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1.3 Differential Equations and Mathematical Models

n this section, we look at mathematical models from biology, chemistry, and
physics that involve ordinary differential equations.

What is mathematical modeling?
Mathematical modeling is the art of translating problems from an appli-
cation area into tractable mathematical formulations whose theoretical and
numerical analysis provide insight, answers, and guidance useful for the orig-
inating application. For example, we use mathematical modeling to provide
answers to real world questions like “what is the expected deaths in US from
Covid-19 by June 21?”. In this section, we look at models from biology,
chemistry, and physics.

The Modeling Process
The key steps of the modeling process are as follows:
Step 1: Ask the question.
Step 2: Select the modeling approach.
Step 3: Formulate the model.
Step 4: Solve the model.
Step 5: Answer the question.

Populations Dynamics
If P (t) is the population of a species at time t then by the “conservation
of population” law the rate of change of the population is the difference of
the rate of population increase, due for example to birth, and the rate of
population decrease, due for example to deaths. In mathematical model, we
have

dP

dt
= rbP − rdP = (rb − rd)P = kP

assuming that no migration exists. We call k the relative growth rate and
is usually given as a percent.
Hence, the above equation says that the rate of change of the population is
fixed percent of the population. Thus, the population at time t is given by

P (t) = P (0)ekt.
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Example 1.3.1 (Doubling Time)
A certain population grows exponentially. The population grows from 3500
people to 6245 people in 8 years. How long will it take for the original
population to double ? This time is called the doubling time.

Solution.
We want to find the value of t that will yield a population of 7000 peo-
ple. So if 7000 = 3500ekt then ekt = 2. To find k we use the equal-
ity 6245 = 3500e8k. Taking the natural logarithm of both sides we find
8k = ln

(
6245
3500

)
or k = 1

8
ln
(
6245
3500

)
≈ 0.0724. Thus, t = ln 2

0.0724
≈ 9.58 years

Radioactive Decay
All materials are made of atoms. Radioactive atoms are unstable; that is,
they have too much energy. When radioactive atoms release their extra en-
ergy, they are said to decay. All radioactive atoms decay. The rate of change
of the mass of the radioactive substance is proportional to the mass present.
If m(t) denotes the mass of radioactive substance at time t then by the above
statement we have

dm

dt
= −km, k > 0.

Thus, m(t) is given by the formula

m(t) = m(0)e−kt, k > 0.

Example 1.3.2 (Half-Life)
A team of archaeologists thinks they may have discovered Fred Flinstone’s
fossilized bowling ball. But they want to determine whether the fossil is au-
thentic before they report their discovery to “ABC’s Nightline.” (Otherwise
they run the risk of showing up on “Hard Copy” instead.) Fortunately, one
of the scientists is a graduate of ATU’s Math 3243, so he calls upon his ex-
perience as follows:
The radioactive substance (Carbon 14) has a half-life of 5730 years. By mea-
suring the amount present in a fossil, scientists can estimate how old the
fossil is.
Analysis of the ”Flinstone bowling ball” determines that 15% of the radioac-
tive substance has already decayed. How old is the fossil ?

Solution.
“Radioactive decay” means that we have a function of the form m(t) =
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m0e
−kt. Using the given information we can find k. Indeed, 0.5m0 = m0e

−5730k.
Solving for k we find k ≈ 0.000120968094. Next, we want to find the de-
sired t. Since m(t) = .85m0 we obtain m0e

−0.000120968094t = 0.85m0. Thus,
t = − 1

0.000120968094
ln (0.85) ≈ 1343.5 years

Newton’s Law of Cooling
Imagine that you are really hungry and in one minute the pizza that you are
cooking in the oven will be finished and ready to eat. But it is going to be
very hot coming out of the oven. How long will it take for the pizza, which is
in an oven heated to 450 degrees Fahrenheit, to cool down to a temperature
comfortable enough to eat and enjoy without burning your mouth?
Have you ever wondered how forensic examiners can provide detectives with
a time of death (or at least an approximation of the time of death) based on
the temperature of the body when it was first discovered?
All of these situations have answers because of Newton’s Law of Heating or
Cooling. The general idea is that over time an object will heat up or cool
down to the temperature of its surroundings. The cooling model is given by

dH

dt
= k(H − S), k < 0

where S is the temperature of the surroundings. Letting W = H − S, the
above equation becomes

dW

dt
= kW

whose solution is
W (t) = W (0)ekt

or
H(t) = S + (H(0) − S)ekt.

Example 1.3.3
The temperature of a cup of coffee is initially 150◦F. After two minutes its
temperature cools to 130◦F. If the surrounding temperature of the room
remains constant at 70◦F, how much longer must I wait until the coffee cools
to 110◦F?

Solution.
We have

H = 70 + (150 − 70)ekt = 70 + 80ekt.
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To find k we use the fact that H(2) = 130. In this case, 130 = 70 + 80e2k or
e2k = 3

4
. Hence, k = 1

2
ln 3

4
= −0.144. To finish the problem we must solve

for t in the equation
110 = 70 + 80e−0.144t.

From this equation, we find e−0.144t = 0.5 or t = 1
−0.144 ln 0.5 ≈ 4.81 minutes.

