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1.2 Existence and Uniqueness of Solutions to First Or-
der IVP

Recall that a solution to an nth order differenital equation requires n inte-
grations to be recovered. This leads to an n−parameter family of solutions
to the differential equation. To obtain a particular solution at some point
x0, conditions on y(x0), y

′(x0), · · · , yn−1(x0) (known as initial conditions),
must be given and this leads to finding particular values of the parameters
in the family of solutions. The differential equation together with the initial
conditions are referred to as the initial value problem, abbreviated IVP.

Example 1.2.1
Solve the initial value problem: y′ = y, y(0) = 3.

Solution.
The give differential equation can be written in differential form as dx− dy

y
=

0. Integrating both sides we find
∫
dx−

∫
dy
y

= 0 or ln |y| = x+C. Solving for

y, we find the one-parameter family of solutions y = Cex. Since y(0) = 3, we
have C = 3 and hence the particular solution to the given IVP is y = 3ex

Example 1.2.2
(a) Show that y(x) = C1e

2x+C2e
−2x is a solution of the differential equation

y′′ − 4y = 0, where C1 and C2 are arbitrary constants.
(b) Find a solution satisfying y(0) = 2 and y′(0) = 0.

Solution.
(a) Finding the first and second derivatives of y(x) to obtain y′(x) = 2C1e

2x−
2C2e

−2x and y′′(x) = 4C1e
2x + 4C2e

−2x. Thus, y′′− 4y = 4C1e
2x + 4C2e

−2x−
4(C1e

2x + C2e
−2x) = 0.

(b) The condition y(0) = 2 implies that C1 +C2 = 2. The condition y′(0) = 0
implies that 2C1 − 2C2 = 0 or C1 = C2. But C1 + C2 = 2 and this implies
that C1 = C2 = 1. In this case, the particular solution is y(t) = e2x + e−2x
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When a mathematical model is constructed for physical systems, two rea-
sonable demands are made. First, solutions should exist if the model is to
be useful at all. Second, to work effectively in predicting the future behavior
of the physical system, the model should produce only one solution for a
particular set of initial conditions. Existence and uniqueness theorems help
to meet these demands.
In this section we discuss the conditions that guarantee the existence of a
unique solution to the initial value problem

y′ = f(x, y), y(x0) = y0. (1.2.1)

Before we proceed to the major result of this section, we remind the reader
of the definition of a partial derivative.

Partial Derivatives
If f(x, y) is a function of two variables x and y then the partial derivative ∂f

∂x

of f(x, y) is the derivative of f(x, y) with respect to x, while pretending y is
a constant. The partial derivative ∂f

∂y
is the derivative of f(x, y) with respect

to y, while pretending x is constant. The precise definitions are

∂f
∂x

(x, y) = limh→0
f(x+h,y)−f(x,y)

h
and ∂f

∂y
(x, y) = limh→0

f(x,y+h)−f(x,y)
h

.

Example 1.2.3
Find ∂f

∂x
and ∂f

∂y
if f(x, y) = x4y3 + x5.

Solution.
We have

∂f
∂x

(x, y) = 4x3y3 + 5x4 and ∂f
∂y

(x, y) = 3x4y2

The major existence and uniqueness theorem is stated next.

Theorem 1.2.1
Suppose that f(x, y) and ∂f

∂y
(x, y) are continuous on the open rectangle

R = {(x, y) : a < x < b, c < y < d}.

Then for any (x0, y0) inside R the IVP

y′ = f(x, y), y(x0) = y0

has a unique solution defined on an interval of the form (x0−h, x0+h) ⊂ (a, b)
for some positive h.
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Remark 1.2.1
The conditions in Theorem 1.2.1 are sufficient but not necessary. If the
conditions of Theorem 1.2.1 are not satisfied then this does not mean that
the problem does not have a unique solution. In fact, if the hypotheses of
Theorem 1.2.1 are not met then anything could happen: Problem (1.2.1)
may still have a unique solution, or may have several solutions, or it may
have no solution at all.

Example 1.2.4
Consider the differential equation

y′ =
y

1
3

x(y − 2)
.

Does the existence theorem guarantee the existence of a unique solution to
the following IVPs: (a) y(3) = 4 (b) y(0) = 7 (c) y(0) = 2 (d) y(1) = 2?

Solution.

The function f(x, y) = y
1
3

x(y−2) is continuous for x 6= 0 and y 6= 2. The function

∂f

∂y
(x, y) =

−2− 2y

3x(y − 2)2y
2
3

is continuous for x 6= 0 and y 6= 0, 2. Thus, f and ∂f
∂y

are continuous for x 6= 0
and y 6= 0, 2. If we choose R to be the rectangle 0 < x < ∞, 2 < y < ∞
thenTheorem 1.2.1 guarantees the existence of a unique solution for the initial
value problem in (a). Since the hypoteses of Theorem 1.2.1 can not be
satisfied in any rectangle containing the points (0, 7), there is no guarantee
that there is a unique solution or any solution for the IVP in (b). Similar
arguments for (c) and (d)

Example 1.2.5
Find the largest rectangle where a unique solution to the IVP

y′ =
y2

1− x2
, y(0) = 0

exists.
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Solution.
We have

f(x, y) =
y2

1− x2
and

∂f

∂y
(x, y) =

2y

1− x2
.

