because L(y) = ¢ + p(x)y is linear in y. That is, L(ay; + Bys) =
aLl(y1) + BL(y2). Indeed, we have

L(ayr + Bys2) =(ays + Bya)" + p(x)(ayr + Bys)
=ay; + ap(x)yy + Bys + Bp(x)ys
=a(y; + p(@)y1) + B(ys + p(x)y2) = aLyr) + BL(y2).

An ODE that is not linear is called non-linear.

In mathematics and physics, linear generally means “simple” and non-linear
means “complicated”. The theory for solving linear equations is very well
developed because linear equations are simple enough to be solvable. Non-
linear equations can usually not be solved exactly and are the subject of
much on-going research.

Now, we say that Equation (2.3.1) is homogeneous if g(z) = 0 for all
a < x <b. If there is a a < x < b such that g(x) # 0 then Equation (2.3.1) is
called non-homogeneous. Note that a first order linear homogeneous ODE
is also separable ODE.

Example 2.3.1

Classify each of the following first order differential equations as linear or
non-linear. If the equation is linear, decide whether it is homogeneous or
non-homogeneous.

(a) Z—z + 15 = vy

(b) x* — 3y* + 2:1:% = 0.
(c) azg—g =22 -2
d r—



Solution.

(a) Notice that the given equation can be written as % + (55 —«)y = 0 which

is a homogeneous first order linear DE where p(z) = 55 — x and g(z) = 0.

(b) This is non-linear because of the term y?.

(¢) This is a non-homogeneous first order linear DE since the right-hand side
2

is not identically zero on any interval. Here, we have p(z) = = and g(z) = =.

(d) This is non-linear because of the y in the denominator m

First order linear differential equations possess important linearity or su-
perposition properties.

Theorem 2.3.1

(a) If y1(x) and yo(x) are any two solutions of the homogeneous equation
v + p(x)y = 0 then for any constants ¢; and ¢ the linear combination
c1y1(z) + coya () is also a solution of the homogeneous equation.

(b) If y1(x) is a solution to the homogeneous equation ¢’ + p(x)y = 0 and
y2(x) is a solution to the non-homogeneous equation y' + p(x)y = g(z) then
Cy1(z) 4+ yo(z) is also a solution to the non-homogeneous equation, where C'
is an arbitrary constant.

Proof.
(a) Since y;(z) and yo(z) are solutions to the homogeneous equation, we
have

(cryr + cay2)’ + p(x) (cryr + o) = c1(yy + p(@)y1) + ca(yy + p(x)y2) =0+ 0 = 0.

(b) We have
(Cy1 +y2)" +p(@)(Cy1 + y2) = C(y) +p(2)y1) + Y2 + p()y2 = 0+ g(x) = g(x) W

Remark 2.3.1

Part (a) of the previous theorem is not true in general for non-homogeneous equa-
tions. For example, consider the equation ¢’ = 1. Then y1(1) = z and y2(t) = x+1
are both solutions to the DE. However, yi(z) + y2(x) = 2z + 1 is not a solution
since (y1+y2) =2#11

Next, we look for the general solution to Equation (2.3.1). The technique we use
is a well known technique for solving any first order linear ODE known as the
method of integrating factor. Let

w(z) = eJ p(z)dz



Multiply Equation (2.3.1) by u(z) and notice that the left hand side is just the
derivative of yef p(z)dz That is,

(w(z)y) = p(z)g().

Integrating this last equation to obtain

Thus,

1 C
- = [ oJp@)dx
@) = e /e g(@)de + — o (2.3.2)
This is a one-parameter family of solutions.

One can write the above function (2.3.2) in the form y(z) = Cyi1(z) + y2(x) where
y1(z) = e JP@d and yo(z) = e‘fp(x)dxfefp(x)dxg(ﬂv)d:z:. Notice that y; is a
solution for the homogeneous equation

y' +p(x)y = 0.
Indeed,

Yotp(x)ys = (— / p(:c)dm) e I PN L p(g)em [P = _p(g)em POy p(g)em [r()dr —

Also, s is a particular solution to the non-homogeneous equation. To see this, we
let y, = e~ J p(@)d / e P@)dx g (1) dg. In this case,

+p(:17)efp(x)dx/efp(x)d‘”g(aﬁ)dx
=g(x).

Thus, the general solution to Equation (2.3.1) is the sum of a particular solution
of the non-homogeneous equation and the general solution of the homogeneous
equation which is consistent with Theorem (2.3.1).

Example 2.3.2
Find the general solution to the equation

, 2
Yy +—y=Ilnx, x>0.
x



Solution.
The integrating factor is p(x) = ef 2dv — 42, Multiplying the given equation by
x? to obtain

(2%y) = 2®Inx.

Integrating with respect to ¢ we find
2y = /x2 Inzdz + C.

The integral on the right-hand side is evaluated using integration by parts with

3 ..
u=Inz, dv=2?dr,du = %, v = % obtaining

3 3

ny:%lnx—%—&—C.
Thus,
7y z C
y(x):§ nx—g—i—ﬁl

Next, we look at the conditions that guarantee the existence of a unique solution
to the IVP

Y +p(x)y = g(x), y(x0) = Yo (2.3.3)

Theorem 2.3.2
If p(x) and g(x) are continuous functions in the open interval I = (a,b) and xp a
point inside I then the IVP (2.3.3) has a unique solution y(z) defined on 1.

