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1.1 Definitions and Terminology

In many models, we will have equations involving the derivatives of one or
more unknown functions (dependent variables) with respect to one or more
independent variables and are interested in discovering these functions. Such
equations are referred to as differential equations (abbreviated DE). They
arise in many applications such as population growth, decay of radioactive
substance, the motion of a falling object, electrical network, Newton’s law of
cooling and many more models.

A First Source of Differential Equations: Projectile Motion
Suppose that an object initially at height y0 is thrown up with initial veloc-
ity v0. Let y(t) denote the distance of the object from the ground , v(t) the
object’s velocity, and a(t) the object’s acceleration at time t. If air resistance
is neglected, then by Newton’s second law, which states that the net force
is equal to the product of mass and acceleration, we have ma(t) = −mg. The
negative sign on the right-hand of the equation is due to the fact that accel-
eration due to gravity is pointing downward. Using the fact that a(t) = y′′(t)
and eliminating the mass, we obtain the equation

y′′ = −g.

To find the velocity v(t) we integrate for a first time and obtain

v(t) = y′(t) = −gt+ C1.

Since the initial velocity is v0, we obtain C1 = v(0) = v0 so that

v(t) = −gt+ v0.

Integrating for the second time we find the position function

y(t) = −1

2
gt2 + v0t+ C2.

Since y0 is the initial height, we find C2 = y0 and so

y(t) = −1

2
gt2 + v0t+ y0.

1



Example 1.1.1
An object is dropped from the top of a cliff that is 144 feet above ground
level.
(a) When will the object reach ground level?
(b) What is the velocity with which the object strikes the ground?

Solution.
(a) The motion of the object translates to the differential equation y′′ = −32
with solution y(t) = −16t2 + 144. The object reaches ground level when

y(t) = 0 or 16t2 = 144. Solving for t we find t =
√

144
16

= 3 sec. The object

will reach the ground 3 seconds after it is dropped from the cliff.
(b) The object strikes the ground with velocity v(3) = −32(3) = −96 ft/sec

Basic Terms of Differential Equations
We next discuss some basic notions of differential equations. There are two
types of differential equations: ordinary and partial differential equations.
A differential equation is an ordinary differential equation (abbreviated
ODE) if the unknown functions (the dependent variables) are functions of a
single variable (the independent variable). When the unknown functions are
functions of two or more independent variables then the differential equation
is called a partial differential equation (abbreviated PDE). For example,
the wave equation is a partial differential equation of the form

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0.

In this course, when we use the term differential equation, we’ll mean an
ordinary differential equation.

Remark 1.1.1
The notation y(n) for the derivative is known as the prime notation. An
alternative notation which displays both the dependent and the independent
variables is Leibniz notation dny

dxn . When the independent variable is time
then a third notation is used, known as the dot notation. Thus, s̈ stands
for d2s

dt2
.

For partial differentials, the partial derivatives ∂u
∂x
, ∂

2u
∂x2 , and ∂2u

∂x∂t
can be rep-

resented by ux, uxx, and uxt.
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Example 1.1.2
Identify which variables are dependent and which are independent for the
following differential equations.
(a) d4y

dx4 − x2 + y = 0.
(b) utt + xutx = 0.
(c) xdx

dt
= 4.

(d) ∂y
∂u
− 4∂y

∂v
= u+ 3y.

Solution.
(a) Independent variable is x and the dependent variable is y.
(b) Independent variables are x and t and the dependent variable is u.
(c) Independent variable is t and the dependent variable is x.
(d) Independent variables are u and v and the dependent variable is y

Example 1.1.3
Classify the following as either ODE or PDE.
(a) ut = c2uxx.
(b) y′′ − 4y′ + 5y = 0.
(c) zt + czx = 5.

Solution.
(a) A PDE with dependent variable u and independent variables t and x.
(b) An ODE with dependent variable y and independent variable x.
(c) A PDE with dependent variable z and independent variables t and x

The highest order derivative that appears in a differential equation is known
as the order of the equation. Thus, an nth order ordinary differential
equation is an equation of the form

g(x, y, y′, y′′, · · · , yn) = 0 (1.1.1)

or alternatively
y(n) = f(x, y, y′, · · · , y(n−1)). (1.1.2)

We call Equation (1.1.2) the normal form of Equation (1.1.1).
A first-order ordinary differential equation, for example, takes the form
g(x, y(x), y′(x)) = 0, and may alternatively be written as

y′(x) = f(x, y(x)) (1.1.3)
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for all x in the interval of existence of y. Equation (1.1.3) can be written in
the form

M(x, y)dx+N(x, y)dy = 0.

We refer to this form as the differential form of a first order differential
equation.

Example 1.1.4
Find the differential form of the equation 4x dy

dx
+ x = y.

