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Preface

The present manuscript is designed for an introductory course in real analy-
sis suitable to junior or beginning senior level students who already had the
calculus sequel as well as a course in discrete mathematics or an equivalent
course in mathematical proof. The content is considered of a moderate level
of difficulty.
The manuscript evolved from a class I taught at Arkansas Tech University in
undergraduate real analysis. The class consisted of both Mathematics ma-
jors and Mathematics education majors. The approach adopted in this book
is a modified Moore method also known as Inquiry-Based Learning (IBL).
The basic results in single-variable analysis were submitted to the students
in the form of definitions and short problems that the students were asked
to solve and present their findings to their peers during class time with a
little mentoring by the instructor. By leaving routine parts of a proof to the
students constitutes a recommendable tactic since it will include the students
in the enterprise of establishing the proof of a theorem, and thus strengthen
their conviction in the end.
The objectives of these notes are: Firstly, enhancing the student’s mathemat-
ical thinking and problem-solving ability. Secondly, it improves the students’
skills in writing and presenting mathematical content, two essential compo-
nents for future mathematics educators.

Marcel B Finan
May 2009
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Chapter 0

Requirements

For this book, we require three things from the users: (1) Understanding the
vocabulary of a mathematical system such as axiom, definition, lemma, etc.
(2) understanding the basics of mathematical logic, and (3) writing elegant
mathematics.

0.1 Vocabulary of Mathematical Systems

What is a mathematical system? We will define a mathematical system
to be a triplet (S,O,A), where S is a non-empty sets of elements, O is a col-
lection of operations on the elements of S, and A is a set of axioms involving
the elements of S and the operations O. For example, S = R is the set of
all real numbers. The basic operations on the real numbers are addition and
multiplication. Examples of axioms in R are the commutative property of
both addition and multiplication of real numbers.

What is a definition? By a mathematical definition we mean a math-
ematical statement that involve the elements of S and O. For example, we
define the average of two real numbers a and b to be the real number 1

2
(a+b).

What is an axiom? An axiom is a statement that is accepted without
questioning. For example, the axioms of the real lines are:
(i) Commutativity: a+ b = b+ a and ab = ba.
(ii) Associativity: (a+b)+c = a+(b+c) = a+b+c and a(bc) = (ab)c = abc.
(iii) Distributivity of multiplication over addition: a(b+ c) = ab+ ac.
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4 CHAPTER 0. REQUIREMENTS

(iv) Zero element: a+ 0 = 0 + a = a.
(v) Identity element: a · 1 = 1 · a = a.
(vii) Opposite element: a+ (−a) = (−a) + a = 0.
(viii) Inverse element: a ·

(
1
a

)
=
(
1
a

)
· a = 1, where a 6= 0.

What is a proof? A proof is an argument establishing either the truth
or falsity of a mathematical statement.

What is a theorem? A theorem is a mathematical statement that requires
a proof.

What is a lemma? A lemma is a minor statement that requires a proof
but whose sole purpose is to help proving a major result such as a theorem.

What is a Corollary A corollary is a theorem that is the result of previ-
ously proved major theorem.
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0.2 Some Vocabulary of Logic

A proposition is any meaningful statement that is either true or false, but
not both. We will use lowercase letters, such as p, q, r, · · · , to represent
propositions. New propositions called compound propositions or propo-
sitional functions can be obtained from old ones by using symbolic con-
nectives which we discuss next.

Let p and q be propositions. The conjunction of p and q, denoted by p ∧ q
(read “p wedge q”), is the proposition: p and q. This proposition isdefined
to be true only when both p and q are true and it is false otherwise. The
disjunction of p and q, denoted by p∨q (read “p vee q”), is the proposition:
p or q. The “or” is used in an inclusive way. This proposition is false only
when both p and q are false, otherwise it is true. The negation of p, denoted
∼ p, is the proposition that is false when p is true and true when p is false.

Two propositions are logically equivalent if they have exactly the same
truth values under all circumstances. We write p ≡ q.

Let p and q be propositions. The conditional proposition p → q is the
proposition that is false only when p is true and q is false; otherwise it is
true. p is called the hypothesis and q is called the conclusion. It is easy
to show that p→ q ≡ (∼ p) ∨ q.
The proposition p → q is always true if the hypothesis p is false, regardless
of the truth value of q. We say that p→ q is true by default or vacuously
true.
In terms of words the proposition p→ q also reads:
(a) if p then q.
(b) p implies q.
(c) p is a sufficient condition for q.
(d) q is a necessary condition for p.
(e) p only if q.

The converse of p → q is the proposition q → p. The opposite or in-
verse of p→ q is the proposition ∼ p→∼ q. The contrapositive of p→ q
is the proposition ∼ q →∼ p. It can be shown that [p → q] ≡ [∼ q →∼ p].
This is referred to as the proof by contrapositive.
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The biconditional proposition of p and q, denoted by p ↔ q, is the
propositional function that is true when both p and q have the same truth
values and false if p and q have opposite truth values. Also reads, “p if and
only if q” or “p is a necessary and sufficient condition for q.” It can be shown
that p↔ q ≡ [p→ q] ∧ [q → p].

To say that statements p1, p2, · · · , pn are all equivalent means that either
they are all true or all false. To prove that they are equivalent, one assumes
p1 to be true and proves that p2 is true, then assumes p2 to be true and
proves that p3 is true, continuing in this fashion, assume that pn−1 is true
and prove that pn is true and finally, assume that pn is true and prove that
p1 is true. This is known as the proof by circular argument.

An indirect method of proving p → q is the proof by contradiction: We
want to show that q is true. Instead, we assume it is not, i.e., ∼ q is true,
and derive that a proposition of the form r∧ ∼ r is true. But r∧ ∼ r is
a contradiction which is always false. Hence, the assumption ∼ q must be
false, so the original proposition q must be true. The method of proof by
contradiction is not limited to just proving conditional propositions of the
form p→ q, it can be used to prove any kind of statement whatsoever.

Finally, we recall the reader of the method of proof by induction: We
want to prove that a statement P (n) is true for any non-negative integer
n ≥ n0. The steps of mathematical induction are as follows:
(i) (Basis of induction) Show that P (n0) is true.
(ii) (Induction hypothesis) Assume P (k) is true for n0 ≤ k ≤ n.
(iii) (Induction step) Show that P (n+ 1) is true.



0.3. WRITING PROOFS ELEGANTLY 7

0.3 Writing Proofs Elegantly

An elegant proof is a proof that uses words and sentences and not just a
sequence of symbols. A weak proof is one that consists mainly of symbols.
To be more precise. Suppose that we want to prove that the sum of two even
integers m and n is always even. An elegant proof proceeds as follows: Since
m and n are even integers, there exist integers k1 and k2 such that m = 2k1
and n = 2k2. Adding the two numbers together, we find m+n = 2k1 +2k2 =
2(k1 + k2) = 2k, where k = k1 + k2 ∈ Z. From the definition of an even
integer, we conclude that m+ n is even.
An example of a weak or non-explanatory proof of the above result can be
as follows:

m = 2k1, n = 2k2 ⇒ m+ n = 2(k1 + k2) = 2k ⇒ m+ n is even.



8 CHAPTER 0. REQUIREMENTS



Chapter 1

Properties of Real Numbers

In this chapter we review the important properties of real numbers that are
needed in this course.

1.1 Basic Properties of Absolute Value

In this section, we introduce the absolute value function and we discuss some
of its properties. The use of absolute value will be apparent in many of the
discussions of this course.

Definition 1.1.1
Let a ∈ R. We define the absolute value of a, denoted by |a|, to be the
largest of the two numbers a and −a. That is,

|a| = max{−a, a}.

Exercise 1.1.1
Show that |a| ≥ a and |a| ≥ −a.

Exercise 1.1.2
Show that

|a| =
{

a if a ≥ 0
−a if a < 0.

That is, the absolute value function is a piecewise defined function. Graph
this function in the rectangular coordinate system.

9



10 CHAPTER 1. PROPERTIES OF REAL NUMBERS

Exercise 1.1.3
Show that |a| ≥ 0 with |a| = 0 if and only if a = 0.

Exercise 1.1.4
Show that if |a| = |b| then a = ±b.

Exercise 1.1.5
Solve the equation |3x− 2| = |5x+ 4|.

Exercise 1.1.6
Show that | − a| = |a|.

Exercise 1.1.7
Show that |ab| = |a| · |b|.

Exercise 1.1.8
Show that

∣∣ 1
a

∣∣ = 1
|a| , where a 6= 0.

Exercise 1.1.9
Show that

∣∣a
b

∣∣ = |a|
|b| where b 6= 0.

Exercise 1.1.10
Show that for any two real numbers a and b we have ab ≤ |a| · |b|.

Exercise 1.1.11
Recall that a number b ≥ 0 is the square root of a number a, written√
a = b, if and only if a = b2. Show that

√
a2 = |a|.

Exercise 1.1.12
Suppose that A and B are points on a coordinate line that have coordinates
a and b, respectively. Show that |a− b| is the distance between the points A
and B. Thus, if b = 0, |a| measures the distance from the number a to the
origin.

Exercise 1.1.13
Graph the portion of the real line given by the inequality
(a) |x− a| < δ
(b) 0 < |x− a| < δ
where δ > 0. Represent each graph in interval notation.



1.1. BASIC PROPERTIES OF ABSOLUTE VALUE 11

Exercise 1.1.14
Show that |x− a| < k if and only if a− k < x < a+ k, where k > 0.

Exercise 1.1.15
Show that |x− a| > k if and only if x < a− k or x > a+ k, where k ≥ 0.

The statements in the above two exercises remain true if < and > are replaced
by ≤ and ≥ .

Exercise 1.1.16
Solve each of the following inequalities: (a) |2x− 3| < 5 and (b) |x+ 4| > 2.
Write your answer in interval notation.

Exercise 1.1.17 (Triangle inequality)
Use Exercise 1.1.1, Exercise 1.1.7, and the expansion of |a + b|2 to establish
the inequality

|a+ b| ≤ |a|+ |b|,

where a and b are arbitrary real numbers.

Exercise 1.1.18
Show that for any real numbers a and b we have |a| − |b| ≤ |a − b|. Hint:
Note that a = (a− b) + b.
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Practice Problems

Exercise 1.1.19
Let a ∈ R. Show that max{a, 0} = 1

2
(a+ |a|) and min{a, 0} = 1

2
(a− |a|).

Exercise 1.1.20
Show that |a+ b| = |a|+ |b| if and only if ab ≥ 0.

Exercise 1.1.21
Suppose 0 < x < 1

2
. Simplify x+3

|2x2+5x−3| .

Exercise 1.1.22
Write the function f(x) = |x + 2| + |x − 4| as a piecewise defined function
(i.e. without using absolute value symbols). Sketch its graph.

Exercise 1.1.23
Prove that ||a| − |b|| ≤ |a− b| for any real numbers a and b.

Exercise 1.1.24
Solve the equation 4|x− 3|2 − 3|x− 3| = 1.

Exercise 1.1.25
What is the range of the function f(x) = |x|

x
for all x 6= 0?

Exercise 1.1.26
Solve 3 ≤ |x− 2| ≤ 7. Write your answer in interval notation.

Exercise 1.1.27
Simplify

√
x2

|x| .

Exercise 1.1.28
Solve the inequality

∣∣x+1
x−2

∣∣ < 3. Write your answer in interval notation.

Exercise 1.1.29
Suppose x and y are real numbers such that |x− y| < |x|. Show that xy > 0.
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1.2 Important Properties of the Real Num-

bers

In this section we will discuss some of the important properties of real num-
bers. We assume that the reader is familiar with the basic operations of real
numbers (i.e. addition, subtraction, multiplication, division, and inequali-
ties) and their properties (i.e. commutative, associative, reflexive, symmetry,
etc.)

Definition 1.2.1
A set A ⊂ R is said to be bounded from below if and only if there is a
real number m such that m ≤ x for all x ∈ A. We call m a lower bound of
A. A set A is said to be bounded from above if and only if there is a real
number M such that x ≤M for all x ∈ A. In this case, we call M an upper
bound. A is said to be bounded if and only if it is bounded from below
and from above.

Exercise 1.2.1
Prove that A is bounded if and only if there is a positive constant C such
that |x| ≤ C for all x ∈ A.

Exercise 1.2.2
Let A = [0, 1].
(a) Find an upper bound of A. How many upper bounds are there?
(b) Find a lower bound of A. How many lower bounds are there?

By the previous exercise, we see that a set might have an infinite number of
both upper bounds and lower bounds. This leads to the following definition.

Definition 1.2.2
Suppose A is a bounded subset of R. A number α that satisfies the two
conditions
(i) α is an upper bound of A,
(ii) for every upper bound γ of A we have α ≤ γ
is called the supremum or the least upper bound of A and is denoted by
α = supA. Thus, the supremum is the smallest upper bound of A.
A number β that satisfies the two conditions
(i) β is a lower bound of A,
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(ii) for every lower bound γ of A we have γ ≤ β
is called the infimum or the greatest lower bound of A and is denoted
by β = inf A. Thus, the infimum is the largest lower bound of A.
The supremum may or may not be an element of A. If it is in A then the
supremum is called the maximum value of A. Likewise, if the infimum is
in A then we call it the minimum value of A.

Exercise 1.2.3
Consider the set A = { 1

n
: n ∈ N}.

(a) Show that A is bounded from above. Find the supremum. Is this supre-
mum a maximum of A?
(b) Show that A is bounded from below. Find the infimum. Is this infimum
a minimum of A?

Exercise 1.2.4
Consider the set A = {1− 1

n
: n ∈ N}.

(a) Show that 1 is an upper bound of A.
(b) Suppose L < 1 is another upper bound of A. Let n be a positive integer
such that n > 1

1−L . Such a number n exist by the Archimedian property
which we will discuss below. Show that this leads to a contradiction. Thus,
L ≥ 1. This shows that 1 is the least upper bound of A and hence supA = 1.

Among the most important fact about the real number system is the so-called
Completeness Axiom of R:
Any subset of R that is bounded from above has a least upper bound and any
subset of R that is bounded from below has a greatest lower bound.

The first consequence of this axiom is the so-called Archimedean Prop-
erty. This is the property responsible for the fact that given any real number
we can find an integer which exceeds it.

Exercise 1.2.5
Let a, b ∈ R with a > 0.
(a) Suppose that na ≤ b for all n ∈ N. Show that the set A = {na : n ∈ N}
has a supremum. Call it c.
(b) Show that na ≤ c− a for all n ∈ N. That is, c− a is an upper bound of
A. Hint: n+ 1 ∈ N for all n ∈ N.
(c) Conclude from (b) that there must be a positive integer n such that
na > b.
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A consequence of the Archimedean property is the fact that between any two
real numbers there is a rational number. We say that the set of rationals is
dense in R. We prove this result next.

Exercise 1.2.6
Let a and b be two real numbers such that a < b.
(a) Let bac denote the greatest integer less than or equal to a. We call b·c
the floor function.Show that bac − 1 < a < bac+ 1.
(b) Let n be a positive integer such that n > 1

b−a . Show that na+ 1 < nb.
(c) Let m = bnac + 1. Show that na < m < nb. Thus, a < m

n
< b. We see

that between any two distinct real numbers there is a rational number.
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Practice Problems

Exercise 1.2.7
Consider the set A = { (−1)

n

n
: n ∈ N}.

(a) Show that A is bounded from above. Find the supremum. Is this supre-
mum a maximum of A?
(b) Show that A is bounded from below. Find the infimum. Is this infimum
a minimum of A?

Exercise 1.2.8
Consider the set A = {x ∈ R : 1 < x < 2}.
(a) Show that A is bounded from above. Find the supremum. Is this supre-
mum a maximum of A?
(b) Show that A is bounded from below. Find the infimum. Is this infimum
a minimum of A?

Exercise 1.2.9
Consider the set A = {x ∈ R+ : x2 > 4}.
(a) Show x ∈ A and x < 2 lead to a contradiction. Hence, we must have
x ≥ 2 for all x ∈ A. That is, 2 is a lower bound of A.
(b) Let L be a lower bound of A such that L > 2. Let y = L+2

2
. Show that

2 < y < L.
(c) Use (a) to show that y ∈ A and L ≤ y. Show that this leads to a
contradiction. Hence, we must have L ≤ 2 which means that 2 is the infimum
of A.

Exercise 1.2.10
Show that for any real number x there is a positive integer n such that n > x.

Exercise 1.2.11
Let a and b be any two real numbers such that a < b.
(a) Let w be a fixed positive irrational number. Show that there is a rational
number r such that a < wr < b.
(e) Show that wr is irrational. Hence, between any two distinct real numbers
there is an irrational number.

Exercise 1.2.12
Suppose that α = supA < ∞. Let ε > 0 be given. Prove that there is an
x ∈ A such that α− ε < x.
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Exercise 1.2.13
Suppose that β = inf A < ∞. Let ε > 0 be given. Prove that there is an
x ∈ A such that β + ε > x.