Proof.

Let F(x,y) = g(x) — p(x)y. Then %—Z(w,y) = —p(z). Hence, F(z,y) and %—g(a:,y)
are continuous in a rectangle containing (z, yo). By Theorem 1.2.1 of Section 1.2,
there is an interval Iy C I containing xo such that the IVP (2.3.3) has a unique
solution. But when xzg is in I, finding a solution to (2.3.3) is just a matter of
finding an appropriate value of ¢ in (2.3.2). But then the resulting solution is
defined for all x is I.That is, the interval of existence of the unique solution is the
entire interval I B

Example 2.3.3
Solve the initial-value problem

Y +y=x y(0) =4



Solution.
By Theorem 2.3.2, the solution exists and is unique on the interval (—oo, 00) since
0 belongs to that interval.
We have p(z) = 1 so that p(xr) = e*. Multiplying the given equation by the
integrating factor and using the product rule we notice that
(e*y) = xe”.

Integrating with respect to x and using integration by parts we find

ey =xze® —e” +c.
Solving for y we find that the general solution is given by

ylx) =z —1+ce ™.

The condition y(0) = 4 implies ¢ = 5 and hence the unique solution to the IVP is
y(xr) =x—1+45e™", —oo <z < oo. Note that for ¢ # 0, ce™ — 0 as t — oco. That
is, in the long run, all the solutions approach the solution y = x — 1 corresponding
to ¢ = 0. In such a case, we call ce™ a transient term W

Remark 2.3.2

Instead of using indefinite integrals in the above discussion one can use definite
integrals. For example, replace [ p(x)dz by f;; p(s)ds for some fixed xp. Using
definite integral is proven to be useful when p(x) does not have an elementary
function as an antiderivative. For example, when p(z) = % or p(z) = e~ We
illustrate this idea in the next example.

Example 2.3.4
Solve 3/ — 2zy = 2, y(0) = 1.

Solution.
Since p(z) = —2z, we find p(z) = e/ (2047 — ¢=* Thyg,

' x !
<6_$2y) = (2 / e—t"’dt)
0
6_"22 o z —t2
y(x) =2 | e “dt+C.
0

Since y(0) = 1, we find C = 1. Hence, y(z) = ** + 2 o et dt. This last
equation can be written in the form

y(z) = e* [1 + /7 <\; /Ow etht>] — ¢ [1 + V/mer f(z)]

where er f(z) is known as the error function m



Example 2.3.5
Solve Yy — y =sinz, y(1) = 3. Express your answer in terms of the sine integral,
Sl fox Smtdt

Solution.
Since p(z) = —1, we find p(z) = 2. Thus,

() 2 ([ 2)

iy(m) _Si(x) +C

y(z) =xSi(z) + Cx.

Since y(1) = 3, we find C = 3 — Si(1). Hence, y(z) = xSi(z) + (3 — Si(1))x

Case when either p(z) or g(x) has a jump discontinuity
Consider the IVP

Y +p(x)y=g(x), yla)=yo, a<z<b (2.3.4)

where p(x) and g(z) are continuous in @ < z < b except at ¢t = ¢ where either p(z)
or g(z) has a jump discontinuity at a < ¢ < b. We seek a solution y(z) that is
continuous at r = c.

To solve this problem, we first solve the initial value problem on the interval
a < x < ¢ where both p(z) and g(x) are continuous. Let yi(x) be the unique
solution. Since we are seeking a continuous solution to (2.3.4), we expect y;(z) to
have a one-sided limit at ¢, i.e.,

lim yi(x) =yi1(c).

Tr—Cc

Next, we find the unique solution y2(t) to the IVP

Y +p(x)y = g(x),y(c) = yi(c)

where ¢ < x < b. The unique solution to the original IVP is then given by

| yi(x), fa<z<ec
y(m)—{ yo(z) ifc<z <b.

Thus, we obtain a peicewise-defined solution. We illustrate this process in the next
example.



Example 2.3.6
Find the solution to the IVP

1
M+;y:M®,MU:1

where
(z) = 3z, ifl1<xr<2
=1 0 if2<z<3.

The graph of g(z) is given in Figure 2.3.1(a).
Solution.
First, we solve the IVP
1
v+ -—y=3z, yl)=1, 1<z <2
T

The integrating factor is p(z) = 2 and the general solution is y;(x) = 22 +
Since y(1) = 1, we have C' = 0. Hence, y;(z) = 2% and y;(2) = 4.
Next, we solve the IVP

810

1
Y +-y=0, y(2)=4, 2<z<3.
X

The integrating factor is pu(z) = x and the general solution is ya2(z) = % Since
y2(2) = 4 we find C' = 8. Thus,

[ 2% ifl1<az<2
YO =18 ca<a

The graph of y(x) is given in Figure 2.3.1(b). As you can see from the graph, y(z)
is continuous on [1, 3] but not differentiable at z =2 m
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