Solution.
The differential form is (x− y)dx+ 4xdy = 0

Example 1.1.5
Determine the order of each equation.
(a) y′ + 2xy = e−x

2
.

(b) d2y
dx2 − 5 dy

dx
+ 6y(x) = 0.

(c) y′′ + 3xy′ + 2y = sin (5x).

Solution.
(a) This is a first order differential equation because the highest derivative is
the first derivative.
(b) and (c) are second order differential equations since the highest derivative
in each equation is the second order derivative

Any differential equation that can be written in the form

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = g(x) (1.1.4)

where a1(x), · · · , a0(x) and g(x) are functions with common domain a < x <
b, is called an nth order linear differential equation. The term linear is
used because L(y) = an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y is linear in y.
That is, L(αy1 +βy2) = αL(y1)+βL(y2). An ODE that is not linear is called
non-linear.
It follows from the above definition, that an nth order differential equation is
linear when the unknown function and/or its derivatives appear with power
1;, are not part of a composite function, and the coefficients of y and its
derivatives depend at most on the independent variable x.
If g(x) = 0 in (1.1.4) then the equation is said to be homogeneous. Oth-
erwise, the equation is non-homogeneous. Keep in mind that the concept
of homogeneity applies only for linear differential equations.
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Example 1.1.6
Classify each of the following differential equations as linear or non-linear.
(a) dy

dx
+ y

10
= xy.

(b) x2 − 3y2 + 2xy dy
dx

= 0.

Solution.
(a) Notice that the given equation can be written as dy

dx
+( 1

10
−x)y = 0 which

is a first order linear DE where a1(x) = 1, a0(x) = 1
10
− x and g(x) = 0.

(b) This is a first order non-linear because of the term y2 and a1 depends on
both x and y

A solution to a differential equation is a function that satisfies the equa-
tion: When you substitute this function and its derivatives into the differ-
ential equation, you get a true mathematical statement or an identity. The
function and its derivatives must be defined and continuous on a common
domain, called the interval of existence or the domain of the solution.

Example 1.1.7
Show that y(x) = 1

x
is a solution to the equation xy′ + y = 0. Find the

interval of existence of this solution.

Solution.
We have xy′ + y = x

(
− 1

x2

)
+ 1

x
= 0. Thus, y = 1

x
is a solution to the

differential equation. Note that as a function, y = 1
x

is defined for all x 6= 0.
However, as a solution to a differential equation, we restrict this function to
(0,∞) since the derivative of y = 1

x
is not continuous in an interval containing

0. Thus, an interval of existence of the solution is (0,∞). Also, an interval
of existence is (−∞, 0)

Example 1.1.8 (A piecewise-defined solution)
Consider the differential equation xy′ − 4y = 0 on the interval (−∞,∞).
Verify that the piecewise-defined function

y =

{
−x4, x < 0
x4, x ≥ 0

is a solution.
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Solution.
For x < 0, we have xy′ − 4y = x(−x4)′ − 4(−x4) = −4x4 + 4x4 = 0. For
x ≥ 0, we have xy′ − 4y = x(x4)′ − 4x4 = 4x4 − 4x4 = 0. Thus, the given
function is a solution with interval of existence (−∞,∞)

Example 1.1.9 (Integral-Defined Solution)

Show that the function y(x) =
√
x
∫ x

4
cos t√

t
dt is a solution to the differential

eqaution 2xy′ − y = 2x cosx.

Solution.
To see, we first find

y′(x) =
1

2
√
x

∫ x

4

cos t√
t
dt+

√
x

cosx√
x

using the product rule. Thus, by substitution, we find

2xy′ − y =
√
x

∫ x

4

cos t√
t
dt−

√
x

∫ x

4

cos t√
t
dt = 0

The solution y(x) = 0 for all x in the interval of existence is called the trivial
solution. Likewise, a solution y(x) = c for all x in the interval of existence
is called a constant solution.

Solving a differential equation means finding all possible solutions of the
equation.

Example 1.1.10
Solve the differential equation:

y′′ = −2x.

Solution.
Integrating twice, all the solutions have the form

y(x) = −x
3

3
+ C1x+ C2
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with interval of solution (−∞,∞)

Note that the function of the previous example defines all the solutions to
the differential equation. Such a function will be referred to as the general
solution. The constants C1 and C2 are called the parameters. This general
solution is an example of a two-parameter family of solutions. Specific
values of C1 and C2 determine what is called a particular solution. To find
a particular solution additional conditions on the values of the function or
its derivatives must be given. Such conditions are called initial conditions.
A differential equation together with a set of initial conditions is called an
initial value problem (abbreviated IVP).