Exercise 1.2.14
For each of the following sets S, find sup{S} and inf{S}, if they exist.
(a) S = {x ∈ R : x2 < 5}.
(b) S = {x ∈ R : x2 > 7}.
(c) S = {− 1

n
: n ∈ N}.
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Chapter 2

Sequences

2.1 Sequences and their Convergence

In this section, we introduce sequences and study their convergence.

Definition 2.1.1
A sequence is a function with domain N = {1, 2, 3, · · · } and range a subset
of R. That is,

a :N 7−→ R
n 7−→ a(n) = an

We write a = {an}∞n=1 and we call an the nth term of the sequence.

Exercise 2.1.1
Find a simple expression for the general term of each sequence.
(a) 1,−1

2
, 1
3
,−1

4
, · · ·

(b) 2, 3
2
, 4
3
, 5
4
, · · ·

(c) 1, 1
3
, 1
5
, 1
7
, 1
9
, · · ·

(d) −1, 1,−1, 1,−1, 1, · · ·

Definition 2.1.2
A sequence {an}∞n=1 is said to converge to a number L if and only if for
every positive number ε there exists a positive integer N = N(ε) (depending
on ε) such that

n ≥ N =⇒ |an − L| < ε.

19
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We write
lim
n→∞

an = L.

We say that the sequence is convergent. If a sequence is not convergent
then it is said to be divergent.

Note that |an − L| is the distance between the points an and L on the real
line. The definition says that no matter how small a positive number ε we
take, the distance between an and L will eventually be smaller than ε, i.e.,
the numbers an will eventually lie between L− ε and L+ ε. Thus the terms
of the sequence will eventually lie in the shaded region shown in the Figure
2.1.1.

Figure 2.1.1

Exercise 2.1.2
Show that the sequence

{
1
n

}∞
n=1

converges to 0.

Exercise 2.1.3
Show that the sequence

{
1 + C

n

}∞
n=1

converges to 1, where C 6= 0 is a con-
stant.

Exercise 2.1.4
Is there a number L with the property that |(−1)n − L| < 1 for all n ≥ N1,
where N1 is some positive integer? Hint: Consider the inequality with an
even integer n greater than N1 and an odd integer n greater than N1.

Exercise 2.1.5
Use the previous exercise to show that the sequence {(−1)n}∞n=1 is divergent.

The following exercise shows that the limit of a convergent sequence is unique.
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Exercise 2.1.6
Suppose that limn→∞ an = a and limn→∞ an = b with a < b. Show that by
choosing ε = b−a

2
> 0 we end up with the impossible inequality b−a < b−a.

A similar result holds if b < a. Thus, we must have a = b. Hint: Exercise
1.1.6 and Exercise 1.1.17.

We next introduce the concept of a bounded sequence. This concept provides
us with a divergence test for sequences. We will see that if a sequence is not
bounded then it is divergent.

Definition 2.1.3
A sequence {an}∞n=1 is said to be bounded if there is a positive constant M
such that |an| ≤M for all n ∈ N.

Exercise 2.1.7
Show that each of the following sequences is bounded. Identify M in each
case.
(a) an = (−1)n.
(b) an = 1√

n ln (n+1)
.

Exercise 2.1.8
Let {an}∞n=1 be a sequence such that |an| ≤ K for all n ≥ N. Show that this
sequence is bounded. Identify your M.

Exercise 2.1.9
Show that a convergent sequence is bounded. Hint: use the definition of
convergence with ε = 1.

The converse of the above result is not always true. That is, a bounded
sequence need not be convergent.

Exercise 2.1.10
Give an example of a bounded sequence that is divergent.

The following result is known as the squeeze rule.

Exercise 2.1.11
Let {an}∞n=1 , {bn}

∞
n=1 , {cn}

∞
n=1 be three sequences with the following condi-

tions:
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(1) bn ≤ an ≤ cn for all n ≥ K, where K is some positive real number.
(2) limn→∞ bn = limn→∞ cn = L.
Show that limn→∞ an = L. Hint: Use the definition of convergence along
Exercise 1.1.14

Exercise 2.1.12
An expansion of (a+ b)n, where n is a positive integer is given by the Bino-
mial formula

(a+ b)n =
n∑
k=0

C(n, k)akbn−k

where C(n, k) = n!
k!(n−k)! .

(a) Use the Binomial formula to establish the inequality

(1 + x)
1
n ≤ 1 +

x

n
, x ≥ 0.

(b) Show that if a ≥ 1 then limn→∞ a
1
n = 1. Hint: Use Exercise 2.1.3.
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Practice Problems

Exercise 2.1.13
Prove that the sequence {cos (nπ)}∞n=1 is divergent.

Exercise 2.1.14
Let {an}∞n=1 be the sequence defined by an = n for all n ∈ N. Explain why
the sequence {an}∞n=1 does not converge to any limit.

Exercise 2.1.15
(a) Show that for all n ∈ N we have

n!

nn
≤ 1

n
.

(b) Show that the sequence {an}∞n=1 where an = n!
nn is convergent and find

its limit.

Exercise 2.1.16
Using only the definition of convergence show that

lim
n→∞

3
√
n− 5001

3
√
n− 1001

= 1.

Exercise 2.1.17
Consider the sequence defined recursively by a1 = 1 and an+1 =

√
2 + an for

all n ∈ N. Show that an ≤ 2 for all n ∈ N.

Exercise 2.1.18
Calculate limn→∞

(n2+1) cosn
n3 .

Exercise 2.1.19
Calculate limn→∞

2(−1)n+3
√
n

.

Exercise 2.1.20
Suppose that limn→∞ an = L with L > 0. Show that there is a positive
integer N such that 2aN > L.



24 CHAPTER 2. SEQUENCES

Exercise 2.1.21
Let a ∈ R and n ∈ N. Clearly, a < a+ 1

n
.

(a) Show that there is a1 ∈ Q such that a < a1 < a + 1
n
. Hint: Exercise

1.2.6(c).
(b) Show that there is a2 ∈ Q such that a < a2 < a1.
(c) Continuing the above process we can find a sequence {an}∞n=1 such that
a < an < a+ 1

n
for all n ∈ N. Show that this sequence converges to a.

We have proved that if a is a real number then there is a sequence of rational
numbers converging a. We say that the set Q is dense in R.
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2.2 Arithmetic Operations on Sequences

In this section we discuss the operations of addition, subtration, scalar multi-
plication, multiplication, reciprocal, and the ratio of two sequences. Our first
result concerns the convergence of the sum or difference of two sequences.

Exercise 2.2.1
Suppose that limn→∞ an = A and limn→∞ bn = B. Show that

lim
n→∞

an ± bn = A±B.

The next result concerns the product of two sequences.

Exercise 2.2.2
Suppose that limn→∞ an = A and limn→∞ bn = B.
(a) Show that |bn| ≤M for all n ∈ N, where M is a positive constant.
(b) Show that anbn − AB = (an − A)bn + A(bn −B).
(c) Let ε > 0 be arbitrary and K = M+|A|. Show that there exists a positive
integer N1 such that |an − A| < ε

K
for all n ≥ N1.

(d) Let ε > 0 and K be as in (c). Show that there exists a positive integer
N2 such that |bn −B| < ε

K
for all n ≥ N2.

(e) Show that limn→∞ anbn = AB.

Exercise 2.2.3
Give an example of two divergent sequences {an}∞n=1 and {bn}∞n=1 such that
{anbn} and {an + bn} are convergent.

Exercise 2.2.4
Let k be an arbitrary constant and limn→∞ an = A. Show that limn→∞ kan =
kA.

Exercise 2.2.5
Suppose that limn→∞ an = 0 and {bn}∞n=1 is bounded. Show that limn→∞ anbn =
0.

Exercise 2.2.6
(a) Use the previous exercise to show that limn→∞

sinn
n

= 0.
(b) Show that limn→∞

sinn
n

= 0 using the squeeze rule.
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Exercise 2.2.7
Suppose that limn→∞ an = A with A 6= 0. Show that there is a positive
integer N such that |an| > |A|

2
for all n ≥ N. Hint: Use Exercise 1.1.18.

Exercise 2.2.8
Let {an}∞n=1 be a sequence with the following conditions:
(1) an 6= 0 for all n ≥ 1.
(2) limn→∞ an = A, with A 6= 0.
(a) Show that there is a positive integer N1 such that for all n ≥ N1 we have∣∣∣∣ 1

an
− 1

A

∣∣∣∣ < 2

|A|2
|an − A|.

(b) Let ε > 0 be arbitrary. Show that there is a positive integer N2 such that
for all n ≥ N2 we have

|an − A| <
|A|2

2
ε.

(c) Using (a) and (b), show that

lim
n→∞

1

an
=

1

A
.

Exercise 2.2.9
Let 0 < a < 1. Show that limn→∞ a

1
n = 1. Hint: Use Exercise 2.1.12 (b).

Exercise 2.2.10
Show that if limn→∞ an = A and limn→∞ bn = B with bn 6= 0 for all n ≥ 1
and B 6= 0, then

lim
n→∞

an
bn

=
A

B
.

Hint: Note that an
bn

= an · 1
bn
.

Exercise 2.2.11
Given that limn→∞ an = A and limn→∞ bn = B with an ≤ bn for all n ≥ 1.
(a) Suppose that B < A. Let ε = A−B

2
> 0. Show that there exist positive

integers N1 and N2 such that A − ε < an < A + ε for n ≥ N1 and B − ε <
bn < B + ε for n ≥ N2.
(b) Let N = N1 + N2. Show that for n ≥ N we obtain the contradiction
bn < an. Thus, we must have A ≤ B.
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Practice Problems

Exercise 2.2.12
Suppose that limn→∞

an
bn

= L and limn→∞ bn = 0 where bn 6= 0 for all n ∈ N.
Find limn→∞ an.

Exercise 2.2.13
The Fibonacci numbers are defined recursively as follows:

a1 = a2 = 1 and an+2 = an+1 + an for all n ∈ N.

Suppose that limn→∞
an+1

an
= L. Find the value of L.

Exercise 2.2.14
Show that the sequence defined by

an =
n

n+ 1
+ (−1)n

n2 + 3

n2 + 7

has two limits by finding limn→∞ a2n and limn→∞ a2n+1.

Exercise 2.2.15
Use the properties of this section to find

lim
n→∞

√
2n2 + 5n

n+ 4
.

Exercise 2.2.16
Find the limit of the sequence defined by

an = n
1

2 lnn .

Exercise 2.2.17
Consider the sequence defined by

an =
1√
1

+
1√
2

+ · · ·+ 1√
n
.

(a) Show that an ≥
√
n for all n ∈ N.

(b) Show that the sequence {an}∞n=1 is divergent. Hint: Exercise 2.2.11
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Exercise 2.2.18
Find the limit of the sequence defined by

an = ln (2n+
√
n)− lnn.

Exercise 2.2.19
Consider the sequence defined by an = n

√
3n + 1.

(a) Show that 3 < an < 3 n
√

2 for all n ∈ N.
(b) Find the limit of an as n→∞.

Exercise 2.2.20
Let {an}∞n=1 be a convergent sequence of nonnegative terms with limit L.
Suppose that the terms of sequence satisfy the recursive relation anan+1 =
an + 2 for all N ∈ N. Find L.

Exercise 2.2.21
Find the limit of the sequence defined by

an = cos
1

n
+

sinn

n
.

Exercise 2.2.22
Suppose that an+1 = a2n+1

an
. Show that the sequence {an}∞n=1 is divergent.
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2.3 Monotone and Bounded Sequences

One of the problems with deciding if a sequence is convergent is that you
need to have a limit before you can test the definition. However, it is often
the case that it is more important to know if a sequence converges than what
it converges to. In this and the next section, we look at two ways to prove a
sequence converges without knowing its limit. That is convergence is solely
based on the terms of the sequence.

Definition 2.3.1
A sequence {an}∞n=1 is said to be increasing if and only if an ≤ an+1 for all
n ≥ 1.
A sequence {an}∞n=1 is said to be decreasing if and only if an ≥ an+1 for all
n ≥ 1.
A sequence that is either increasing or decreasing is said to be monotone.

Exercise 2.3.1
Show that the sequence { 1

n
}∞n=1 is decreasing.

Exercise 2.3.2
Show that the sequence { 1

1+e−n}∞n=1 is increasing.

Definition 2.3.2
A sequence {an}∞n=1 is said to be bounded from below if and only if there
is a constant m such that m ≤ an for all n ≥ 1. We call m a lower bound.
A sequence {an}∞n=1 is said to be bounded from above if and only if there
is a constant M such that an ≤ M for all n ≥ 1. We call M an upper
bound.

Exercise 2.3.3
Show that the sequence { 1

n
}∞n=1 is bounded from below. What is a lower

bound? Are there more than one lower bound?

Exercise 2.3.4
Show that the sequence { 1

1+e−n}∞n=1 is bounded from above. What is an upper
bound? Are there more than one upper bound?

Suppose that N ≤ an ≤ M for all n ≥ 1. That is, the sequence is bounded
from above and below. As we have seen from the previous two exercises, the
sequence may have many lower and upper bounds.
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Definition 2.3.3
The largest lower bound is called the greatest lower bound ( or the infi-
mum) denoted by inf{an : n ≥ 1}. Note that the infimum is a lower bound.
Moreover, for any lower bound m of {an}∞n=1 we have m ≤ inf{an : n ≥ 1}.
The smallest upper bound is called the least upper bound ( or the supre-
mum) denoted by sup{an : n ≥ 1}. Note that the supremum is an upper
bound. Moreover, for any upper bound M of {an}∞n=1 we have sup{an : n ≥
1} ≤M.

The next result shows that an increasing sequence that is bounded from
above is always convergent.

Exercise 2.3.5
Let {an}∞n=1 be an increasing sequence that is bounded from above.
(a) Show that there is a finite number M such that M = sup{an : n ≥ 1}.
(b) Let ε > 0 be arbitrary. Show that M − ε cannot be an upper bound of
the sequence.
(c) Show that there is a positive integer N such that M − ε < aN .
(d) Show that M − ε < an for all n ≥ N.
(e) Show that M − ε < an < M + ε for all n ≥ N.
(f) Show that limn→∞ an = M. That is, the given sequence is convergent.

Exercise 2.3.6
Consider the sequence {an}∞n=1 defined recursively by a1 = 3

2
and an+1 =

1
2
an + 1 for n ≥ 1.

(a) Show by induction on n ≥ 1, that an+1 = an + 1
2n+1 .

(b) Show that this sequence is increasing.
(c) Show that {an}∞n=1 is bounded from above. What is an upper bound?
(d) Show that {an}∞n=1 is convergent. What is its limit? Hint: In finding the
limit, use the arithmetic operations of sequences.

Exercise 2.3.7
Let {an}∞n=1 be a decreasing sequence such that m ≤ an for all n ≥ 1. Show
that {an}∞n=1 is convergent. Hint: Let bn = −an and use Exercise 2.3.5 and
Exercise 2.2.4.

Exercise 2.3.8
Show that a monotone sequence is convergent if and only if it is bounded.
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Practice Problems

Exercise 2.3.9
Let an be defined by a1 =

√
2 and an+1 =

√
2 + an for n ∈ N.

(a) Show that an ≤ 2 for all n ∈ N. That is, {an}∞n=1 is bounded from above.
(b) Show that an+1 ≥ an for all n ∈ N. That is, {an}∞n=1 is increasing.
(c) Conclude that {an}∞n=1 is convergent. Find its limit.

Exercise 2.3.10
Let an =

∑n
k=1

1
k2
.

(a) Show that an < 2 for all n ∈ N. Hint: Recall that
∑n

k=1
1

(n+1)n
= 1− 1

n+1
.

(b) Show that {an}∞n=1 is increasing.
(c) Conclude that {an}∞n=1 is convergent.

Exercise 2.3.11
Consider the sequence {an}∞n=1 defined recursively as follows

a1 = 2 and 7an+1 = 2a2n + 3 for all n ∈ N.

(a) Show that 1
2
< an < 3 for all n ∈ N.

(b) Show that an+1 ≤ an for all n ∈ N.
(c) Deduce that {an}∞n=1 is convergent and find its limit.

Exercise 2.3.12
Let {an}∞n=1 be an increasing sequence. Define bn = a1+a2+···+an

n
. Show that

the sequence {bn}∞n=1 is increasing.

Exercise 2.3.13
Give an example of a monotone sequence that is divergent.

Exercise 2.3.14
Consider the sequence defined recursively by a1 = 1 and an+1 = 3 + an

2
for

all n ∈ N.
(a) Show that an ≤ 6 for all n ∈ N.
(b) Show that {an}∞n=1 is increasing.
(c) Conclude that the sequence is convergent. Find its limit.

