Arkansas Tech University
MATH 3243: Differential Equations I
Dr. Marcel B Finan

2.2 Separable Differential Equations

In this section, we discuss an analytical method for solving a type of nonlinear first order differential equations, the separable differential equations.
A first order differential equation is separable if it can be written with one variable only on the left and the other variable only on the right:

$$
f(y) y^{\prime}=g(x)
$$

To solve this equation, we proceed as follows. Let $F(x)$ be an antiderivative of $f(x)$ and $G(x)$ be an antiderivative of $g(x)$. Then by the Chain Rule

$$
\frac{d}{d x} F(y)=\frac{d F}{d y} \frac{d y}{d x}=f(y) y^{\prime}
$$

Thus,

$$
f(y) y^{\prime}-g(x)=\frac{d}{d x} F(y)-\frac{d}{d x} G(x)=\frac{d}{d x}[F(y)-G(x)]=0 .
$$

It follows that

$$
F(y)-G(x)=C
$$

which is equivalent to

$$
\int f(y) y^{\prime} d x=\int g(x) d x+C
$$

As you can see, the result is generally an implicit equation involving a function of y and a function of x. It may or may not be possible to solve this to get y explicitly as a function of x. For an initial value problem, substitute the values of x and y by x_{0} and y_{0} to get the value of C.

Remark 2.2.1

If F is a differentiable function of y and y is a differentiable function of x and both F and y are given then the chain rule allows us to find $\frac{d F}{d x}$ given by

$$
\frac{d F}{d x}=\frac{d F}{d y} \cdot \frac{d y}{d x}
$$

For separable equations, we are given $f(y) y^{\prime}=\frac{d F}{d x}$ and we are asked to find $F(y)$. This process is referred to as "reversing the chain rule."

Example 2.2.1

Solve the initial value problem $y^{\prime}=6 x y^{2}, \quad y(1)=\frac{1}{25}$.

Solution.

Since $f(x, y)=6 x y^{2}$ and $f_{y}(x, y)=12 x y$ are continuous in the rectangle

$$
R=\{(x, y):-\infty<x<\infty, \quad-\infty<y<\infty\}
$$

and R contains the point $\left(1, \frac{1}{25}\right)$, by Theorem 1.2.1, the IVP has a unique solution on some interval containing $x=1$.
Separating the variables and integrating both sides we obtain

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int 6 x d x+C
$$

or

$$
-\int \frac{d y}{y^{2}}=\int 6 x d x+C
$$

Thus,

$$
-\frac{1}{y(x)}=3 x^{2}+C
$$

Since $y(1)=\frac{1}{25}$, we find $C=-28$. The unique solution to the IVP is then given explicitly by

$$
y(x)=\frac{1}{28-3 x^{2}} .
$$

The next question is the question of the interval of existence of this solution. Recall that there are two conditions that define an interval of validity. First, it must be a continuous interval with no breaks or holes in it. Second it must contain the value of the independent variable in the initial condition, $x=1$ in this case.
There are three possible intervals where $y(x)$ is continuous:

$$
-\infty<x<-\sqrt{\frac{28}{3}}, \quad-\sqrt{\frac{28}{3}}<x<\sqrt{\frac{28}{3}}, x>\sqrt{\frac{28}{3}}
$$

Only one of these will contain the value of x from the initial condition and so we can see that

$$
-\sqrt{\frac{28}{3}}<x<\sqrt{\frac{28}{3}}
$$

must be the interval of existence for this solution. Figure 2.2.1 shows the graph of the solution

Figure 2.2.1

Example 2.2.2

Solve the IVP $y y^{\prime}=4 \sin (2 x), \quad y(0)=1$.

Solution.

This is a separable differential equation. Integrating both sides we find

$$
\int y y^{\prime} d x=4 \int \sin (2 x) d x+C
$$

Thus,

$$
y^{2}=-4 \cos (2 x)+C
$$

Since $y(0)=1$, we find $C=5$. Now, solving explicitly for $y(x)$ we find

$$
y(x)= \pm \sqrt{-4 \cos (2 x)+5} .
$$

Since $y(0)=1$, we find $y(x)=\sqrt{-4 \cos (2 x)+5}$. The interval of existence of the solution is the interval $-\infty<x<\infty$

Example 2.2.3

Solve the initial value problem

$$
y^{\prime}=\sqrt{1-y^{2}}, \quad y(0)=0 .
$$

Solution.