These are both continuous functions as long as we avoid the lines x = ±1.
Theorem 1.2.1 tells us that we can expect one and only one solution of

y′ =
y2

1− x2
, y(0) = 0

in the strip
R = {(x, y) : −1 < x < 1,−∞ < y <∞}

Example 1.2.6
Consider the IVP

y′ =
1

2
(−x+

√
x2 + 4y), y(2) = −1.

(a) Show that y(x) = 1 − x and y(x) = −x2

4
are two solutions to the above

IVP.
(b) Does this contradict Theorem 1.2.1?

Solution.
(a) You can verify that the two functions are solutions by substitution.
(b) Since f(x, y) = 1

2
(−x +

√
x2 + 4y) and fy(x, y) = 1√

x2+4y
, these two

functions are not continuous on any rectangles containing (2,−1). Thus, we
can not apply Theorem 1.2.1 for this problem

Example 1.2.7
Consider the IVP

xy′ = y, y(0) = 1.

Show that this initial value problem has no solution.

Solution.
We have dy

y
= dx

x
so upon integration, we find y(x) = Cx. There is no

value of C that yields a function with the condition y(0) = 1. Notice that
the conditions of Thereom 1.2.1 are not satisfied since f(x, y) = y

x
is not

continuous in any rectangle containing (0, 1)
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Remark 1.2.2
The interval of existence to an IVP may be larger than the interval (x0 −
h, x0 + h) of Theorem 1.2.1. Thus, it is best to think that Theorem 1.2.1
guarantees a unique solution defined locally, i.e. near the point (x0, y0).

Example 1.2.8
Consider the initial value problem: x2y′ − y2 = 0, y(1) = 1.
(a) Determine the largest open rectangle in the xy−plane, containing the
point (x0, y0) = (1, 1), in which the hypotheses of Theorem 1.2.1 are satisfied.
(b) A solution of the initial value problem is y(x) = x. This solution exists
on −∞ < x < ∞. Does this fact contradicts Theorem 1.2.1? Explain your
answer.

Solution.
(a) We have f(x, y) = y2

x2
, fy(x, y) = 2y

x2
. So

R = {(x, y) : 0 < x <∞, −∞ < y <∞}.

(b) No. Theorem 1.2.1 is a local existence theorem and not a global one

Example 1.2.9
Is it possible to find a function f(x, y) that is continuous and has continuous
partial derivatives in the entire xy−plane such that the functions y1(x) =
cosx and y2(x) = 1 − sinx are both solutions to the initial value problem
y′ = f(x, y), y

(
π
2

)
= 0?

Solution.
Since f is continuous and has continuous partial derivatives in the entire xy-
plane, the equation y′ = f(x, y) satisfies the conditions of Theorem 1.2.1. No-
tice that y1(

π
2
) = y2(

π
2
) = 0, so the curves y1(x) = cos x and y2(x) = 1− sinx

have a common point (π
2
, 0), so if they were both solutions of our equation, by

the uniqueness theorem they would have to agree on any rectangle contain-
ing (π

2
, 0). Since they do not, they cannot both be solutions of the equation

y′ = f(x, y)

Example 1.2.10
Find the interval of solution of the solution to the IVP: y′+2xy2 = 0, y(0) =
−1.
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Solution.
The given ODE can be written in the form y′

y2
= −2x. Thus,

∫
y′

y2
dx =∫

(−2x)dx which gives − 1
y

= −x2 + C or y(x) = 1
x2+C

. From y(0) = −1, we

find C = −2 so that y(x) = 1
x2−1 . As a function, the domain is (−∞,−1) ∪

(−1, 1)∪(1,∞). As a solution to the differential equation, the domain can be
(−∞,−1), (−1, 1), or (1,∞). As a solution to the IVP, the domain is (−1, 1)
since this interval conatains the initial condition x = 0. Hence, the interval
of existence of the solution to the IVP is (−1, 1)

Boundary Value Problems
Initial conditions are prescribed at a single value of the independent variable.
However, in some cases we require that conditions are prescribed at multiple
values of the independent variable. In this case, these conditions are called
boundary value conditions. Boundary value conditions together with the
differential equation form what is called boundary value problems.

Example 1.2.11
Determine whether the problem is an initial value problem or a boundary
value problem.
(a) y′ + 2xy2 = 0, y(0) = −1.
(b) y′′ + y = 0, y(0) = 0, y(π/6) = 4.

Solution.
(a) Initial value problem.
(b) Boundary value problem
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