Exercise 2.3.15
Give an example of two monotone sequences whose sum is not monotone.
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2.4 Subsequences and the Bolzano-Weierstrass

Theorem

In this section we consider a sequence contained in another sequence. More
formally we have

Definition 2.4.1
Consider a sequence {an}∞n=1. A sequence consisting of terms of the given
sequence of the form {ank

}∞k=1 where n1 < n2 < n3 < · · · is called a subse-
quence.

Exercise 2.4.1
Let {ank

}∞k=1 be a subsequence of a sequence {an}∞n=1. Use induction on k to
show that nk ≥ k for all k ∈ N.

Exercise 2.4.2
Let {an}∞n=1 be a sequence of real numbers that converges to a number L.
Let {ank

}∞k=1 be any subsequence of {an}∞n=1.
(a) Let ε > 0 be given. Show that there is a positive integer N ′ such that if
n ≥ N ′ then |an − L| < ε.
(b) Let N be the first positive integer such that nN ≥ N ′. Show that if k ≥ N
then |ank

−L| < ε. That is, the subsequence {ank
}∞k=1 converges to L. Hence,

every subsequence of a convergent sequence is convergent to the same limit
of the original sequence.

The next result shows that every sequence has a monotonic subsequence.

Exercise 2.4.3
Let {an}∞n=1 be a sequence of real numbers. Let S = {n ∈ N : an > amfor all
m > n}.
(a) Suppose that S is infinite. Then there is a sequence n1 < n2 < n3 < · · ·
such nk ∈ S. Show that ank+1

< ank
. Thus, the subsequence {ank

}∞k=1 is
decreasing.
(b) Suppose that S is finite. Let n1 be the first positive integer such that
n1 6∈ S. Show that the subsequence {ank

}∞k=1 is increasing.

As a corollary to the previous exercise we obtain the following famous result
which says that every bounded sequence of real numbers has a convergent
subsequence.
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Exercise 2.4.4 (Bolzano-Weierstrass)
Prove that every bounded sequence has a convergent subsequence. Hint:
Exercise 2.3.8

Exercise 2.4.5
Show that the sequence {esinn}∞n=1 has a convergent subsequence.
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Practice Problems

Exercise 2.4.6
Prove that the sequence {an}∞n=1 where an = cos nπ

2
is divergent.

Exercise 2.4.7
Prove that the sequence {an}∞n=1 where

an =
(n2 + 20n+ 35) sinn3

n2 + n+ 1

has a convergent subsequence. Hint: Show that {an}∞n=1 is bounded.

Exercise 2.4.8
Show that the sequence defined by an = 2 cosn − sinn has a convergent
subsequence.

Exercise 2.4.9
True or false: There is a sequence that converges to 6 but contains a subse-
quence converging to 0. Justify your answer.

Exercise 2.4.10
Give an example of an unbounded sequence with a bounded subsequence.

Exercise 2.4.11
Show that the sequence {(−1)n}∞n=1 is divergent by using subsequences.
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2.5 Cauchy Sequences

The notion of a Cauchy sequence provides us with a characterization of con-
vergence in terms of just the terms in the sequence without explicit reference
to the limit.

Definition 2.5.1
A sequence {an}∞n=1 is called a Cauchy sequence if for every ε > 0 there
exists a positive integer N = N(ε) such that

if n,m ≥ N then |an − am| < ε.

Thus, for a sequence to be Cauchy, we don’t require that the terms of the
sequence to be eventually all close to a certain limit, just that the terms of
the sequence to be eventually all close to one another.

Exercise 2.5.1
Consider the sequence whose nth term is given by an = 1

n
. Let ε > 0 be

arbitrary and choose N > 2
ε
. Show that for m,n ≥ N we have |am− an| < ε.

That is, the above sequence is a Cauchy sequence. Hint: Exercise 1.1.17.

The next result shows that Cauchy sequences are bounded sequences.

Exercise 2.5.2
Show that any Cauchy sequence is bounded. Hint: Let ε = 1 and use Exercise
1.1.18.

Exercise 2.5.3
Show that if limn→∞ an = A then {an}∞n=1 is a Cauchy sequence. Thus, every
convergent sequence is a Cauchy sequence.

Now, consider a Cauchy sequence {an}∞n=1. Create new sequences as follows:
For each n ≥ 1, a new sequence is obtained by deleting the previous n − 1
terms from the original sequence. For example, if n = 1, the new sequence
is just the original sequence, for n = 2 the new sequence is {a2, a3, · · · }, for
n = 3 the new sequence is {a3, a4 · · · } and so on.

Exercise 2.5.4
(a) Using Exercise 2.5.2, show that for each n ≥ 1, the sequence {an, an+1, · · · }
is bounded.
(b) Show that for each n ≥ 1 the infimum of {an, an+1, · · · } exists. Call it
bn.
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Exercise 2.5.5
(a) Show that the sequence {bn}∞n=1 is bounded from above.
(b) Show that the sequence {bn}∞n=1 is increasing. Hint: Show that bn is a
lower bound of the sequence {an+1, an+2, · · · }.

Exercise 2.5.6
Show that the sequence {bn}∞n=1 is convergent. Call the limit B.

Exercise 2.5.7
(a) Let ε > 0 be arbitrary. Using the definition of Cauchy sequences and
Exercise 1.1.14, show that there is a positive integer N such that aN − ε

2
<

an < aN + ε
2

for all n ≥ N.
(b) Using (a), show that aN− ε

2
is a lower bound of the sequence {aN , aN+1, · · · }

Thus, aN − ε
2
≤ bn for all n ≥ N.

(c) Again, using (a) show that bn < aN + ε
2

for all n ≥ N. Thus, combining
(b) and (c), we obtain aN − ε

2
≤ bn < aN + ε

2
.

(d) Using Exercise 2.2.11, show that aN − ε
2
≤ B ≤ aN + ε

2
.

(e) Using (a), (d), and Exercise 1.1.17, show that limn→∞ an = B. Thus,
every Cauchy sequence is convergent.
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Practice Problems

Exercise 2.5.8
(a) Show that if {an}∞n=1 is Cauchy then {a2n}∞n=1 is also Cauchy.
(b) Give an example of Cauchy sequence {a2n}∞n=1 such that {an}∞n=1 is not
Cauchy.

Exercise 2.5.9
Let {an}∞n=1 be a Cauchy sequence such that an is an integer for all n ∈ N.
Show that there is a positive integer N such that an = C for all n ≥ N,
where C is a constant.

Exercise 2.5.10
Let {an}∞n=1 be a sequence that satisfies

|an+2 − an+1| < c2|an+1 − an| for all n ∈ N

where 0 < c < 1.
(a) Show that |an+1 − an| < cn|a2 − a1| for all n ≥ 2.
(b) Show that {an}∞n=1 is a Cauchy sequence.

Exercise 2.5.11
What does it mean for a sequence {an}∞n=1 to not be Cauchy?

Exercise 2.5.12
Let {an}∞n=1 and {bn}∞n=1 be two Cauchy sequences. Define cn = |an − bn|.
Show that {cn}∞n=1 is a Cauchy sequence.

Exercise 2.5.13
Suppose {an}∞n=1 is a Cauchy sequence. Suppose an ≥ 0 for infinitely many
n and an ≤ 0 for infinitely many n. Prove that limn→∞ an = 0.

Exercise 2.5.14
Explain why the sequence defined by an = (−1)n is not a Cauchy sequence.
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Chapter 3

Limits
3.1 The Limit of a Function

A fundamental concept in single variable calculus is the concept of the limit
of a function. In this section, we introduce the definition of limit and discuss
some of its properties.

Definition 3.1.1
Let f be a function with domain D ⊂ R. Let a be a point in D. We say that f
has a limit L at a if and only if for every ε > 0 there exists a positive number
δ depending on ε such that for any x ∈ D with the property 0 < |x− a| < δ
we have |f(x)− L| < ε. In symbol we write

lim
x→a

f(x) = L.

Figure 3.1.1

39
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Geometrically, the definition says that for any ε > 0 (as small as we want),
there is a δ > 0 (sufficiently small) such that if the distance between a point
x and a is less than δ (i.e. the point x is inside the tiny interval around a)
then the distance between f(x) and L is less than ε (i.e, the point f(x) is
inside the tiny interval around L) as shown in Figure 3.1.1.

Exercise 3.1.1
Show that limx→1

x2−1
x−1 = 2.

The limit of a function may not exist as shown in the next exercise.

Exercise 3.1.2
Let f(x) = |x|

x
. Suppose that limx→0 f(x) = L.

(a) Show that there is a positive number δ such that if 0 < |x| < δ then∣∣∣ |x|x − L∣∣∣ < 1
4
.

(b) Let x1 = δ
4

and x2 = − δ
4
. Compute the value of |f(x1)− f(x2)|.

(c) Use (a) to show that |f(x1)− f(x2)| < 1
2
.

(d) Conclude that L does not exist. That is, limx→0
|x|
x

does not exist.

Exercise 3.1.3
Let f(x) = sin

(
1
x

)
. Suppose that limx→0 f(x) = L.

(a) Show that there is a positive number δ such that if 0 < |x| < δ then∣∣sin ( 1
x

)
− L

∣∣ < 1
4
.

(b) Let n be a positive integer such that x1 = 2
(2n+1)π

< δ and x2 = 1
(2n+1)π

<

δ. Compute the value of |f(x1)− f(x2)|.
(c) Use (a) to show that |f(x1)− f(x2)| < 1

2
.

(d) Conclude that L does not exist. That is, limx→0 sin
(
1
x

)
does not exist.

The next exercise shows that a function can have only one limit, if such a
limit exists.

Exercise 3.1.4
Suppose that limx→a f(x) exists. Also, suppose that limx→a f(x) = L1 and
limx→a f(x) = L2. So either L1 = L2 or L1 6= L2.
(a) Suppose that L1 6= L2. Show that there exist positive constants δ1 and δ2
such that if 0 < |x−a| < δ1 then |f(x)−L1| < |L1−L2|

2
and if 0 < |x−a| < δ2

then |f(x)− L2| < |L1−L2|
2

.
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(b) Let δ = min{δ1, δ2} so that δ ≤ δ1 and δ ≤ δ2. Show that if 0 < |x−a| < δ
then |L1 − L2| < |L1 − L2| which is impossible.
(c) Conclude that L1 = L2. That is, whenever a function has a limit, that
limit is unique.
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Practice Problems

Exercise 3.1.5
Using the εδ definition of limit to show that

lim
x→−1

(2x2 + x+ 1) = 2.

Exercise 3.1.6
Prove directly from the definition that limx→1

x
x+3

= 1
4
.

Exercise 3.1.7
In this exercise we discuss the concept of sided limits.
(a) We say that L is the left side limit of f as x approaches a from the left
if and only if

∀ε > 0,∃δ > 0 such that 0 < a− x < δ ⇒ |f(x)− L| < ε

and we write limx→a− f(x) = L. Show that limx→0−
|x|
x

= −1.
(b) We say that L is the right side limit of f as x approaches a from the
right if and only if

∀ε > 0,∃δ > 0 such that 0 < x− a < δ ⇒ |f(x)− L| < ε

and we write limx→a+ f(x) = L. Show that limx→0+
|x|
x

= 1.

Exercise 3.1.8
Prove that L = limx→a f(x) if and only if limx→a− f(x) = limx→a+ f(x) = L.

Exercise 3.1.9
Using ε and δ, what does it mean that limx→a f(x) 6= L?
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3.2 Properties of Limits

When computing limits, one uses some established properties rather than
the εδ definition of limit. In this section, we discuss these basic properties.

Exercise 3.2.1
Suppose that limx→a f(x) = L1 and limx→a g(x) = L2. Show that

lim
x→a

[f(x)± g(x)] = L1 ± L2.

Exercise 3.2.2
Suppose that limx→a f(x) = L1 and limx→a g(x) = L2. Show the following:
(a) There is a δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |f(x)| < 1 + |L1|.

Hint: Notice that f(x) = (f(x)− L1) + L1.
(b) Given ε > 0, there is a δ2 > 0 such that

0 < |x− a| < δ2 =⇒ |f(x)− L1| <
ε

2(1 + |L2|)
.

Exercise 3.2.3
Suppose that limx→a f(x) = L1 and limx→a g(x) = L2.
(a) Show that f(x)g(x)− L1L2 = f(x)(g(x)− L2) + L2(f(x)− L1).
(b) Show that |f(x)g(x)− L1L2| ≤ |f(x)||g(x)− L2|+ |L2||f(x)− L1|.
(c) Show that limx→a f(x)g(x) = L1L2. Hint: Use the previous exercise.

Exercise 3.2.4
(a) Suppose that |f(x)| ≤ M for all x in its domain and limx→a g(x) = 0.
Show that

lim
x→a

f(x)g(x) = 0.

Hint: Recall Exercise 2.2.5
(b) Show that limx→0 x sin

(
1
x

)
= 0.

The following exercise says that when a function approaches a nonzero num-
ber as the variable x approaches a, then there is an open interval around a
where the function is always different from zero in that interval.
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Exercise 3.2.5
Suppose that limx→a f(x) = L with L 6= 0. Show that there exists a δ > 0
such that

0 < |x− a| < δ =⇒ |f(x)| > |L|
2
> 0.

Hint: Recall the solution to Exercise 2.2.7

Exercise 3.2.6
Let g(x) be a function with the following conditions:
(1) g(x) 6= 0 for all x in the domain of g.
(2) limx→a g(x) = L2, with L2 6= 0.
(a) Show that there is a δ1 > 0 such that if 0 < |x− a| < δ1 then∣∣∣∣ 1

g(x)
− 1

L2

∣∣∣∣ < 2

|L2|2
|g(x)− L2|.

(b) Let ε > 0 be arbitrary. Show that there is δ2 > 0 such that if 0 < |x−a| <
δ2 then

|g(x)− L2| <
|L2|2

2
ε.

(c) Using (a) and (b), show that

lim
x→a

1

g(x)
=

1

L2

.

Hint: Recall Exercise 2.2.8

Exercise 3.2.7
Show that if limx→a f(x) = L1 and limx→a g(x) = L2 where g(x) 6= 0 in its
domain and L2 6= 0 then

lim
x→a

f(x)

g(x)
=
L1

L2

.

Hint: Recall Exercise 2.2.10.

Exercise 3.2.8
Let f(x) and g(x) be two functions with a common domain D and a a point
in D. Suppose that f(x) ≤ g(x) for all x in D. Show that if limx→a f(x) = L1

and limx→a g(x) = L2 then L1 ≤ L2. Hint: Recall Exercise 2.2.11
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Practice Problems

Exercise 3.2.9
Let D be the domain of a function f(x). Suppose that f(x) ≥ 0 for all x in
D and limx→a f(x) = L with L > 0.
(a) Show that √

f(x)−
√
L =

f(x)− L√
f(x) +

√
L
.

(b) Let ε > 0. Show that there exists δ > 0 such that |f(x) − L| < ε
√
L

whenever 0 < |x− a| < δ.
(c) Show that

lim
x→a

√
f(x) =

√
L.

Exercise 3.2.10 (Squeeze Rule)
Let f(x), g(x) and h(x) be three functions with common domain D and a be
a point in D. Suppose that
(1) g(x) ≤ f(x) ≤ h(x) for all x in D.
(2) limx→a g(x) = limx→a h(x) = L.
Show that limx→a f(x) = L. Hint: Recall Exercise 2.1.11

Exercise 3.2.11
Consider the following figure.

where 0 < x < π
2
.

(a) Using geometry, establish the inequality

0 < sinx < x.
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Hint: The area of a circular sector with radius r and central angle θ is given
by the formula 1

2
r2θ.

(b) Show that limx→0+ sinx = 0.
(c) Show that limx→0− sinx = 0. Thus, we conclude that limx→0 sinx = 0.
Hint: Recall that the sine function is an odd function.
(d) Show that limx→0 cosx = 1. Hint: cos2 x+ sin2 x = 1.
(e) Using geometry, establish the double inequality

sinx cosx

2
<
x

2
<

tanx

2
.

(f) Using (a) show that

cosx <
sinx

x
<

1

cosx
.

(g) Show that

lim
x→0+

sinx

x
= 1.

(h) Show that for −π
2
< x < 0 we have also

lim
x→0−

sinx

x
= 1.

Exercise 3.2.12
Find each of the following limits:

(1) limx→1

√
x2+3−2

√
x

x2−1 .

(2) limx→2−
x−2

|x2−5x+6| .

Exercise 3.2.13
Find limx→∞

x2+x
x2−x by using the change of variable u = 1

x
.

Exercise 3.2.14
Find limx→0

3
√
x sin 1

x
.

Exercise 3.2.15
Find limx→0 x

2 tanx.

Exercise 3.2.16
Let n be a positive integer. Prove that limx→a[f(x)]n = [limx→a f(x)]n .
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3.3 Connection Between the Limit of a Func-

tion and the Limit of a Sequence

The limit of a function given so far is known as the εδ definition. In this
section, we will establish an equivalent definition that involves the limit of a
sequence.

