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2.1 Graphical Solutions to y′ = f(x, y)

Analytical methods are methods used to find explicit or implicit solutions to
differential equations. These methods provide a quantitative analysis of the
solutions to differential equations. In many cases explicit or implicit solutions
to differential equations are often unobtainable so qualitative analysis can be
used to explore features of the solutions to differential equations without the
need to solve the differential equation. In this section, we explore methods
of finding properties of solutions from the differential equation itself; the
principal tool is the geometry of direction field.
A direction field (also known as slope field) consists of an array of line
segments in the xy-plane (called lineal elements) having the property that
the line plotted at a point (x, y) has slope f(x, y). Direction fields are basically
used to visualize the family of solution curves of a given differential equation.
In this section we use direction fields for solving initial value problems of the
form

dy

dx
= f(x, y), y(x0) = y0.

A single solution in the direction field must follow the flow pattern of the
filed; it is tangent to a lineal element when it intersects a point in the grid.
Producing slope fields by hand is a daunting task. For that reason, slope
fields are usually created by means of electronic tools. One such tool is the
Geogebra (geogebra.org/classic) with learning instructions found at https :
//www.youtube.com/watch?v = G wV FhJGa1g

Example 2.1.1
Find the direction field of the differential equation

dy

dx
= 2x.

What is the form of the general solution? Graph the particular solution going
through (0,−1).

Solution.
Figure 2.1.1 shows the slope field and the graph of the particular solution to
the given DE passing through the point (0,−1). The solution curves look like
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parabolas. Thus, the general solution is given by the equation y = x2 + C

Figure 2.1.1

Example 2.1.2
Using direction field, guess the form of the solution curves of the differential
equation

dy

dx
= −x

y
.

Solution.
The direction field is given in Figure 2.1.2. The solution curves look like
circles centered at the origin. Thus, the general solution is given implicitly
by the equation x2 + y2 = C where C is a positive constant

Figure 2.1.2
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Remark 2.1.1
We point out here that even though one can draw solution curves, some do
not have simple formulas. For instance, the equation dy

dx
= − 1+yexy

1+xexy
does not

have explicit solutions.

Autonomous First Order Differential Equations
In the special case where f(x, y) = f(y), i.e. the independent variable x
does not appear on the right side, the first order DE dy

dx
= f(y) is called

autonomous.

Equilibrium Solutions and Stability for Autonomous Equations
A physical system is often said to be in equilibrium if it doesn’t change
in time. We adopt this idea and say that a solution to an autonomous
first oorder differential equation is an equilibrium solution, a stationary
point, or a critical point if it is a constant function. Thus, in a direction
field of an autonomous equation, equilibrium solutions are solution curves
represented by horizontal lines. It follows that the equations of such solu-
tions have the form y(x) ≡ c where c is a constant. The following result tells
us where to look for equilibrium solutions.

Theorem 2.1.1
The function y(x) ≡ c, where c is a constant, is an equilibrium solution to
y′ = f(y) if and only if c is a root of f(y) = 0.

Proof.
If the function y(x) ≡ c, where c is a constant, is an equilibrium solution
to y′ = f(y) then it must satisfy the differential equation. This means that
f(c) = 0. Conversely, if f(c) = 0 then the function y(x) ≡ c is a critical
point

Example 2.1.3
Find the equilibrium solutions to the DE

dy

dx
= 2y(1− y).

Solution.
The roots of f(y) = 2y(1 − y) = 0 are y = 0 and y = 1. According to the
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previous theorem, the equilibrium solutions are y(x) ≡ 0 and y(x) ≡ 1. The
direction field of the DE is shown in Figure 2.1.3

Figure 2.1.3

Remark 2.1.2
Equilibrium solutions can be defined for non-autonomous differential equa-
tions. For example, the function y(x) ≡ 1 is an equilibrium solution to the
DE y′ = (1− y)x2.

The direction field of a given differential equation indicates that as x in-
creases without bound, every solution either moves towards or moves away
from an equilibrium solution. If all nearby solutions move towards a certain
equilibrium solution, then that equilibrium solution is called asymptoti-
cally stable, stable, or attracting. The solution y = 1 in Figure 2.1.3 is
attracting. An equilibrium solution is called unstable or repelling when
all nearby solutions move away from it. The solution y = 0 in Figure 2.1.3
is repelling.
If solutions on one side of an equilibrium solution move towards the equilib-
rium solution and on the other side of the equilibrium solution move away
from it then we call the equilibrium solution semi-stable.

Example 2.1.4
Sketch the field direction of the differential equation y′ = 4y(1 − y)2. Show
that y = 1 is semi-stable.
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Solution.
The direction field is shown in Figure 2.1.4. Note that the equilibrium so-
lution y(x) ≡ 1 is semi-stable. Nearby solutions that start below it are
attracted upward towards it but nearby solutions that start above it are re-
pelled upward and away from it

Figure 2.1.4

A very suitable qualitative representation of a differential equation for the
study of stability is the so-called phase line. A phase line consists of solid
dots and arrows. The solid dots represent the equilibrium points and the
arrows indicate the directions that solutions move as y increases. Figure
2.1.5(a) shows an example of a phase line. We see that the equilibrium b is
stable, whereas the equilibria a and c are unstable.

Example 2.1.5
Consider the autonomous differential equation dy

dt
= f(y) where the graph of

f(y) is given in Figure 2.1.5(b). Sketch the phase line.

Figure 2.1.5
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Solution.
Note that for y < −1, f(y) < 0 so that the solution y(x) is decreasing. For
−1 < y(x) < 0, we have f(y) > 0 so that y(x) is increasing. For 0 < y(x) < 1,
we have that f(y) < 0 so that y(x) is decreasing. Finally, for y(x) > 1 we
have that f(y) > 0 so that y(x) is increasing. Hence, the phase line is given
by Figure 2.1.5(c)

Remark 2.1.3
Using the existence of unique solutions in Section 1.2, a first order IVP will
have a unique solution curve crossing the initial condition point (x0, y0). Now,
suppose that the differential equation has two equilibrium solutions y(x) = c1
and y(x) = c2. The graphs of these solutions are horizontal lines. Thus, they
divide the plane into three subregions, say R1, R2, and R3.
• If (x0, y0) is in region Ri then any non-constant solution y(x) crossing
(x0, y0) remains in Ri and cannot cross the equilibrium solutions. For if y(x)
crosses say y(x) = c1 say at a point (x1, c1) then the IVP consisting of the
differential equation and the intial condition y(x1) = c1 will have two distinct
solutions which contradicts the uniqueness theorem.
• Since f is a continuous function, it can only change sign at a point where
f = 0, i.e. at an equilibrium point. This can not happen. Hence either
f(y) > 0 or f(y) < 0 for all x in Ri. Thus, y(x) is either always increasing
or always decreasing. So y(x) cannot be oscillatory and can not have a
maximum or a minimum.
• y(x) will approach an equilibrium solution as either x→∞ or x→ −∞.
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