Thus, I need to wait an additional 2.81 minutes

Spread of a Contagious Disease
A contagious disease such as Covid is spreading among a population. Let
x(t) be the number of people infected and y(t) the number of people who
have not been yet exposed at a given time t. The rate at which a disease is
spreading is proportional to the number of people infected and those who are
not yet exposed. Thus, the differential equation for this model is

dx

dt
= kxy.

Mixing Models
All mixing problems we consider here will involve a tank into which a certain
mixture will be added at a certain input rate and the mixture will leave the
system at a certain output rate. We shall always reserve y = y(t) to denote
the amount of substance in the tank at any given time t.
The differential equation involved here arises from the following natural re-
lationship:

dy

dt
= input rate− output rate.

The main assumption that we will be using here is that the concentration
of the substance in the liquid is uniform throughout the tank. Clearly this
will not be the case, but if we allow the concentration to vary depending on
the location in the tank the problem becomes very difficult and will involve
partial differential equations, which is not the focus of this course.
Consider a tank initially containing a volume V0 of mixture (substance and
liquid) of concentration c0. Then the initial amount of the substance is given
by y0 = c0V0.
Suppose a mixture of concentration ci(t) flows into the tank at the volume
rate ri(t). Then the substance is entering the tank at the rate ci(t)ri. Suppose
that the well-mixed solution is pumped out of the tank at the volume rate
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ro(t). The concentration of this outflow is y(t)
V (t)

where V (t) is the current
volume of solution in the tank. Then clearly

dy

dt
= ci(t)ri(t) −

y(t)

V (t)
ro(t), y(0) = y0

and
dV

dt
= ri(t) − ro(t).

Solving the last equation we find

V (t) = V0 +

∫ t

0

(ri(s) − ro(s))ds.

Example 1.3.4
Consider a tank with volume 600 liters containing a salt solution with con-
centration of 1

15
kg/liter. Suppose a solution with 1/5 kg/liter of salt flows

into the tank at a rate of 25 liters/min. The solution in the tank is well-
mixed. Solution flows out of the tank at a rate of 50 liters/min. If initially
there is 40 kg of salt in the tank then write down the initial value problem
for this model.

Solution.
Since the inflow rate is different from the outflow rate then the volume at
any time t satisfies dV

dt
= 25−50 = −25 liters/min so that V (t) = −25t+C.

But V (0) = 600 so that C = 600. Thus, V (t) = −25t + 600. If y(t) is the
amount of salt in the tank at any time t then

y′ =
1

5
× 25 − y

600 − 25t
× 50, y(0) = 40

or

y′ +
2y

24 − t
= 5, y(0) = 40.

The above first order linear non-homogeneous differential equation can be
solved using the method of integrating factor

Falling Bodies with no Air Resistance
Suppose that an object initially at height y0 is thrown up with initial veloc-
ity v0. Let y(t) denote the distance of the object from the ground , v(t) the
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object’s velocity, and a(t) the object’s acceleration at time t. If air resistance
is neglected, then by Newton’s second law, which states that the net force
is equal to the product of mass and acceleration, we have ma(t) = −mg. The
negative sign on the right-hand of the equation is due to the fact that accel-
eration due to gravity is pointing downward. Using the fact that a(t) = y′′(t)
and eliminating the mass, we obtain the equation

y′′ = −g.

To find the velocity v(t) we integrate for a first time and obtain

v(t) = y′(t) = −gt + C1.

Since the initial velocity is v0, we obtain C1 = v(0) = v0 so that

v(t) = −gt + v0.

Integrating for the second time we find the position function

y(t) = −1

2
gt2 + v0t + C2.

Since y0 is the initial height, we find C2 = y0 and so

y(t) = −1

2
gt2 + v0t + y0.

Example 1.3.5
An object is dropped from the top of a cliff that is 144 feet above ground
level.
(a) When will the object reach ground level?
(b) What is the velocity with which the object strikes the ground?

Solution.
(a) The motion of the object translates to the differential equation y′′ = −32
with solution y(t) = −16t2 + 144. The object reaches ground level when

y(t) = 0 or 16t2 = 144. Solving for t we find t =
√

144
16

= 3 sec. The object

will reach the ground 3 seconds after it is dropped from the cliff.
(b) The object strikes the ground with velocity v(3) = −32(3) = −96 ft/sec
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Falling Object with Air Resistance
Next, we examine a more realistic model of the one-dimensional motion of
an object where we include the effect of air resistance. Air resistance exists
because air molecules collide into a falling body creating an upward force
opposite gravity and thus reducing the fall of the object. We refer to such a
force as the drag force.
If we assume that the drag force is proportional to velocity with positive con-
stant of proportionality k then Newton’s second law leads to the differential
equation

m
dv

dt
= −mg + kv. (1.3.1)

Here k > 0 depends on the properties of the falling object. Assuming positive
direction pointing upward, if the object is moving upward then the drag force
is pointing downward and in this case v < 0 in Equation (1.3.1). If the object
is moving downward then the drag force is pointing upward and in this case
v > 0 in Equation (1.3.1). Equation (1.3.1) is a first order linear non-
homogeneous equation that can be solved using the method of integrating
factor.
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