Exercise 3.3.1
Suppose that limx→a f(x) = L, where a is in the domain of f. Let {an}∞n=1

be a sequence whose terms belong to the domain of f and are different from
a and suppose that limn→∞ an = a.
(a) Let ε > 0 be arbitrary. Show that there exist a positive integer N and
a positive number δ such that for n ≥ N we have |an − a| < δ and for
0 < |x− a| < δ we have |f(x)− L| < ε.
(b) Use (a) to conclude that for a given ε > 0 there is a positive integer N
such that if n ≥ N then |f(an)− L| < ε. That is, limn→∞ f(an) = L.

Using Definition 3.1.1, what do we mean by limx→a f(x) 6= L? This means
that there is an interval centered at L such that for any interval centered at
a we can find a point x in that interval and in the domain of f such that
f(x) is not in the interval centered at L. This is the same thing as saying
that we can find an ε > 0 such for all δ > 0 there is xδ (in the domain of f)
with the property that 0 < |xδ − a| < δ but |f(xδ)− L| ≥ ε.

Exercise 3.3.2
Let f : D → R be a function with the property that for any sequence {an}∞n=1

(with an 6= a for all n ≥ 1) if limn→∞ an = a then limn→∞ f(an) = L. We
want to show that

lim
x→a

f(x) = L

(a) Suppose first that limx→a f(x) 6= L. Show that there is an ε > 0 and a
sequence {an}∞n=1 of terms in the domain of f such that 0 < |an−a| < 1

n
and

|f(an)− L| ≥ ε.
(b) Use the squeeze rule to show that limn→∞ |an − a| = 0.
(c) Use the fact that −|a| ≤ a ≤ |a| for any number a and the squeeze rule
to show that limn→∞(an − a) = 0.
(d) Use Exercise 2.2.1 to show that limn→∞ an = a.
(e) Using (a), (d), the given hypothesis and Exercise 2.2.11, show that ε ≤ 0.
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Thus, this contradiction shows that limx→a f(x) 6= L cannot happen. We
conclude that

lim
x→a

f(x) = L.

The above two exercises establish that the sequence version and the εδ version
are equivalent.
In many cases, one is interested in knowing that the limit of a function exist
without the need of knowing the value of the limit. In what follows, we will
establish a result that uses Cauchy sequences to provide a test for establishing
that the limit of a function exists.

Exercise 3.3.3
Let f be a function with domain D and a be a point in D. Suppose that f
satisfies the following Property:

(P) If {an}∞n=1, with an in D, an 6= a for all n ≥ 1 and limn→∞ an = a then
{f(an)}∞n=1 is a Cauchy sequence.

(a) Let {an}∞n=1 be a sequence of elements of D such that an 6= a for all n ≥ 1
and limn→∞ an = a. Show that the sequence {f(an)}∞n=1 is convergent. Call
the limit L. Hint: See Exercise 2.5.7
(b) Let {bn}∞n=1 be a sequence of elements of D such that bn 6= a for all n ≥ 1
and limn→∞ bn = a. Show that the sequence {f(bn)}∞n=1 converges to some
number L′.

Exercise 3.3.4
Let {an}∞n=1 and {bn}∞n=1 be the two sequences of the previous exercise. Define
the sequence

{cn} = {b1, a1, b2, a2, b3, a3, · · · }.
That is, cn = ak if n = 2k and cn = bk if n = 2k + 1 where k ≥ 0.
(a) Show that for all n ≥ 1 we have cn ∈ D and cn 6= a.
(b) Let ε > 0. Show that there exist positive integers N1 and N2 such that if
n ≥ N1 then |an − a| < ε and if n ≥ N2 then |bn − a| < ε.
(c) Let N = 2N1 + 2N2 + 1. Show that if n ≥ N then |cn − a| < ε. Hence,
limn→∞ cn = a. Hint: Consider the cases n = 2k or n = 2k + 1.
(d) Show that limn→∞ f(cn) = L′′ for some number L′′.

The next exercise establishes the fact that the two sequences {f(an)}∞n=1 and
{f(bn)}∞n=1 converge to the same limit.
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Exercise 3.3.5
Let {an}∞n=1, {bn}∞n=1, and {cn}∞n=1 be as in the previous exercise.
(a) Compare {an}∞n=1 and {cn}∞n=1.
(b) Let ε > 0 be arbitrary. Show that there is a positive integer N such that
if n ≥ N then |f(cn)− L′′| < ε.
(c) Let N1 be a positive integer such that N1 ≥ N

2
. Show that if n ≥ N1 then

|f(an)− L′′| < ε. Hence, limn→∞ f(an) = L′′.
(d) Show that limn→∞ f(bn) = L′′. Thus, by Exercise 2.1.6, we must have
L = L′ = L′′.

Exercise 3.3.6
Prove that if a function f satisfies property (P) then limx→a f(x) exists. Hint:
Use Exercise 3.3.2.
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Practice Problems

Exercise 3.3.7
Consider the function f : R→ R defined by

f(x) =

{
sin 1

x
if x 6= 0

1 if x = 0.

Let {an}∞n=1 and {bn}∞n=1 be the two sequences defined by an = 1
2nπ

and
bn = 1

(2n+ 1
2
)π
. Clearly, an, bn 6= 0 for all n ∈ N, an → 0 and bn → 0. Show

that limx→0 f(x) does not exist.

Exercise 3.3.8
Let {an}∞n=1 be a sequence such that an 6= 2 for all n ∈ N and limn→∞ an = 2.

(a) Find limn→∞
a2n−4
an+2

= 4.

(b) Find limx→2
x2−4
x+2

.

Exercise 3.3.9
Consider the floor function f : [0, 1] → R given by f(x) = bxc, where bxc
denote the largest integer less than or equal to x. Find limx→1bxc using
sequences.

Exercise 3.3.10
Consider the floor function f : R→ R given by f(x) = bxc, where bxc denote
the largest integer less than or equal to x.
(a) Let an = 1 − 1

n
and bn = 1 + 1

n
for all n ∈ N. Find limn→∞ f(an) and

limn→∞ f(bn).
(b) Does limx→1bxc exist?



Chapter 4

Continuity

4.1 Continuity of a Function

In this section we introduce the notion of continuity of a function and study
the various equivalent definitions of this notion.

Definition 4.1.1
Let f be a real-valued function with domain D and a a point in D. We
say that f is continuous at a if and only if for any given ε we can find
δ = δ(ε) > 0 such that

for all x in D if |x− a| < δ then |f(x)− f(a)| < ε.

If f is continuous at every point in D, then we say that f is continuous in
D.

Exercise 4.1.1
Show that the function f(x) = x2 is continuous at x = 0.

The next result provides a definition of continuity in terms of limits.

Exercise 4.1.2
Show that f is continuous at x = a if and only if limx→a f(x) = f(a).

Definition 4.1.2
A function f that is not continuous at a is said to be discontinuous there.
In terms of Definition 4.1.1, f is discontinuous at x = a if and only if there is
an ε > 0 such that for all δ > 0 there is an x = xδ in D such that |x− a| < δ
and |f(x)− f(a)| ≥ ε.

51
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Exercise 4.1.3
Consider the function

f(x) =

{
x2−4
x−2 if x 6= 2

0 if x = 2.

Show that f is discontinuous at x = 2.

Exercise 4.1.4
Suppose that f is discontinuous at x = a.
(a) Show that there is a sequence {an}∞n=1 of elements in D such that 0 ≤
|an − a| < 1

n
and |f(an)− f(a)| ≥ ε.

(b) Show that limn→∞ |an − a| = 0.
(c) Show that limn→∞ an = a.

The next two results provide a definition of continuity in terms of sequences.

Exercise 4.1.5
Suppose that f is continuous at x = a. Let {an}∞n=1 be a sequence of elements
in D converging to a.
(a) Let ε > 0 be given. Show that there is a δ > 0 such that for any x in D
such that |x− a| < δ we have |f(x)− f(a)| < ε.
(b) With the ε and δ as in (a), show that there is a positive integer N such
that if n ≥ N then |an − a| < δ.
(c) Conclude that limn→∞ f(an) = f(a).

Exercise 4.1.6
Suppose that for any sequence {an}∞n=1 of elements in D that converges to a,
the sequence {f(an)}∞n=1 converges to f(a). Then either f is continuous at a
or f is discontinuous at a.
(a) Suppose that f is discontinuous at a. Show that there is an ε > 0 and
a sequence {an}∞n=1 of elements in D such that limn→∞ an = a and |f(an)−
f(a)| ≥ ε for all n ≥ 1.
(b) Show that limn→∞ f(an) = f(a).
(c) Show that by (a) and (b) we conclude that ε ≤ 0, a contradiction. Thus,
f must be continuous at x = a.
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Practice Problems

Exercise 4.1.7
Consider the function

f(x) =

{
1 if x ≥ 0
0 if x < 0.

(a) Let an = − 1
n
. Find limn→∞ an and limn→∞ f(an).

(b) Is f continuous at x = 0?

Exercise 4.1.8
Give an example of a continuous function f : R→ R and a sequence {an}∞n=1

such that limn→∞ f(an) exists, but limn→∞ an does not exist.

Exercise 4.1.9
Determine the values of a and b that makes the function f continuous every-
where.

f(x) =


2 sinx

x
if x < 0

a if x = 0
b cosx if x > 0.

Exercise 4.1.10
Using the ε-δ definition of continuity show that f(x) = x3 is continuous at
x = 1. Hint: x3 − 1 = (x− 1)(x2 + x+ 1).

Exercise 4.1.11
Consider the function f(x) = cos

(
1
x

)
.

(a) Let an = 1
2nπ

and bn = 1
(n+ 1

2
)π
. Find limn→∞ an, limn→∞ bn, limn→∞ f(an),

and limn→∞ f(bn).
(b) Is f continuous at x = 0?

Exercise 4.1.12
Consider the function

f(x) =

{
x sin

(
1
x

)
if x 6= 0

0 if x = 0.

Show that this function is continuous at x = 0 by using the ε-δ definition.

Exercise 4.1.13
Prove that if f is continuous at x = a so does |f |. Hint: Exercise 1.1.23.
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Exercise 4.1.14
Suppose f, g : R → R are continuous on R. Suppose h : R → R satisfies
f(x) ≤ h(x) ≤ g(x) for all x ∈ R. If f(c) = g(c), prove that h is continuous
at c.

Exercise 4.1.15
Let f : [0,∞) → R be defined by f(x) =

√
x. Show that f is continuous on

[0,∞).
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4.2 Properties of Continuous Functions

In this section, we discuss the various properties that continuous functions
enjoy.

Exercise 4.2.1
Let f(x) and g(x) be two functions with common domain D . Suppose that
f and g are continuous at a point a in D. Show the following properties:
(i) f ± g is continuous at a.
(ii) f · g is continuous at a.
(iii) f

g
is continuous at a provided that g(a) 6= 0.

Exercise 4.2.2
Let f be continuous at a point a in its domain with f(a) 6= 0. Show that
there exists a δ > 0 such that

|x− a| < δ =⇒ |f(x)| > |f(a)|
2
.

That is, there is an open interval centered at a where the function is always
different from zero there. Hint: Look at Exercise 2.2.7

Exercise 4.2.3
Let f : D → R and g : D′ → R with the range of f contained in D′. Thus,
g ◦ f : D → R is a function with domain D. Suppose that f is continuous at
a and g is continuous at f(a).
(a) Let ε > 0 be given. Show that there is a δ′ > 0 such that for all y in D′

satisfying |y − f(a)| < δ′ we have |g(y)− g(f(a))| < ε.
(b) Show that there is a δ′′ > 0 such that if |x−a| < δ′′ then |f(x)−f(a)| < δ′.
(c) Show that there is a δ > 0 such that if |x−a| < δ then |g(f(x))−g(f(a))| <
ε. In other words, the composite function g(f(x)) is continuous at a. Hence,
the composition of two continuous functions is a continuous function.

Exercise 4.2.4
In Exercise 3.2.11, we established that limx→0 sinx = 0 = sin 0. That is, the
sine function is continuous at 0.
(a) Using the trigonometric identity

sin (a+ b) = sin a cos b+ cos a sin b

show that the sine function is continuous at every number a. Hint: Use the
substitution u = x− a and note that u→ 0 as x→ a.
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(b) Show that the cosine function is continuous for every number a. Hint:
Note that cosx = sin

(
π
2
− x
)

and use Exercise 4.2.3.
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Practice Problems

Exercise 4.2.5
Suppose that f : R → R is continuous such that f(x) = 0 for all x ∈ Q.
Prove that f(x) = 0 for all x ∈ R. Hint: Exercise 2.1.21

Exercise 4.2.6
Consider the function

f(x) =

{
x if x ∈ Q
0 if x 6∈ Q.

(a) Prove that f is continuous at x = 0.
(b) Let a 6= 0. Prove that f is discontinuous at x = a.

Exercise 4.2.7
Suppose f, g : R → R are continuous functions and f(x) = g(x) for every
x ∈ Q. Show that f(x) = g(x) for every x ∈ R.

Exercise 4.2.8
Use continuity to evaluate limx→π sin (x+ sinx).

Exercise 4.2.9
Give an example of two functions f and g that are not continuous on the
interval (0, 1) but their sum f + g is continuous on (0, 1).

Exercise 4.2.10
Let f : R→ R be a continuous function that satisfies f(x+ y) = f(x) + f(y)
for all x, y ∈ R.
(a) Show that f(0) = 0 and f(n) = an for all n ∈ N where a = f(1).
(b) Show f

(
m
n

)
= a · m

n
where m and n are integers with n 6= 0. That is,

f(x) = ax for all x ∈ Q.
(c) Show that f(x) = ax for all x ∈ R. Hint: Exercise 4.2.5 applied to the
function g(x) = f(x)− ax.

Exercise 4.2.11
Prove that if f is continuous on [a, b], then either f(x) = 0 for some x ∈ [a, b],
or there is a number ε > 0 such that |f(x)| ≥ ε for all x ∈ [a, b].



58 CHAPTER 4. CONTINUITY

4.3 Uniform Continuity

Recall that a function f : D → R is continuous at point a in D if and only
if for any ε > 0 there is a δ > 0 such that

if |x− a| < δ =⇒ |f(x)− f(a)| < ε.

The δ in this definition depends on ε and the point a. That is, for the same
ε but with a different point b the δ might be different. Is there a function
f such that for all x1 and x2 in D with distance less than a fixed δ, we
have |f(x1)− f(x2)| < ε? The answer is yes. We say that such a function is
uniformly continuous. More formally, we have

Definition 4.3.1
A function f : D → R is uniformly continuous if and only if for any ε > 0
there is a δ > 0 (depending only on ε) such that for all x1 and x2 in D

if |x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε.

A graphical illustration is given in Figure 4.3.1.

Figure 4.3.1

Continuity of a function at a point is a local property of the function. In
contrast, uniform continuity is a global property of the function.
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Exercise 4.3.1
Show that the function f(x) = x is uniformly continuous.

Exercise 4.3.2
Consider the function f(x) = 1

x
on the set x > 0. Let δ > 0 be any number

and define α = min{2, δ}. Then α ≤ 2 and α ≤ δ. Let x1 = α
3
> 0 and

x2 = α
6
> 0.

(a) Show that |x1 − x2| < δ but |f(x1)− f(x2)| ≥ 1.
(b) Conclude from (a) that f is not uniformly continuous on the interval
0 < x <∞.

Exercise 4.3.3
(a) Show that if f is uniformly continuous on D then f is continuous at every
point in D.
(b) Using properties of continuous functions, show that the function f(x) = 1

x

is continuous on the interval 0 < x <∞.
(c) Is the converse of (a) always true? That is, every continuous function is
uniformly continuous?

Exercise 4.3.4
Show that if f, g : D → R are uniformly continuous then f + g : D → R is
also uniformly continuous.

Exercise 4.3.5
Let f(x) = x2. Suppose that there is a δ > 0 such that |x1 − x2| < δ for all
real numbers x1 and x2. In addition, suppose we want |x21− x22| = 1. That is,
|x1− x2||x1 + x2| = 1. One way to achieve that is by setting x1− x2 = δ

2
and

x1 + x2 = 2
δ
.

(a) Find x1 and x2 in terms of δ.
(b) Show that f is not uniformly continuous. Hint: Let ε = 1

2
in Definition

12.

Exercise 4.3.6
Give an example of two functions f, g : D → R that are uniformly continuous
but the product function f · g is not.

Exercise 4.3.7
Let f, g : D → R be uniformly continuous and bounded, say |f(x)| ≤ M1

and |g(x)| ≤M2 for all x in D. Let ε > 0 be arbitrary.
(a) Show that there is a δ1 > 0 such that
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if |x− u| < δ1 =⇒ |f(x)− f(u)| < ε
2M2

for all x, u in D.

