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2.2 Separable Differential Equations

In this section, we discuss an analytical method for solving a type of nonlinear
first order differential equations, the separable differential equations.
A first order differential equation is separable if it can be written with one
variable only on the left and the other variable only on the right:

f(y)y′ = g(x).

To solve this equation, we proceed as follows. Let F (x) be an antiderivative
of f(x) and G(x) be an antiderivative of g(x). Then by the Chain Rule

d

dx
F (y) =

dF

dy

dy

dx
= f(y)y′.

Thus,

f(y)y′ − g(x) =
d

dx
F (y)− d

dx
G(x) =

d

dx
[F (y)−G(x)] = 0.

It follows that
F (y)−G(x) = C

which is equivalent to ∫
f(y)y′dx =

∫
g(x)dx + C.

As you can see, the result is generally an implicit equation involving a func-
tion of y and a function of x. It may or may not be possible to solve this to
get y explicitly as a function of x. For an initial value problem, substitute
the values of x and y by x0 and y0 to get the value of C.

Remark 2.2.1
If F is a differentiable function of y and y is a differentiable function of x
and both F and y are given then the chain rule allows us to find dF

dx
given by

dF

dx
=

dF

dy
· dy
dx

.

For separable equations, we are given f(y)y′ = dF
dx

and we are asked to find
F (y). This process is referred to as “reversing the chain rule.”
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Example 2.2.1
Solve the initial value problem y′ = 6xy2, y(1) = 1

25
.

Solution.
Since f(x, y) = 6xy2 and fy(x, y) = 12xy are continuous in the rectangle

R = {(x, y) : −∞ < x <∞, −∞ < y <∞}

and R contains the point
(
1, 1

25

)
, by Theorem 1.2.1, the IVP has a unique

solution on some interval containing x = 1.
Separating the variables and integrating both sides we obtain∫

y′

y2
dx =

∫
6xdx + C

or

−
∫

dy

y2
=

∫
6xdx + C.

Thus,

− 1

y(x)
= 3x2 + C.

Since y(1) = 1
25
, we find C = −28. The unique solution to the IVP is then

given explicitly by

y(x) =
1

28− 3x2
.

The next question is the question of the interval of existence of this solution.
Recall that there are two conditions that define an interval of validity. First,
it must be a continuous interval with no breaks or holes in it. Second it must
contain the value of the independent variable in the initial condition, x = 1
in this case.
There are three possible intervals where y(x) is continuous:

−∞ < x < −
√

28

3
, −

√
28

3
< x <

√
28

3
, x >

√
28

3
.

Only one of these will contain the value of x from the initial condition and
so we can see that

−
√

28

3
< x <

√
28

3
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must be the interval of existence for this solution. Figure 2.2.1 shows the
graph of the solution

Figure 2.2.1

Example 2.2.2
Solve the IVP yy′ = 4 sin (2x), y(0) = 1.

Solution.
This is a separable differential equation. Integrating both sides we find∫

yy′dx = 4

∫
sin (2x)dx + C.

Thus,
y2 = −4 cos (2x) + C.

Since y(0) = 1, we find C = 5. Now, solving explicitly for y(x) we find

y(x) = ±
√
−4 cos (2x) + 5.

Since y(0) = 1, we find y(x) =
√
−4 cos (2x) + 5. The interval of existence

of the solution is the interval −∞ < x <∞

Example 2.2.3
Solve the initial value problem

y′ =
√

1− y2, y(0) = 0.
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Solution.
Separating the variables and then integrating we find∫

y′√
1− y2

dx =

∫
dx + C

or ∫
dy√

1− y2
=

∫
dx + C.

Thus,
arcsin y = x + C.

Since y(0) = 0, we find C = 0 and consequently y(x) = sinx where −π
2
≤

x ≤ π
2
.

Now, notice that y1(x) = 1 and y1(x) = −1 are solutions to the differential
equations. Moreover, y(π

2
) = 1 and y(−π

2
) = −1 so that the graph of y =

arcsinx is connected to the solution y1 at the point x = π
2

and to the solution
y2 at the point x = −π

2
. Thus, the solution to the given IVP is

y(x) =


−1, −∞ < x < −π

2

sinx, −π
2
≤ x ≤ π

2

1 π
2
< x <∞.

The graph of this function is shown in Figure 2.2.2

Figure 2.2.2

Example 2.2.4
Solve the (separable) differential equation

y′ = 2y(2− y).
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Solution.
Separating the variables and solving (using partial fractions in the process)
we find

y′

y(2− y)
=2

y′

2y
+

y′

2(2− y)
=2

1

2

∫
y′

y
dx− 1

2

∫
y′

y − 2
dx =

∫
2dx + C

1

2

∫
dy

y
− 1

2

∫
dy

y − 2
=

∫
2dx + C

ln

∣∣∣∣ y

y − 2

∣∣∣∣ =4x + C∣∣∣∣ y

y − 2

∣∣∣∣ =Ce4x

y(x) =
2Ce4x

Ce4x − 1

You should be careful here that the equilibrium solution y = 2 can not be
obtained from the above formula. That is, y = 2 is a singular solution. This
solution is lost by dividing by y − 2

Example 2.2.5
Solve the initial value problem

y′ = xy
1
2 , y(0) = 0.

Solution.
We should first notice that the hypotheses of Theorem 1.2.1 are not satisfied
and therefore a unique solution can not be asserted. Using the method of
separation of variables, we find

y−
1
2y′ =x∫

y−
1
2dy =

∫
xdx

2y
1
2 =

x2

2
+ C

y =

(
x2

4
+ C

) 1
2

.
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It follows that y(x) = x4

16
is a solution to the IVP. However, the trivial so-

lution y(x) = 0 is also a solution which can not be found from the above
formula for any values of C. That is, y(x) = 0 is a singular solution. This

solution is lost by dividing by y
1
2

It may happen that the implicit solution involves an integral term as the
next example illustrates.

Example 2.2.6
Solve the initial value problem

y′ = e−x
2

, y(3) = 5.

Solution.
Integrating the differential equation from 3 to x, we find y(x) − y(3) =∫ x
3
e−t

2
dt or y(x) = 5 +

∫ x
3
e−t

2
dt
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