Separating the variables and then integrating we find

$$
\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int d x+C
$$

or

$$
\int \frac{d y}{\sqrt{1-y^{2}}}=\int d x+C
$$

Thus,

$$
\arcsin y=x+C
$$

Since $y(0)=0$, we find $C=0$ and consequently $y(x)=\sin x$ where $-\frac{\pi}{2} \leq$ $x \leq \frac{\pi}{2}$.
Now, notice that $y_{1}(x)=1$ and $y_{1}(x)=-1$ are solutions to the differential equations. Moreover, $y\left(\frac{\pi}{2}\right)=1$ and $y\left(-\frac{\pi}{2}\right)=-1$ so that the graph of $y=$ $\arcsin x$ is connected to the solution y_{1} at the point $x=\frac{\pi}{2}$ and to the solution y_{2} at the point $x=-\frac{\pi}{2}$. Thus, the solution to the given IVP is

$$
y(x)=\left\{\begin{array}{cc}
-1, & -\infty<x<-\frac{\pi}{2} \\
\sin x, & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
1 & \frac{\pi}{2}<x<\infty
\end{array}\right.
$$

The graph of this function is shown in Figure 2.2.2

Figure 2.2.2

Example 2.2.4

Solve the (separable) differential equation

$$
y^{\prime}=2 y(2-y) .
$$

Solution.

Separating the variables and solving (using partial fractions in the process) we find

$$
\begin{aligned}
\frac{y^{\prime}}{y(2-y)} & =2 \\
\frac{y^{\prime}}{2 y}+\frac{y^{\prime}}{2(2-y)} & =2 \\
\frac{1}{2} \int \frac{y^{\prime}}{y} d x-\frac{1}{2} \int \frac{y^{\prime}}{y-2} d x & =\int 2 d x+C \\
\frac{1}{2} \int \frac{d y}{y}-\frac{1}{2} \int \frac{d y}{y-2} & =\int 2 d x+C \\
\ln \left|\frac{y}{y-2}\right| & =4 x+C \\
\left|\frac{y}{y-2}\right| & =C e^{4 x} \\
y(x) & =\frac{2 C e^{4 x}}{C e^{4 x}-1}
\end{aligned}
$$

You should be careful here that the equilibrium solution $y=2$ can not be obtained from the above formula. That is, $y=2$ is a singular solution. This solution is lost by dividing by $y-2$

Example 2.2.5

Solve the initial value problem

$$
y^{\prime}=x y^{\frac{1}{2}}, y(0)=0
$$

Solution.

We should first notice that the hypotheses of Theorem 1.2.1 are not satisfied and therefore a unique solution can not be asserted. Using the method of separation of variables, we find

$$
\begin{aligned}
y^{-\frac{1}{2}} y^{\prime} & =x \\
\int y^{-\frac{1}{2}} d y & =\int x d x \\
2 y^{\frac{1}{2}} & =\frac{x^{2}}{2}+C \\
y & =\left(\frac{x^{2}}{4}+C\right)^{\frac{1}{2}} .
\end{aligned}
$$

It follows that $y(x)=\frac{x^{4}}{16}$ is a solution to the IVP. However, the trivial solution $y(x)=0$ is also a solution which can not be found from the above formula for any values of C. That is, $y(x)=0$ is a singular solution. This solution is lost by dividing by $y^{\frac{1}{2}}$

It may happen that the implicit solution involves an integral term as the next example illustrates.

Example 2.2.6

Solve the initial value problem

$$
y^{\prime}=e^{-x^{2}}, y(3)=5
$$

Solution.
Integrating the differential equation from 3 to x, we find $y(x)-y(3)=$ $\int_{3}^{x} e^{-t^{2}} d t$ or $y(x)=5+\int_{3}^{x} e^{-t^{2}} d t$