(b) Show that there is a δ2 > 0 such that

if |x− u| < δ2 =⇒ |g(x)− g(u)| < ε
2M1

for all x, u in D.

(c) Show that f · g : D → R is also uniformly continuous. Note that bound-
edness is crucial in this result. Hint: Note that f(x)g(x) − f(u)g(u) =
(f(x)− f(u))g(x) + f(u)(g(x)− g(u)).

Exercise 4.3.8
Suppose that f : D → R is uniformly continuous. Let {an}∞n=1 be a Cauchy
sequence of terms in D.
(a) Let ε > 0 be arbitrary. Show that there is a δ > 0 such that

If |x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε for all x1, x2 in D.

(b) Show that there is a positive integer N such that

If n,m ≥ N =⇒ |an − am| < δ.

(c) Show that {f(an)}∞n=1 is a Cauchy sequence in R (and therefore by Ex-
ercise 2.5.7 is convergent).

Exercise 4.3.9
Consider the function f(x) = tan x on the interval −π

2
< x < π

2
.

(a) Show that the sequence {π
2
− 1

n
}∞n=1 is convergent.

(b) Show that the sequence in (a) is also Cauchy.
(c) Show that the sequence {f

(
π
2
− 1

n

)
}∞n=1 is not Cauchy.

(d) Show that the function f(x) = tanx is not uniformly continuous on the
interval −π

2
< x < π

2
.

Exercise 4.3.10
Let f : D → R and g : D′ → R be two uniformly continuous functions with
the range of f contained in D′. Looking closely at Exercise 4.2.3, show that
the composite function g(f(x)) is also uniformly continuous.
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Practice Problems

Exercise 4.3.11
Consider the function f(x) = sinx defined on the interval −π

2
< x < π

2
.

(a) Use Exercise 3.2.11(a) to show that | sinx| ≤ |x| on the interval −π
2
<

x < π
2
.

(b) Using the trigonometric identity sin a − sin b = 2 sin
(
a−b
2

)
cos
(
a+b
2

)
and

(a) to show that
| sin a− sin b| ≤ |a− b|.

(c) Show that f is uniformly continuous on the −π
2
< x < π

2
.

Exercise 4.3.12
Using Exercise 4.3.10 and Exercise 4.3.11, show that the function g(x) = cos x
is uniformly continuous in the interval −π

2
< x < π

2
.

Exercise 4.3.13
Give an example of two uniformly continuous functions f and g such that
f(x)
g(x)

is not uniformly continuous.

Exercise 4.3.14
Let g : D → R be a uniformly continuous function with |g(x)| ≥ M > 0 for
all x ∈ D. Hence, the function 1

g(x)
is bounded and g(x) 6= 0 for all x in D.

Show that 1
g(x)

is uniformly continuous.

Exercise 4.3.15
Let f, g : D → R be two uniformly continuous functions such that f(x) is

bounded and |g(x)| ≥ M > 0 for all x ∈ D. Show that the function f(x)
g(x)

is
uniformly continuous on D.

Exercise 4.3.16
A function f : D → R is said to be Lipschitz if there is a constant K > 0
such that |f(x) − f(y)| ≤ K|x − y| for all x, y ∈ D. Show that a Lipschitz
function is uniformly continuous.
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4.4 Under What Conditions a Continuous Func-

tion is Uniformly continuous?

We have seem (Exercise 4.3.3(a)) that a function f : D → R uniformly
continuous on D is continuous on D. However, the converse is not always
true as seen from Exercise 4.3.3(c). In this section, we will show that any
continuous function on the interval [a, b] is uniformly continuous there.
Suppose not, then there is an ε > 0 such that for all δ > 0 there are u and v
in [a, b] such that

if |u− v| < δ =⇒ |f(u)− f(v)| ≥ ε.

In particular, for each positive integer n we can let δ = 1
n

and thus obtain
two sequences {un}∞n=1 and {vn}∞n=1 of numbers in [a, b] such that

|un − vn| <
1

n
=⇒ |f(un)− f(vn)| ≥ ε. (4.4.1)

Exercise 4.4.1
(a) Let c0 = a+b

2
. Then either [a, c0] or [c0, b] contains an infinite members of

{vn}∞n=1. Let’s call the interval [a1, b1]. Show that b1 − a1 = b−a
2
.

(b) Let c1 = a1+b1
2
. Then either [a1, c1] or [c1, b1] contains an infinite members

of {vn}∞n=1. Let’s call the interval [a2, b2]. Show that b2 − a2 = b−a
22
. Compare

a1 and a2. Compare b1 and b2.
(c) Let c2 = a2+b2

2
. Then either [a2, c2] or [c2, b2] contains an infinite members

of {vn}∞n=1. Let’s call the interval [a3, b3]. Show that b3 − a3 = b−a
23
. Compare

a1, a2 and a3. Compare b1, b2 and b3.

Continuing the process of the previous exercise we can find intervals [an, bn] ⊂
[a, b] such that bn − an = b−a

2n
with the sequence {an}∞n=1 being increasing

and the sequence {bn}∞n=1 being decreasing. Moreover, the interval [an, bn]
contains an infinite terms of the sequence {vn}∞n=1.

Exercise 4.4.2
(a) Show that the sequence {an}∞n=1 is bounded from above. What is an
upper bound?
(b) Show that there is a constant M such that M = sup{a1, a2, · · · }.
(c) Show that a ≤M ≤ b.
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Exercise 4.4.3
(a) Show that there is δ > 0 such that for any a ≤ x ≤ b if |x−M | < δ then
|f(x)− f(M)| < ε

2
.

(b) Show that for all u and v in [a, b] if |u −M | < δ and |v −M | < δ then
|f(u)− f(v)| < ε.

Exercise 4.4.4
(a) Let wn = b−a

2n
. Show that limn→∞wn = 0. Hint: Squeeze rule.

(b) Show that there is a positive integer N such that b−a
2N

< δ
2

and |x−M | < δ
2

for all aN ≤ x ≤ bN .

Exercise 4.4.5
(a) Using Exercise 4.4.4, show that there is a large n such that 1

n
< δ

2
and

aN ≤ vn ≤ bN .
(b) For the n found in (a), show that |un − vn| < 1

n
< δ

2
and |vn −M | < δ

2
.

(c) For the n found in (a), Show that |un −M | < δ.
(d) Using (b), (c), and Exericse 4.4.3(b), show that |f(un)− f(vn)| < ε.
Conclusion: The result in (d), contradicts (4.4.1). Hence, f must be uni-
formly continuous.
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Practice Problems

Exercise 4.4.6
Show that the function f : [0, 1] → R defined by f(x) =

√
x is uniformly

continuous.

Exercise 4.4.7
(a) A function f : D → R is said to be Lipschitz if there is a constant K > 0
such that |f(x)− f(y)| ≤ K|x− y| for all x, y ∈ D. Show that the function
f(x) =

√
x is not Lipschitz on [0, 1]. Hint: Assume the contrary and get a

contradiction.
(b) Give an example of a uniformly continuous function that is not Lipschitz.
Thus, the converse to Exercise 4.3.16 is false.

Exercise 4.4.8
Show, using the definition of uniform continuity (ε−δ definition) the function
f(x) = x

x+1
is uniformly continuous on [0, 2].

Exercise 4.4.9
Conisder the function f : [0, 1]→ R defined by

f(x) =

{
sinx
x

if 0 < x ≤ 1
1 if x = 0.

Show that f is uniformly continuous on [0, 1].

Exercise 4.4.10
Show that the function f : (−2, 1]→ R defined by f(x) = x2 is Lipschitz on
(−2, 1].
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4.5 More Continuity Results: The Interme-

diate Value Theorem

In this section we proceed with establishing more properties of continuous
and uniformly continuous functions. We first define what we mean by a
bounded set.

Definition 4.5.1
A set D ⊆ R is said to be bounded if and only if there is a positive real
number M such that

for all x in D we have |x| ≤M.

That is, for all x is D we have −M ≤ x ≤M. This says that D is contained
in the closed interval [−M,M ].

The first result shows that a continuous function does not necessarily map
bounded sets to bounded sets.

Exercise 4.5.1
Give an example of a continuous f : D → R with D a bounded set (i.e.
|x| ≤M for some M > 0 and for all x in D) but f(D) is not bounded.

The following result shows that uniformly continuous functions preserve
boundedness. That is, the range of a bounded set under a uniformly contin-
uous function is bounded.

Exercise 4.5.2
Let D be a bounded subset of R with |x| ≤ M for all x ∈ D. Suppose that
f : D → R is uniformly continuous.
(a) Show that there is a δ > 0 such that if u and v belong to D such that
|u− v| < δ then |f(u)− f(v)| < 1.
(b) Let n be a positive integer such that n > 2M

δ
. Divide the interval

[−M,M ] into n equal subintervals:[x0, x1], [x1, x2], · · · , [xn−1, xn]. Show that
xk − xk−1 < δ for all k = 1, 2, · · · , n
(c) Let [a1, b1], [a2, b2], · · · , [ak, bk] be those intervals in (b) that intersect D.
That is, D ⊆ [a1, b1]∪ [a2, b2]∪· · ·∪ [ak, bk]. For 1 ≤ i ≤ k let ui ∈ [ai, bi]∩D.
Show that if v is in D then there is an 1 ≤ i ≤ k such that |v − ui| < δ and
|f(v)| < 1 + |f(ui)|.
(d) Show that |f(v)| ≤M for all v in D. That is, f(D) is bounded.
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Exercise 4.5.3
Show that if f : [a, b] → R is continuous then f([a, b]) is bounded. Hint:
Exercises 4.4.5 and 4.5.2.

If D is a bounded set, then by the Completeness Axiom of real numbers there
exist finite numbers I and S such that

I = inf{x ∈ D} and S = sup{x ∈ D}

Exercise 4.5.4
Show that if f : [a, b] → R is continuous then inf{f(x) : a ≤ x ≤ b} and
sup{f(x) : a ≤ x ≤ b} exist.

Exercise 4.5.5
Let f : [a, b]→ R be continuous. Let I = inf{f(x) : a ≤ x ≤ b}. Note that I
exists by Exercise 4.5.4. Suppose that I < f(x) for all x ∈ [a, b]. That is, the
infimum can not be attained in [a, b]. Define the function g : [a, b]→ R by

g(x) =
1

f(x)− I
.

(a) Show that g is continuous on [a, b].
(b) Show that there is a positive number M such that |g(x)| ≤ M for all
x ∈ [a, b].
(c) Show that I + 1

M
is a lower bound of f([a, b]) and this leads to a contra-

diction.
Conclusion: There must be a number x1 ∈ [a, b] such that f(x1) = inf{f(x) :
a ≤ x ≤ b}.

Exercise 4.5.6
Let f : [a, b] → R be continuous. Let S = sup{f(x) : a ≤ x ≤ b}. Note
that S exists by Exercise 4.5.4. Show that there exists x2 ∈ [a, b] such that
f(x2) = S. Hint: Mimic Exercise 4.5.5.

From the previous two exercises, we have seen that extreme values of a func-
tion continuous on [a, b] are attained in [a, b]. What can we say about possi-
ble values between these? The following result, known as the intermediate
value theorem, addresses this question.
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Exercise 4.5.7
Let f : [a, b]→ R be continuous. Let f(a) ≤ c ≤ f(b).
(a) Let D = {x ∈ [a, b] : f(x) ≤ c}. Show that D is non-empty and that D
is bounded from above. By the Completeness Axiom of real numbers there
is a number d such that d = sup{x ∈ D}.
(b) Show that d ∈ [a, b].
(c) Suppose that f(d) > c. Show that there is a δ > 0 such that if |x−d| < δ
then |f(x)− f(d)| < f(d)− c.
(d) Show that for x ∈ [a, b] and |x − d| < δ we must have f(x) > c. Hint:
Exercise 1.1.14.
(e) Using (d), show that d− δ is an upper bound of D. Thus, f(d) > c leads
to a contradiction.
(f) Suppose that f(d) < c. Show that there is a δ > 0 such that if d − δ <
x < d+ δ and x ∈ [a, b] we must have f(x) < c.
(g) Show that f(d+ δ

2
) < c. Why this leads to a contradiction?

Conclusion: We must have f(d) = c.

Exercise 4.5.8
Let f : [a, b]→ R be continuous. By Exercise 4.5.5, there exist x1 ∈ [a, b] and
x2 ∈ [a, b] such that m = f(x1) = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) :
x ∈ [a, b]}.
(a) Show that f([a, b]) ⊆ [m,M ].
(b) Use Exercise 4.5.7 (restricted to the interval [x1, x2]) to show that [m,M ] ⊆
f([a, b]).
Conclusion: f([a, b]) = [m,M ].
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Practice Problems

Exercise 4.5.9
Prove that there exists a number c ∈

(
0, π

2

)
such that 2c− 1 = sin

(
c2 + π

4

)
.

Exercise 4.5.10
Let f : [a, b] → [a, b] be a continuous function. Prove that there is c ∈ [a, b]
such that f(c) = c. We call c a fixed point of f. Hint: Intermediate Value
Theorem applied to a specific function F (to be found) defined on [a, b].

Exercise 4.5.11
Using the Intermediate Value Theorem, show that
(a) the equation 3 tan x = 2 + sinx has a solution in the interval [0, π

4
];

(b) the polynomial p(x) = −x4 + 2x3 + 2 has at least two real roots.

Exercise 4.5.12
Let f, g : [a, b] → R be continuous functions such that f(a) ≤ g(a) and
f(b) ≥ g(b). Show that there is a c ∈ [a, b] such that f(c) = g(c).

Exercise 4.5.13
Let f : [a, b]→ R be continuous such that f(a) ≤ a and f(b) ≥ b. Prove that
there is a c ∈ [a, b] such that f(c) = c. We call c a fixed point of f.

Exercise 4.5.14
Let f : [a, b]→ Q be continuous. Prove that f must be a constant function.
Hint: Exercise 1.2.6(c).

Exercise 4.5.15
Prove that a polynomial of odd degree considered as a function from the reals
to the reals has at least one real root.

Exercise 4.5.16
Suppose f(x) is continuous on the interval [0, 2] and f(0) = f(2) : Prove
there must be a number c between 0 and 1 so that f(c + 1) = f(c). Hint:
Consider the function g(x) = f(x+ 1)− f(x) on [0, 1].
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Derivatives

5.1 The Derivative of a Function

In this section we introduce the concept of the derivative of a function and
discuss some of its properties.

Definition 5.1.1
Let f : D → R and x ∈ D. We say that f is differentiable at a if and only
if

lim
h→0

f(a+ h)− f(a)

h

exists. Symbolically, we write

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

We call f ′(a) the derivative of f at a. A function that is not differentiable
at a is said to be non-diffferentiable. If f ′(a) exists for every a ∈ D, we
say that f is differentiable on D. The process of finding the derivative is
referred to as differentiation.

Exercise 5.1.1
Consider the function

f(x) =

{
x sin

(
1
x

)
if x 6= 0

0 if x = 0.

Show that f is not differentiable at a = 0.

69
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Exercise 5.1.2
Consider the function

f(x) =

{
x2 sin

(
1
x

)
if x 6= 0

0 if x = 0.

Show that f is differentiable at a = 0. What is f ′(0)?

Exercise 5.1.3
Show that f(x) = |x| is not differentiable at 0.

Exercise 5.1.4
Find the derivative of f(x) = sinx. Hint: Recall the trigonometric identity
sin a− sin b = 2 cos

(
a+b
2

)
sin
(
a−b
2

)
and use Exercise 3.2.11.

The following exercise shows that every differentiable function is continuous.

Exercise 5.1.5
Let f : D → R be differentiable at a.
(a) Show that

lim
x→a

[f(x)− f(a)] = lim
h→0

[f(h+ a)− f(a)].

(b) Show that f is continuous at a. That is,

lim
x→a

[f(x)− f(a)] = 0.

Exercise 5.1.6
Give an example of a function f : D → R that is continuous at a but not
differentiable there. That is, the converse to the result of Exercise 5.1.5 is
false in general.

Exercise 5.1.7
Suppose that f, g : D → R are differentiable at a. Show that the functions
f ± g are also differentiable at a.

Exercise 5.1.8 (Product Rule)
Suppose that f, g : D → R are differentiable at a.
(a) Show that (fg)(a+h)− (fg)(a) = [f(a+h)− f(a)]g(a+h) + f(a)[g(a+
h)− g(a)].
(b) Show that the function f · g is also differentiable at a.
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Exercise 5.1.9 (Quotient Rule)
Suppose that f, g : D → R are differentiable at a with g(a) 6= 0.
(a) Show that(
f
g

)
(a+ h)−

(
f
g

)
(a)

h
=
f(a+ h)− f(a)

h
· 1

g(a+ h)
−g(a+ h)− g(a)

h
·f(a)

g(a)
· 1

g(a+ h)
.