Example 1.1.11
Consider the differential equation y′′(x)− 1 = 0.
(a) Find the general solution of this equation.
(b) Find the particular solution that satisfies the initial conditions y(1) = 1
and y′(1) = 4.

Solution.
(a) Integrating twice we find the general solution

y(x) =
x2

2
+ C1x+ C2.

(b) Since y′(x) = x + C1 and y′(1) = 4, we find 4 = 1 + C1 so that C1 = 3.
Hence, y(x) = x2

2
+ 3x + C2. Now, since y(1) = 1, we have 1 = 1

2
+ 3 + C2.

Solving for C2 we find C2 = −5
2
. Hence, the solution to the IVP{
y′′(x)− 1 = 0

y′(1) = 4, y(1) = 1

is

y(x) =
x2

2
+ 3x− 5

2

Boundary Value Problems
Initial conditions are prescribed at a single value of the independent variable.
However, in some cases we require that conditions are prescribed at multiple
values of the independent variable. In this cse, these conditions are called
boundary value conditions. Boundary value conditions together with the
differential equation form what is called boundary value problems.
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Example 1.1.12
Solve the boundary condition problem: y′′ = −1, y(−2) = 0, y(2) = 0.

Solution.
Solving the differential equation, we find y(x) = −1

2
x2 +C1x+C2. From the

condition y(−2) = 0, we obtain −2C1+C2 = 2. From the condition y(2) = 0,
we obtain 2C1 + C2 = 0. Solving this system of equations, we find C1 = 0
and C2 = 2.Hence, the solution to the (BVP) is y(x) = −1

2
x2 + 2

The graph of a particular solution is called a solution curve. The func-
tion y(x) = Ce−3x + 2x+ 1 is the general solution to the differential equation
y′ + 3y = 6x + 5. It is a one-parameter family of solutions. A family of
solution curves is shown in Figure 1.1.1. Notice for C 6= 0 the solution curves
have an oblique asymptote with equation y(x) = 2x+ 1.

Figure 1.1.1

Sometimes a differential equation possesses a solution that cannot be ob-
tained by assigning values to the parameters in a family of solutions. Such a
solution is called a singular solution.

Example 1.1.13
The non-zero solutions to the differential equation y′ = xy

1
2 are given by the

one-parameter family y(x) = (x
2

4
+ C)2. Find the singular solution.

Solution.
The function y(x) ≡ 0 is a solution to the differential equation. This is a
singular solution since it cannot be obtained from the family for any choice
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of the parameter C. The general solution consists of all the solutions of the
form y(x) = (x

2

4
+ C)2 together with the zero solution

If the dependent variable of solution to a differential equation can be ex-
pressed in terms of the independent variable only, for example, y = f(x),
then we refer to such a solution as an explicit solution. If a solution is
written in the form f(x, y) = 0 then we say that the solution is defined
implicitly.

Example 1.1.14
Consider the differential equation y′ = −x

y
.

(a) Show that x2 + y2 = 25 is an implicit solution to the given equation.
What is the interval of existence of such a solution.
(b) Find two explicit solutions to the given differential equation.

Solution.
(a) Using implicit differentiation, we find 2x + 2yy′ = 0. Solving for y′, we
find y′ = −x

y
. The solution curve is a circle centered at the origin and with

radius 5. Hence, the interval of solution is the interval (−5, 5).
(b) Solving the equation x2 + y2 = 25 for y we find y = ±

√
25− x2. The

functions y = f1(x) =
√

25− x2 and y = f2(x) = −
√

25− x2 are explicit
solutions to the given differential equation. The solution curve of f1(x) is the
upper circle centered at the origin and with radius 5. The solution curve of
f2(x) is the lower circle centered at the origin and with radius 5

A system of ordinary differential equations consists of two or more
ODEs involving the derivatives of two or more unknown functions in a sin-
gle variable. A solution to a system of ordinary differential equations with
unknown functions x1, x2, · · · , xn of a single variable t consists of n differen-
tiable functions x1 = f1(t), x2 = f2(t), · · · , xn = fn(t) defined on a common
interval, that satisfy each equation of the system on that interval.

Example 1.1.15
Verify that the functions x = cos (2t) + sin (2t) + 1

5
et and y = − cos (2t) −

sin (2t)− 1
5
et are solutions to the system

d2x

dt2
=4y + et

d2y

dt2
=4x− et
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on the interval (−∞,∞).

Solution.
By differentiation, we have

dx

dt
=− 2 sin (2t) + 2 cos (2t) +

1

5
et

d2x

dt2
=− 4 cos (2t)− 4 sin (2t) +

1

5
et = 4y + et

dy

dt
=2 sin (2t)− 2 cos (2t)− 1

5
et

d2y

dt2
=4 cos (2t) + 4 sin (2t)− 1

5
et = 4x− et
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