(b) Show that (
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g(a)2
.

Exercise 5.1.10 (Chain Rule)
Let f : D → R and g : D′ → R be two functions with f(D) ⊆ D′. Suppose
that f is differentiable at a and g is differentiable at f(a).
(a) Define w : D′ → R by

w(y) =

{
g(y)−g(f(a))
y−f(a) if y 6= f(a)

g′(f(a)) if y = f(a).

Show that w is continuous at f(a). That is,

lim
h→0

w(h+ f(a)) = w(f(a)).

(b) Show that (w ◦ f)(x) is continuous at a.
(c) Show that

(g ◦ f)(a+ h)− (g ◦ f)(a)

h
= (w ◦ f)(a+ h) · f(a+ h)− f(a)

h
.

(d) Show that
(g ◦ f)′(a) = g′(f(a)) · f ′(a).

Exercise 5.1.11
Let f(x) = xn where n is a non-negative integer.
(a) By letting h = ax− x, show that

f ′(x) = lim
a→1

f(ax)− f(x)

ax− x
.

(b) What is the quotient of the division of an−1 by a−1? Hint: Use synthetic
division.
(c) Use (a) and (b) to show that f ′(x) = nxn−1.
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Practice Problems

Exercise 5.1.12
(a) Show that the derivative of a constant function is zero and that the
derivative of f(x) = x is f ′(x) = 1.
(b) Show that the function h(x) = x sin

(
1
x

)
is differentiable for all x 6= 0.

Exercise 5.1.13
Let f(x) =

√
2x− 1. Find f ′(2) by using only the definition of the derivative.

Exercise 5.1.14
Let

f(x) =

{
2x+ 5 if x ≤ 1
9x2 − 2 if x > 1.

Show that f(x) is continuous but not differentiable at x = 1.

Exercise 5.1.15
Find constants a and b such that the piecewise defined function

f(x) =

{
ax2 − 4 if x ≤ 1
bx+ a if x > 1

is differentiable at x = 1.

Exercise 5.1.16
Let f(x) = x2 cos

(
1
x

)
if x 6= 0 and f(0) = 0. Show that f is differentiable at

x = 0 and find f ′(0).

Exercise 5.1.17
(a) Let f(x) = xn with n a negative integer. Prove that f ′(x) = nxn−1.

(b) Let f(x) = x
p
q where p and q are integers with q 6= 0. Prove that f ′(x) =

p
q
x

p
q
−1. Hint: Let y = x

p
q so that yq = xp and use Exercise 5.1.10.

Exercise 5.1.18
We define the number e to be the unique number satisfying

lim
h→0

eh − 1

h
= 1.

It is an irrational number whose value is approximately 2.718281828459045.
Define the function f(x) = ex. Find f ′(x) using the definition of the deriva-
tive.
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Exercise 5.1.19
The natural logarithmic function is the function f(x) = ln x defined
as follows: y = lnx if and only if x = ey. Find the derivative of f. Hint:
Differentiate x = ey with respect to x.

Exercise 5.1.20
Consider the function f(x) = xn where n is a real number.
(a) Suppose that x > 0 and x in the domain of f. Using the fact that
xn = en lnx, show that f ′(x) = nxn−1.
(b) Suppose that x < 0 and x in the domain of f. Show that f ′(x) = nxn−1.
Hint: xn = (−1)n(−x)n.
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5.2 Extreme values of a Function and Related

Theorems

Points of interest on the graph of a function are those points that are the
highest on the curve, or the lowest, in a specific interval. Such points are
called local extrema.

Definition 5.2.1
Let f : D → R. We say that f has a local maximum or a relative
maximum at a ∈ D if there is an ε > 0 such that f(x) ≤ f(a) for all
x ∈ (a− ε, a+ ε) ∩D.
We say that f has a local minimum or a relative minimum at a ∈ D if
there is an ε > 0 such that f(a) ≤ f(x) for all x ∈ (a− ε, a+ ε) ∩D.

Exercise 5.2.1
(a) Find the local extrema (if they exist) of the function f(x) = |x|.
(b) Find the local extrema (if they exist) of the function f(x) = x3.
(c) Find the local extrema (if they exist) of the function f(x) = x on the
interval [0, 1].

The following exercise shows that if a differentiable function has a local ex-
trema (that is not a boundary point) then the derivative at that point must
be zero.

Exercise 5.2.2
Let f : [a, b] → R. Suppose that c ∈ (a, b) is a local maximum (or local
minimum) of f such that f ′(c) exists. Let ε > 0 such that f(x) ≤ f(c) for
all x ∈ (c− ε, c+ ε) ⊆ [a, b].
(a) Let h > 0 be small enough so that c + h ∈ (c− ε, c + ε). Using Exercise
3.2.8, show that f ′(c) ≤ 0.
(b) Let h < 0 be large enough so that c + h ∈ (c − ε, c + ε). Using Exercise
3.2.8, show that 0 ≤ f ′(c) and therefore f ′(c) = 0.

Exercise 5.2.3
The condition a < c < b is critical in the previous exercise. Give an example
of a function f : [a, b] → R such that either a or b is a local extremum but
with non-zero derivative there.
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Definition 5.2.2
A point (c, f(c)) such that either f ′(c) does not exist or f ′(c) = 0 is called
a critical point. Exercise 5.2.2 tells us that potential local extrema are
critical points.

By Exercise 4.5.8, if f : [a, b] → R is continuous then there exists x1, x2 ∈
[a, b] such that

f(x1) ≤ f(x) ≤ f(x2)

for all x ∈ [a, b]. That is, x1 is a local minimum and x2 is a local maximum.
The following exercise tells us where to look for x1 and x2.

Exercise 5.2.4
Suppose f : [a, b] → R is continuous. Then there exists x1, x2 ∈ [a, b] such
that

f(x1) ≤ f(x) ≤ f(x2)

for all x ∈ [a, b]. Show that x1 and x2 are either the endpoints of [a, b] or
critical points of f in a < x < b.

Exercise 5.2.5 (Rolle’s Theorem)
Suppose f : [a, b] → R is continuous for a ≤ x ≤ b and differentiable for
a < x < b. By Exercise 4.5.8 there exist a ≤ x1 ≤ b and a ≤ x2 ≤ b such
that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b]. Suppose that f(a) = f(b).
(a) Show that if f(x) = C for all a ≤ x ≤ b then there is at least a number
a < c < b such that f ′(c) = 0.
(b) Suppose that f is a non-constant function. Let d ∈ [a, b] such that
f(d) 6= f(a). Show that if f(d) < f(a) then a < x1 < b. What can you say
about the value of f ′(x1)?
(c) Show that if f(a) < f(d) then a < x2 < b. What can you say about the
value of f ′(x2)?

Geometrically, Rolle’s theorem claims that if f : [a, b]→ R is continuous for
a ≤ x ≤ b and differentiable for a < x < b and f(a) = f(b), somewhere
between a and b the graph of f has a horizontal tangent line. See Figure
5.2.1.
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Figure 5.2.1

Exercise 5.2.6
Find the number c of Rolle’s theorem for the function f : [0, 1]→ R defined
by f(x) =

√
x− x.
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Practice Problems

Exercise 5.2.7
Assume a0, a1, · · · , an are real numbers such that

an
n+ 1

+
an−1
n

+ · · ·+ a1
2

+ a0 = 0.

Show that the polynomial function

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

has at least one root in (0, 1).

Exercise 5.2.8
(a) Show that the function f(x) = x3 − 4x2 − 3x+ 1 has a root in [0, 2].
(b) Use Rolle’s theorem to show that there is exactly one root in [0, 2].

Exercise 5.2.9
Let f, g : R→ R be differentiable, and let a, b ∈ R be such that a < b. Show
that there is a c ∈ (a, b) such that

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

Hint: Apply Rolle’s theorem to the function h(x) = f(x)[g(b) − g(a)] −
g(x)[f(b)− f(a)].

Exercise 5.2.10
Suppose f : [a, b] → R is continuous for a ≤ x ≤ b and differentiable for
a < x < b. Show that there is a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

Hint: Apply Rolle’s theorem to the function g : [a, b]→ R defined by

g(x) = f(x)− f(a)−
(
f(b)− f(a)

b− a

)
(x− a).
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5.3 The Mean Value Theorem and its Appli-

cations

The Mean Value Theorem is behind many of the important results in cal-
culus that we will discuss in this section. The Mean Value Theorem is a
generalization of Rolle’s Theorem.

Exercise 5.3.1 (Mean Value Theorem)
Suppose f : [a, b] → R is continuous for a ≤ x ≤ b and differentiable for
a < x < b. Show that there is a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

Hint: Use Exercise 5.2.5 with the function g : [a, b]→ R defined by

g(x) = f(x)− f(a)−
(
f(b)− f(a)

b− a

)
(x− a).

Geometrically, the mean value theorem claims that if f : [a, b] → R is con-
tinuous for a ≤ x ≤ b and differentiable for a < x < b, somewhere between
a and b the graph of f has a tangent line parallel to the line connecting
(a, f(a)) and (b, f(b)). See Figure 5.3.1.

Figure 5.3.1
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Exercise 5.3.2 (Cauchy Mean Value Theorem)
Suppose f, g : [a, b] → R are continuous for a ≤ x ≤ b and differentiable for
a < x < b. Show that there is a < c < b such that

[g(b)− g(a)]f ′(c) = [f(b)− f(a)]g′(c).

Hint: Use Exercise 5.2.5 with the function h : [a, b]→ R defined by

h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x).

Exercise 5.3.3
Let f : [a, b] → R be continuous for a ≤ x ≤ b and differentiable for a <
x < b. We say that f is one-to-one if and only if for any a ≤ x1 ≤ b and
a ≤ x2 ≤ b such that f(x1) = f(x2) we must have x1 = x2. Suppose that
f ′(x) 6= 0 for all a < x < b.
(a) Let a ≤ x1 ≤ b and a ≤ x2 ≤ b such that f(x1) = f(x2). Show that
if x1 < x2 then there is a < x1 < c < x2 < b such that f ′(c) = 0 which
contradicts the assumption that f ′(x) 6= 0 for all a < x < b. Hint: Use the
Mean Value Theorem on the interval [x1, x2].
(b) Answer the same question for x2 < x1.
Conclusion: We must have x1 = x2. This shows that f is 1-1.

Exercise 5.3.4
Let f : [a, b]→ R be continuous for a ≤ x ≤ b and differentiable for a < x <
b. We say that f is increasing in [a, b] if and only if for every x1 and x2 in
[a, b], if x1 ≤ x2 then f(x1) ≤ f(x2). Show that if f ′(x) ≥ 0 for all a < x < b
then f(x) is increasing in [a, b]. Hint: Use the MVT restricted to the interval
[x1, x2].

Definition 5.3.1
We say that f : [a, b] → R is differentiable in [a, b] if and only if f is differ-
entiable in a < x < b and the following limits exist

f ′(a) = limh→0+
f(a+h)−f(a)

h
and f ′(b) = limh→0−

f(b+h)−f(b)
h

Suppose that f : [a, b] → R is differentiable such that f ′(x) 6= 0 for all
a < x < b. We know from Exercise 5.3.3 that f is one-to-one on [a, b]. We
want to show that f is monotone as well on [a, b].
To say that f is not monotone on [a, b] means that one of the following cases
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applies:
(i) There are x, y, z ∈ [a, b] such that x < y < z and f(x) < f(y), f(z) < f(y).
That is the graph of f is increasing on [x, y] and decreasing on [y, z].
(ii) There are x, y, z ∈ [a, b] such that x < y < z and f(x) > f(y), f(y) <
f(z). That is the graph of f is decreasing on [x, y] and increasing on [y, z].

Exercise 5.3.5
Consider Case (i). We have either f(x) < f(z) < f(y) or f(z) < f(x) < f(y).
(a) Suppose that f(z) < f(x) < f(y). Use the Intermediate Value theorem
restricted to [y, z] to show that such a double inequality can not occur.
(b) Suppose that f(x) < f(z) < f(y). Use the Intermediate Value theorem
restricted to [x, y] to show that such a double inequality can not occur.
We conclude that Case (i) does not hold.

Exercise 5.3.6
Consider Case (ii). We have either f(y) < f(x) < f(z) or f(y) < f(z) <
f(x).
(a) Suppose that f(y) < f(x) < f(z). Use the Intermediate Value theorem
restricted to [y, z] to show that such a double inequality can not occur.
(b) Suppose that f(y) < f(z) < f(x). Use the Intermediate Value theorem
restricted to [x, y] to show that such a double inequality can not occur.
We conclude that Case (ii) does not hold.

We conclude from the previous two exercises that f must be monotone in
[a, b].

Exercise 5.3.7
Suppose that f : [a, b] → R is differentiable such that f ′(x) 6= 0 for all
a < x < b. We know from the above discussion that f is monotone.
(a) Show that if f is increasing in [a, b] then f ′(x) ≥ 0 for all a ≤ x ≤ b. Hint:
Let x ∈ [a, b) and choose h > 0 small enough so that x+ h ∈ [a, b). If x = b,
choose h < 0 so that b+ h < b. Now use the definition of the derivative.
(b) Show that if f is decreasing in [a, b] then f ′(x) ≤ 0 for all a ≤ x ≤ b.
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Practice Problems

Exercise 5.3.8
Let f : [a, b] → R be continuous for a ≤ x ≤ b and differentiable for a <
x < b. We say that f is a constant function on [a, b] if and only if there is a
constant C such that f(x) = C for all a ≤ x ≤ b. Suppose that f ′(x) = 0 for
all a < x < b.
Let x1 and x2 be any two numbers in the interval [a, b] with x1 < x2. Suppose
that f(x1) 6= f(x2). Show that by applying the Mean Value Theorem on the
interval [x1, x2] we obtain the contradiction f(x1) = f(x2). Thus, we must
have f(x1) = f(x2) = C for any x1 and x2 in [a, b]. That is, f(x) = C for all
a ≤ x ≤ b.

Exercise 5.3.9
Let f : [a, b]→ R be continuous for a ≤ x ≤ b and differentiable for a < x <
b. Suppose that f ′(x) = g′(x) for all a < x < b. Show that f(x) = g(x) + C
for all a ≤ x ≤ b, where C is a constant. Hint: Exercise 5.3.8

Exercise 5.3.10
Let f : [a, b]→ R be continuous for a ≤ x ≤ b and differentiable for a < x <
b. We say that f is decreasing in [a, b] if and only if for every x1 and x2 in
[a, b], if x1 ≤ x2 then f(x1) ≥ f(x2). Show that if f ′(x) ≤ 0 for all a < x < b
then f(x) is decreasing in [a, b]. Hint: Use the MVT restricted to the interval
[x1, x2].

Exercise 5.3.11
Consider the function f(x) = (1 + x)p where 0 < p < 1. Let h > 0.
(a) Apply the MVT to the interval [0, h] to show that f(h) = p(1+ t)p−1h+1
for some 0 < t < h.
(b) Use (a) to show that (1 + h)p < 1 + ph.
In annuity theory, (1 + h)p may represent compound interest and 1 + ph
represent simple interest. A result in annuity theory says that for time p
less than a year compound interest formula can be estimated by the simple
interest formula.

Exercise 5.3.12
Suppose that f : [a, b]→ R is differentiable in [a, b]. Let λ be a real number
such that either f ′(a) < λ < f ′(b) or f ′(b) < λ < f ′(a).
(a) Define g(x) = f(x) − λx. Show that if f ′(a) < λ < f ′(b) then g′(x)
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changes sign between a and b.
(b) Establish the same result for f ′(b) < λ < f ′(a).
(c) Show that the condition g′(c) 6= 0 for all c ∈ [a, b] leads to a contradiction.
Hint: Exercise 5.3.7. Conclude that there must be a a < c < b such that
f ′(c) = λ.

Exercise 5.3.13
Let f, g : [a, b]→ R be two differentiable functions on [a, b] such that f(a) =
g(a). Show that if f ′(x) = g′(x) for all x ∈ (a, b) then f(x) = g(x) for all
x ∈ [a, b]. Hint: Exercise 5.3.8.

Exercise 5.3.14
Let f : R → R be differentiable such that |f ′(x)| < 1 for all x ∈ R. Show
that f can have at most one fixed point. That is, There is at most one c ∈ R
such that f(c) = c. Hint: Mean Value Theorem.

Exercise 5.3.15
Let f : R→ R be differentiable everywhere and that f ′(a) < 0 and f ′(b) > 0
for some a < b. Prove that there is a c ∈ (a, b) such that f ′(c) = 0.

Exercise 5.3.16
Let f : R → R be differentiable and |f ′(x)| ≤ K < 1 for all x ∈ R. Let
a0 ∈ R. Define the numbers an = f(an−1).
(a) Show that |an+1 − an| ≤ Kn|a1 − a0| for all n ∈ N.
(b) Show that for all m,n ∈ N such that m > n we have

|am − an| ≤
Kn

1−K
.

Exercise 5.3.17
Show that if 0 < a < b then 1− a

b
< ln

(
b
a

)
< b

a
− 1. Hint: Apply the MVT

for the function f(x) = ln x.



5.4. L’HÔPITAL’S RULE AND THE INVERSE FUNCTION THEOREM83

5.4 L’Hôpital’s Rule and the Inverse Func-

tion Theorem

The following result known as L’Hôpital’s Rule uses derivatives to evaluate
limits of the ratio of two functions with limit of the form 0

0
.

Exercise 5.4.1
Let f, g : [a, b] → R be continuous on [a, b] and differentiable in a < x < b
with g′(x) 6= 0 for all a < x < b. Suppose that f(c) = g(c) = 0 for some
a ≤ c ≤ b. Also, suppose that

lim
x→c

f ′(x)

g′(x)
= A.

(a) Let {cn}∞n=1 ⊂ [a, b] be an arbitrary sequence with the properties cn 6= c
for all n ≥ 1 and limn→∞ cn = c. Show that there is a dn between cn and c
such that

[f(cn)− f(c)]g′(dn) = [g(cn)− g(c)]f ′(dn).

(b) Show that dn 6= c for all n ≥ 1 and limn→∞ dn = c.
(c) Show that g(dn) 6= g(c) for all n ≥ 1. Hint: Exercise 5.3.3.
(d) Show that

f ′(dn)

g′(dn)
=
f(cn)

g(cn)
.

(e) Show that limn→∞
f ′(dn)
g′(dn)

= A. Hint: See Exercise 3.3.1.

(f) Show that limn→∞
f(cn)
g(cn)

= A.

(g) Show that limx→c
f(x)
g(x)

= A.

Exercise 5.4.2
Find

lim
x→2

√
x−
√

2 +
√
x− 2√

x2 − 4
.

Definition 5.4.1
Let f : D → R. We say that f is invertible if and only if there is a function
g : D′ → R such that the following two statements are true

f(g(x)) = x for all x in D′
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and

g(f(x)) = x for all x in D.

We Write g = f−1 and we call f−1 the inverse function of f.

Exercise 5.4.3
Let f : [a, b] → R be a one-to-one function. That is, if f(x) = f(y) then
x = y, where x, y ∈ [a, b].
(a) Define g : f([a, b])→ [a, b] by g(y) = x if and only if f(x) = y. Show that
g is indeed a function. That is, if y1, y2 ∈ f([a, b]) are such that y1 = y2 then
g(y1) = g(y2).
(b) Show that f(g(y)) = y for all y ∈ f([a, b]) and g(f(x)) = x for all
x ∈ [a, b]. Thus, conclude that f is invertible.

Exercise 5.4.4
Let f : [a, b] → R be continuous in [a, b] and differentiable in [a, b] with
f ′(x) 6= 0 for all a < x < b. Let the range of f be denoted by [m,M ].
(a) Show that f is one-to-one, monotone, and invertible with inverse f−1 :
[m,M ]→ [a, b].
(b) Assume that f is strictly increasing. That is, if x1 < x2 then f(x1) <
f(x2). In this case, [m,M ] = [f(a), f(b)]. Let f(a) < y0 < f(b). Show that
there is a a < x0 < b such that f(x0) = y0.
(c) Let ε > 0 be given. Let ε1 = min{ε, x0−a, b−x0}. Show that if x satisfies
|x− x0| < ε1 then a < x < b and |x− x0| < ε.
(d) Let y1 = f(x0− ε1) and y2 = f(x0 + ε1). Show that f [(x0− ε1, x0 + ε1)] =
(y1, y2).
(e) Choose a δ > 0 so that (y0− δ, y0 + δ) ⊂ (y1, y2). Show that if |y−y0| < δ
then |f−1(y)−f−1(y0)| < ε. This shows that f−1 is continuous in (f(a), f(b)).
(f) Show that f−1 is right continuous at f(a) and left continuous at f(b).
We conclude from this problem that f−1 is continuous on the closed interval
[f(a), f(b)].

Remark 5.4.1
A similar result holds if f is strictly decreasing.

Exercise 5.4.5 (Inverse Function Theorem)
Let f : [a, b] → R be continuous in [a, b] and differentiable in [a, b] with
f ′(x) 6= 0 for all a < x < b. Let c ∈ f([a, b]). Then there is a d ∈ [a, b] such
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that f(d) = c.
(a) Let {cn}∞n=1 ⊆ f([a, b]) such that cn 6= c for all n ≥ 1 and limn→∞ cn = c.
Show that there is a sequence {dn}∞n=1 ⊆ [a, b] such that

lim
n→∞

dn = d.

Hint: Exercise 5.4.4(b).
(b) Show that dn 6= d for all n ≥ 1.
(c) Show that

lim
n→∞

f(dn)− f(d)

dn − d
= f ′(d).

Hint: Exercise 3.3.1.
(d) Show that f(dn)−f(d)

dn−d 6= 0 for all n ≥ 1. Hint: Exercise 5.3.3.
(e) Show that

lim
n→∞

f−1(cn)− f−1(c)
cn − c

=
1

f ′(d)
.

Thus, conclude that

(f−1)′(f(d)) =
1

f ′(d)

for all d ∈ [a, b]. That is f−1 is differentiable in f([a, b]). Hint: Exercise 3.3.2.
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Practice Problems

Exercise 5.4.6
Find limx→∞

(
lnx
x
· sin

(
xπ+2
2x

))
.

Exercise 5.4.7
Let f, g : [a, b] → R be continuous on [a, b] and differentiable in a < x < b
with g′(x) 6= 0 for all a < x < b. Suppose that limx→c f(x) = limx→c g(x) =
∞ for some a ≤ c ≤ b. Also, suppose that

lim
x→c

f ′(x)

g′(x)
= A.

Prove that

lim
x→c

f(x)

g(x)
= A.

Exercise 5.4.8
Use L’Hôpital’s rule to evaluate limx→0+ x

x. Note that 00 is an undeterminate
form.

Exercise 5.4.9
Let f and g be invertible differentiable functions such that

f(1) = 2; g(2) = 1; f ′(1) = g′(2) = 3.

Find the derivative (f−1 ◦ g−1)′(1).

Exercise 5.4.10
Let f(x) = x tan2 x for x ∈ (0, π

2
). Calculate (f−1)′(π). Note that f(π

3
) = π.



Chapter 6

Riemann Integrals

6.1 The Theory of Riemann Integral

The Riemann integral, as it is called today, is the one usually discussed in
introductory calculus. Throughout this section, it is assumed that we are
working with a bounded function f on a closed interval [a, b], meaning that
there exist real numbers m and M such that m ≤ f(x) ≤M for all x ∈ [a, b].

Definition 6.1.1
A partition P of [a, b] is a finite, ordered set

P = {a = x0 < x1 < x2 < · · · < xn = b}.

If Q is another partition of [a, b] such that P ⊂ Q then we call Q a refine-
ment of P.
For each subinterval [xk−1, xk] of P, let

mk(f) = inf{f(x) : x ∈ [xk−1, xk]} and Mk(f) = sup{f(x) : x ∈ [xk−1, xk]}

The Riemann lower sum of f with respect to P is given by

L(f, P ) =
n∑
i=1

mi(f)(xi − xi−1).

Likewise, we define the Riemann upper sum of f with respect to P by

U(f, P ) =
n∑
i=1

Mi(f)(xi − xi−1).

87
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Exercise 6.1.1
(a) Show that m ≤ mi(f) ≤Mi(f) ≤M.
(b) Show that m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).

Exercise 6.1.2
Let Q be a refinement of P. Suppose that P = {a = x0 < x1 < · · · < xn−1 <
xn = b} and Q = {a = x0 < x1 < · · · < xi−1 < z < xi < · · · < xn = b}.
(a) Show that U(f,Q) ≤ U(f, P ).
(b) Show that L(f, P ) ≤ L(f,Q).

Definition 6.1.2
We define

SU = {U(f, P ) : P a partition of [a, b]}

and

SL = {L(f, P ) : P a partition of [a, b]}.

Then SU is bounded from below by m(b− a). By the completeness axiom of
R, inf SU is a finite number. We define the upper Riemann integral to be∫ b

a

f(x)dx = inf SU .

Likewise, SL is bounded from above by M(b−a). By the completeness axiom
of R, supSL is a finite number. We define the lower Riemann integral to
be ∫ b

a

f(x)dx = supSL.

Exercise 6.1.3
Suppose that f is bounded on [a, b]. Show that

∫ b
a
f(x)dx ≤

∫ b
a
f(x)dx. Hint:

Exercise 6.1.2.

Definition 6.1.3
We say that a bounded function f : [a, b] → R is Riemann integrable on
[a, b] if and only if ∫ b

a

f(x)dx =

∫ b

a

f(x)dx.
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We write ∫ b

a

f(x)dx =

∫ b

a

f(x)dx =

∫ b

a

f(x)dx

and we call
∫ b
a
f(x)dx the Riemann integral of f on [a, b].

Exercise 6.1.4
Consider the function f : [a, b]→ R defined by

f(x) =

{
2 if a ≤ x < b
3 if x = b.

(a) Find two numbers m and M such that m ≤ f(x) ≤M for all x ∈ [a, b].
(b) Show that for any partition P of [a, b] we have L(f, P ) = 2(b − a).
Conclude that ∫ b

a

f(x)dx = 2(b− a).

(c) Show that
∫ b
a
f(x)dx ≥ 2(b− a).

(d) Suppose
∫ b
a
f(x)dx > 2(b − a). Let ε =

∫ b
a
f(x)dx − 2(b − a) > 0. Let Q

be the partition

Q = {a = x0 < x1 < x2 < · · · < xn = b}

such that b − xn−1 < ε. Show that U(f,Q) <
∫ b
a
f(x)dx. Why this is impos-

sible?
(e) Is f(x) Riemann integrable? If so, what is the value of the integral∫ b
a
f(x)dx?

The above example shows that a discontinuous function can be Riemann
integrable.
Next, we present an example of a function that is not Riemann integrable.

Exercise 6.1.5
Consider the function f : [0, 1]→ R defined by f(x) = 1 if x is rational and
f(x) = 0 if x is irrational.
(a) Compute the upper Riemann integral and the lower Riemann integral.
Hint: Exercise 1.2.6(c).
(b) Is f Riemann integrable on [0, 1]?
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Exercise 6.1.6
Let f : [a, b] → R be a bounded function. Suppose that f is Riemann
integrable. We want to show that f satisfies the following property, known
as Riemann criterion:

(P)∀ε > 0, there is a partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

(a) Let ε > 0 be given. Show that there is a partition P of [a, b] such that∫ b

a

f(x)dx− ε

2
< L(f, P ).

Hint: Assume the contrary and get a contradiction.
(b) Show that there is a partition Q of [a, b] such that

U(f,Q) <

∫ b

a

f(x)dx+
ε

2
.

(c) Let R = P ∪Q. Use Exercise 6.1.2 to show that∫ b

a

f(x)dx− ε

2
< L(f,R) ≤ U(f,R) <

∫ b

a

f(x)dx+
ε

2
.

(d) Show that∣∣∣L(f,R)−
∫ b
a
f(x)dx

∣∣∣ < ε
2

and
∣∣∣U(f,R)−

∫ b
a
f(x)dx

∣∣∣ < ε
2
.

(e) Use the triangle inequality to show that U(f,R)− L(f,R) < ε.

Exercise 6.1.7
Let f : [a, b] → R be a bounded function. Suppose that f satisfies property
(P) above.
(a) Show that for each positive integer n, there is a partition Pn such that

U(f, Pn)− L(f, Pn) <
1

n
.

(b) Using (a), show that

L(f, Pn) ≤
∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx < L(f, Pn) +
1

n
.
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(c) Show that

0 ≤
∫ b

a

f(x)dx−
∫ b

a

f(x)dx <
1

n
.

(d) Show that ∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

Hint: Squeeze rule. We conclude that any bounded function that satisfies
property (P) is Riemann integrable.

Exercise 6.1.8
Let f : [0, 1] → R be the function f(x) = x2. For any ε > 0, choose a
partition P = {0 = x0 < x1 < · · · < xn = 1} such that

xi − xi−1 < ε
2

for all 1 ≤ i ≤ n.

Show that U(f, P )− L(f, P ) < ε. Hence, f is Riemann integrable.
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Practice Problems

Exercise 6.1.9
Suppose that f(x) = x for x ∈ [1, 2].
(a) Find U(f, P ) and L(f, P ). Hint: Consider a partition with equal subin-
tervals.
(b) Show that f is Riemann integrable. Hint: Exercise 6.1.7.
(c) Show that U(f, P ) ≥ 3

2
and L(f, P ) ≤ 3

2
.

(d) Find
∫ 2

1
xdx.

Exercise 6.1.10
Let f : [a, b] → R be bounded. Let P and Q be any two partitions of [a, b].
Prove that L(f, P ) ≤ U(f,Q).

Exercise 6.1.11
Let f : [a, b]→ R be such that m ≤ f(x) ≤M for all x ∈ [a, b]. Prove that∫ b

a

f(x)dx−
∫ b

a

f(x)dx ≤ (M −m)(b− a).

Exercise 6.1.12
Let f : [a, b] → R be bounded functions such that f(x) ≤ g(x) for all
x ∈ [a, b]. Prove the following:

(a)
∫ b
a
f(x)dx ≤

∫ b
a
g(x)dx;

(b)
∫ b
a
f(x)dx ≤

∫ b
a
g(x)dx.

Exercise 6.1.13
Let f : [a, b] → R be bounded functions. Let P be any partition of [a, b].
Prove

U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Exercise 6.1.14
Let f : [a, b] → R be Riemann integrable. Prove that there is a sequence of

partitions {Pn}∞n=1 such that limn→∞ U(f, Pn) = limn→∞ L(f, Pn) =
∫ b
a
f(x)dx.

Exercise 6.1.15
Consider the function f : [0, 1]→ R defined by f(x) = ax+b where a > 0 and
b > 0. Assume that this function is Riemann integrable. For each positive
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integer n consider the partition Pn = {0 = x0 < x1 < · · · < xn = 1} with
equal subintervals.
(a) Compute L(f, Pn) and U(f, Pn).

(b) Show that
∫ 1

0
f(x)dx = a

2
+ b.
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6.2 Classes of Riemann Integrable Functions

In this section we discuss some families of Riemann integrable functions,
namely, monotone and continuous functions.

Exercise 6.2.1
Let f : [a, b]→ R be an increasing function on [a, b].
(a) Show that f is bounded on [a, b].

(b) Let ε > 0 be given. Choose a positive integer N such that f(b)−f(a)
N

< ε.
Let P = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b] such that
xi−xi−1 < 1

N
for all 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, express Mi(f) and mi(f)

in terms of f(x).
(c) Show that U(f, P ) − L(f, P ) < ε. Thus, conclude that f is Riemann
integrable.

Exercise 6.2.2
Let f : [a, b]→ R be a continuous function on [a, b].
(a) Show that there exist numbers m and M such that m ≤ f(x) ≤ M for
all a ≤ x ≤ b. That is, f is bounded on [a, b].
(b) Show that f is uniformly continuous on [a, b].
(c) Let ε > 0. Show that there is a positive number δ > 0 such that if
|u− v| < δ then |f(u)− f(v)| < ε

b−a .
(d) Choose a partition P = {a = x0 < x1 < · · · < xn = b} such that
xi − xi−1 < δ for all 1 ≤ i ≤ n. Show that for each interval [xi, xi−1] there
exist si, ti ∈ [xi, xi−1] such that Mi(f) = f(ti) and mi(f) = f(si). Hint:
Exercise 5.2.4.
(e) Show that Mi(f)−mi(f) < ε

b−a for each 1 ≤ i ≤ n.
(f) Using (e), show that U(f, P ) − L(f, P ) < ε. Hence, conclude that f is
Riemann integrable.

We have seen that a continuous function f : [a, b]→ R is Riemann integrable
on [a, b] (Exercise 6.2.2.) We have also seen that a function f : [a, b] → R
continuous on [a, b] except at one single point is still Riemann integrable
(Exercise 6.1.4.) This results extends to a function with a finite number of
discontinuity. That is, a bounded function f : [a, b] → R that is continuous
except at the points c1, c2, · · · , cn ∈ [a, b] is Riemann integrable. In the next
two problems we will establish such a result.
Let f : [a, b]→ R be bounded with |f(x)| ≤M for all x ∈ [a, b].
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Exercise 6.2.3
Suppose f is continuous except at a point c in [a, b]. Let ε > 0 be given and
consider a partition Q = {a = x0 < x1 < · · · < xk−1 < c < xk+1 < · · · <
xn = b} such that µ(Q) < ε

12M
.

(a) Prove that |xk−1 − xk + 1| < ε
6M
.

(b) Show that there exist δ′ > 0 and δ′′ > 0 such that for all x, y ∈ [a, xk−1]
with |x − y| < δ′ we have |f(x) − f(y)| < ε

3(b−a) and for all x, y ∈ [xk+1, b]

with |x− y| < δ′′ we have |f(x)− f(y)| < ε
3(b−a) .

(c) Let P1 be a refinement of Q on [a, xk−1] such that µ(P1) < δ′ and P2 be
a refinement of P on [xk+1, b] such that µ(P2) < δ′′. Let P = P1 ∪ P2. Then
we have

U(f, P )− L(f, P ) =
k−1∑
i=1

(Mi −mi)(xi − xi−1) + (Mk −mk)(c− xk−1)

+(Mk+1 −mk+1(xk+1 − c) +
n∑

i=k+2

(Mi −mi)(xi − xi−1).

Show that
k−1∑
i=1

(Mi −mi)(xi − xi−1) <
ε

3

(Mk −mk)(c− xk−1) + (Mk+1 −mk+1(xk+1 − c) <
ε

3

and
n∑

i=k+2

(Mi −mi)(xi − xi−1) <
ε

3
.

(d) Conclude that U(f, P ) − L(f, P ) < ε and therefore f is Riemann inte-
grable.

Exercise 6.2.4
Suppose f is continuous except at points c1, c2, · · · , cn in [a, b]. We want
to show that f is Riemann integrable on [a, b]. The proof is by induction
on n. For n = 1 the result holds by the previous exercise. Suppose that
the result holds for c1, c2, · · · , cn. Suppose that f is continuous except at
c1 < c2 < · · · < cn < cn+1. Let ε > 0. Choose δ > 0 small enough so that
δ < ε

8M
and (cn+1 − δ, cn+1 + δ) ⊂ [cn, b].

(a) Show that there is a partition P1 of [a, cn+1 − δ] such that U(f, P1) −
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L(f, P1) <
ε
4

and a partition P2 of [cn+1, b] such that U(f, P2)−L(f, P2) <
ε
4
.

(b) Let P = P1 ∪P2. Show that U(f, P )−L(f, P ) < ε. Hence, f is Riemann
integrable on [a, b].
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Practice Problems

Exercise 6.2.5
Let f : [a, b]→ R be a increasing function on [a, b].
(a) Show that f is bounded on [a, b].

(b) Let ε > 0 be given. Choose a positive integer N such that f(a)−f(b)
N

< ε.
Let P = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b] such that
xi−xi−1 < 1

N
for all 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, express Mi(f) and mi(f)

in terms of f(x).
(c) Show that U(f, P ) − L(f, P ) < ε. Thus, conclude that f is Riemann
integrable.

Exercise 6.2.6
Suppose f : [a, b] → R is continuous and f ≥ 0 on [a, b]. Let [c, d] ⊂ [a, b].

Prove that
∫ b
a
f(x)dx ≥

∫ d
c
f(x)dx.

Exercise 6.2.7
(a) Suppose f : [0, 1]→ R is continuous and f ≥ 0 on [0, 1]. Let a ∈ [0, 1] be

such that f(a) > 0. Show that
∫ 1

0
f(x)dx > 0.

(b) Construct a nonnegative function f on [0, 1] such that f(0.5) > 0 but∫ 1

0
f(x)dx = 0.

Exercise 6.2.8
Suppose that f : [a, b]→ R is differentiable on [a, b]. Prove that f is Riemann
integrable on [a, b].

Exercise 6.2.9
Let f : [a, b]→ R be defined by

f(x) =

{
1 if x is rational
−1 if x is irrational.

(a) Prove that f is not Riemann integrable on [a, b]. Hint: Show that the
lower Riemann integral is different from the upper Riemann integral.
(b) Prove that |f | is Riemann integrable.

Exercise 6.2.10
Suppose f is a continuous function on [a, b] and that f(x) ≥ 0 for all x ∈ [a, b].

Show that if
∫ b
a
f(x)dx = 0, then f(x) = 0 for all x ∈ [a, b]. Hint: Assume

the contrary and get a contradiction.
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6.3 Riemann Sums

The Riemann sum approach is another common method for defining Riemann
integrals.

Definition 6.3.1
Let f : [a, b] → R. Let P = {a = x0 < x1 < · · · < xn = b} be a partition of
[a, b]. For each 1 ≤ i ≤ n, let ti ∈ [xi−1, xi]. The sum

S(f, P ) =
n∑
i=1

f(ti)(xi − xi−1)

is called a Riemann sum for f.

Remark 6.3.1
(a) Since mi(f) ≤ f(ti) ≤ Mi(f) for all 1 ≤ i ≤ n, one can easily see that
L(f, P ) ≤ S(f, P ) ≤ U(f, P ).
(b) Note also that in the definition, the function f need not be bounded.
(c) Note that S(f, P ) depends on the choice of the t′is.
(d) If the function f is positive on [a, b], a Riemann Sum geometrically cor-
responds to a summation of areas of rectangles with length xi − xi−1 and
height f(ti).
(e) Riemann sums have the practical disadvantage that we do not know which
point to take inside each subinterval. To remedy that one could agree to al-
ways take the left endpoint (resulting in what is called the left Riemann
sum) or always the right one (resulting in the right Riemann sum). An-
other two are the upper Riemann sum and the lower Riemann sum as
defined before.

Definition 6.3.2
Let f : [a, b] → R. For any partition P = {a = x0 < x1 < · · · < xn = b} we
define the norm of P to be the length of the largest interval in the partition,
that is,

µ(P ) = max
1≤i≤n

(xi − xi−1).

Exercise 6.3.1
Let f : [a, b]→ R be a bounded function. Suppose that limµ(P )→0 S(f, P ) =
A.
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(a) Let ε > 0. Show that there is a δ > 0 such that for any partition P of
[a, b] such that µ(P ) < δ we must have |S(f, P )− A| < ε

4
.

(b) Let Q = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b] such that
µ(Q) < δ, that is, xi − xi−1 < δ for all 1 ≤ i ≤ n. Fix 1 ≤ i ≤ n. Show
that if f(ui) ≥ mi(f) + ε

4(b−a) for all xi−1 ≤ ui ≤ xi then this contradicts the

definition of mi(f).
(c) With Q as above, show that if f(vi) ≤Mi(f)− ε

4(b−a) for all xi−1 ≤ vi ≤ xi
then this contradicts the definition of Mi(f).
(d) Show that for every 1 ≤ i ≤ n, there exists ui, vi ∈ [xi−1, xi] such that
f(ui) < mi(f) + ε

4(b−a) and f(vi) > Mi(f)− ε
4(b−a) .

(e) Show that
∑n

i=1 f(ui)(xi−xi−1) < L(f,Q)+ ε
4

and
∑n

i=1 f(vi)(xi−xi−1) >
U(f,Q)− ε

4
.

(f) Show that

A− ε
4
<
∑n

i=1 f(ui)(xi − xi−1) < A+ ε
4

and
A− ε

4
<
∑n

i=1 f(vi)(xi − xi−1) < A+ ε
4
.

(g) Use (f) to show that

A− ε

2
< L(f,Q) ≤ U(f,Q) < A+

ε

2
.

(h) Show that U(f,Q)− L(f,Q) < ε. That is, f is Riemann integrable.
(i) Show that ∣∣∣∣∫ b

a

f(x)dx− A
∣∣∣∣ < ε.

(k) Use the Squeeze rule to show that
∫ b
a
f(x)dx = A.

Conclusion: Suppose that there is a number A such that limµ(P )→0 S(f, P ) =

A. Then f is Riemann integrable with
∫ b
a
f(x)dx = A.

Let f : [a, b]→ R be a bounded Riemann integrable function with |f(x)| ≤M

for all x ∈ [a, b]. Let
∫ b
a
f(x)dx = A. The goal of the next four problems is to

show that
lim

µ(P )→0
S(f, P ) = A.

Let ε > 0. If U(f, P ) ≥
∫ b
a
f(x)dx + ε

2
for all partitions of [a, b], then∫ b

a
f(x)dx + ε

2
is a lower bound of SU . But

∫ b
a
f(x)dx is the largest lower

bound of SU . Thus, we must have
∫ b
a
f(x)dx+ ε

2
<
∫ b
a
f(x)dx, a contradiction.
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Hence, there is a partition P1 such that U(f, P1) <
∫ b
a
f(x)dx + ε

2
= A + ε

2
.

Similarly, there is partition P2 such that L(f, P2) >
∫ b
a
f(x)dx− ε

2
= A− ε

2
.

Let P = P1 ∪ P2 = {a = x0 < x1 < · · · < xn = b}. From Exercise 6.1.2 we
have U(f, P ) < U(f, P1) < A+ ε

2
and L(f, P ) > L(f, P2) > A− ε

2
.

Let δ = ε
4Mn

and Q = {a = z0 < z1 < · · · < zm = b} be a partition of [a, b]
such that µ(Q) < δ. Consider the partition R = P ∪Q.

Exercise 6.3.2
Prove that A− L(f,R) < ε

2
and U(f,R)− A < ε

2
.

Because R is a refinment of Q, for each i = 1, 2, · · · ,m we let Ri denote the
partition of [zi−1, zi] induced by R. Clearly, we have

L(f,R)− L(f,Q) =
m∑
i=1

[L(f,Ri)−mi(zi − zi−1)]

and

U(f,Q)− U(f,R) =
m∑
i=1

[Mi(zi − zi−1)− U(f,Ri)].

Because P has at most n − 1 partition points that are not partition points
of Q, there are at most n − 1 subintervals [zi−1, zi]of Q such that (zi−1, zi)
contains at least one point from P. For the remaining subintervals the terms
in the above sums are zero.

Exercise 6.3.3
(a) For 1 ≤ i ≤ m such that L(f,Ri)−mi(zi− zi−1) 6= 0 and Mi(zi− zi−1)−
U(f,Ri) prove that

L(f,Ri)−mi(zi − zi−1) < 2Mδ and Mi(zi − zi−1)− U(f,Ri) < 2Mδ.

(b) Use (a) and the sums above to show that

L(f,R)− L(f,Q) < ε
2

and U(f,Q)− U(f,R) < ε
2
.

Exercise 6.3.4
Use Exercise 6.3.2 and 6.3.3 to prove that

U(f,Q) < A+ ε and L(f,Q) > A− ε.
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Exercise 6.3.5
Using the previous problem, show that

A− ε < S(f,Q) < A+ ε.

That is,
|S(f,Q)− A| < ε.

Exercise 6.3.6
Suppose that f : [a, b]→ R is bounded and Riemann integrable. The goal of
this problem is to show that for any sequence {Pn}∞n=1 of partitions of [a, b]

such that limn→∞ µ(Pn) = 0 we have limn→∞ S(f, Pn) =
∫ b
a
f(x)dx.

(a) Let ε > 0. Show that there is a δ > 0 such that if P is a partition of [a, b]
with µ(P ) < δ we have ∣∣∣∣S(f, P )−

∫ b

a

f(x)dx

∣∣∣∣ < ε.

(b) Show that there is a positive integer N such that if n ≥ N then µ(Pn) < δ.
(c) Use (a) and (b) to conclude that for n ≥ N we have∣∣∣∣S(f, Pn)−

∫ b

a

f(x)dx

∣∣∣∣ < ε.

Hence,

lim
n→∞

S(f, Pn) =

∫ b

a

f(x)dx.
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Practice Problems

Exercise 6.3.7
Let f : [a, b] → R be bounded and Riemann integrable. Let ε > 0 be given.
Show that there is a δ > 0 such that for any partition P of [a, b] with µ(P ) < δ
we have

U(f, P )− L(f, P ) < ε.

Exercise 6.3.8
Suppose that f : [a, b]→ R is differentiable in [a, b] and that f ′ : [a, b]→ R is
Riemann integrable. Let Pn = {a = x0 < x1 < · · · < xn = b} be a partition
of [a, b] such that xi − xi−1 = b−a

n
.

(a) For each 1 ≤ i ≤ n, show that there exists xi−1 < ti < xi such that
f(xi)− f(xi−1) = f ′(ti)(xi − xi−1).
(b) Show that S(f ′, Pn) =

∑n
i=1 f

′(ti)(xi − xi−1) = f(b)− f(a).
(c) Show that limn→∞ µ(Pn) = 0.

(d) Show that limn→∞ S(f ′, Pn) =
∫ b
a
f ′(x)dx.

(e) Show that ∫ b

a

f ′(x)dx = f(b)− f(a).

Exercise 6.3.9 (Fundamental Theorem of Calculus)
Suppose that f : [a, b] → R is continuous and let F : [a, b] → R be a
differentiable function such that F ′(x) = f(x) for all a ≤ x ≤ b. Show that∫ b

a

f(x)dx = F (b)− F (a).

The function F (x) is called an antiderivative of f.
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6.4 The Algebra of Riemann Integrals

In this section we discuss the various properties of Riemann integrals.

Exercise 6.4.1
Let f, g : [a, b] → R be Riemann integrable functions and α, β be real num-
bers. Let ε > 0.
(a) Show that there is a δ1 > 0 such that if µ(P ) < δ1 then

∣∣∣S(f, P )−
∫ b
a
f(x)dx

∣∣∣ <
ε

|α|+|β| .

(b) Show that there is a δ2 > 0 such that if µ(P ) < δ2 then
∣∣∣S(g, P )−

∫ b
a
g(x)dx

∣∣∣ <
ε

|α|+|β| .

(c) Show that there is a δ > 0 such that if µ(P ) < δ then∣∣∣∣S(αf + βg, P )−
[
α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx

]∣∣∣∣ < ε.

We conclude that αf + βg is Riemann integrable and∫ b

a

(αf(x) + βg(x))dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx.

Exercise 6.4.2
Let f, g : [a, b] → R be Riemann integrable functions such that f(x) ≤ g(x)
for all x ∈ [a, b].
(a) Show that for any partition P of [a, b] we have L(f, P ) ≤ L(g, P ).

(b) Show that
∫ b
a
f(x)dx ≤

∫ b
a
g(x)dx.

(c) Show that
∫ b
a
f(x)dx ≤

∫ b
a
g(x)dx.

Exercise 6.4.3
Let f : [a, b]→ R be a Riemann integrable function such that m ≤ f(x) ≤M
for all x ∈ [a, b].
(a) Show that m(b − a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(b − a) for any partition
P of [a, b].

(b) Show that
∫ b
a
f(x)dx =

∫ b
a
f(x)dx ≤M(b− a).

(c) Show that m(b− a) ≤
∫ b
a
f(x)dx =

∫ b
a
f(x)dx.

Conclusion: m(b− a) ≤
∫ b
a
f(x)dx ≤M(b− a).
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Exercise 6.4.4
Let f : [a, b]→ R be a Riemann integrable function and a < c < b.
(a) Let ε > 0. Show that there is a partition P of [a, b] such that U(f, P )−
L(f, P ) < ε.
(b) Let Q = P ∪ {c}, Q1 = Q ∩ [a, c], and Q2 = Q ∩ [c, b]. That is, Q is
partition of [a, b], Q1 is a partition of [a, c], and Q2 is a partition of [c, b].
Show that

[U(f,Q1)− L(f,Q1)] + [U(f,Q2)− L(f,Q2)] < ε.

(c) Show that U(f,Q1) − L(f,Q1) < ε. Thus, by Exercise 6.2.1,
∫ c
a
f(x)dx

exists and is finite.
(d) Show that U(f,Q2) − L(f,Q2) < ε. Thus, by Exercise 6.2.1,

∫ b
c
f(x)dx

exists and is finite.

Exercise 6.4.5
Let f : [a, b]→ R be a Riemann integrable function and a < c < b. Let ε > 0.
(a) Show that there is a δ1 > 0 such that if P1 is a partition of [a, c] such
that µ(P1) < δ1 then

∣∣S(f, P1)−
∫ c
a
f(x)dx

∣∣ < ε
2
.

(b) Show that there is a δ2 > 0 such that if P2 is a partition of [c, b] such

that µ(P2) < δ2 then
∣∣∣S(f, P2)−

∫ b
c
f(x)dx

∣∣∣ < ε
2
.

(c) Let P = P1 ∪ P2. Then P is a partition of [a, b]. Show that there is δ > 0
such that µ(P ) < δ and∣∣∣∣S(f, P )−

[∫ c

a

f(x)dx+

∫ b

c

f(x)dx

]∣∣∣∣ < ε.

That is, ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.
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Practice Problems

Exercise 6.4.6
Let f : [a, b] → R be continuous. Use the Intermediate Value Theorem to
prove the existence of a number c ∈ [a, b] such that∫ b

a

f(x)dx = (b− a)f(c).

The number f(c) is called the average value of f on [a, b].

Exercise 6.4.7
Suppose that f and g are continuous function on [a, b] such that

∫ b
a
f(x)dx =∫ b

a
g(x)dx. Prove there is a c ∈ [a, b] such that f(c) = g(c).

Exercise 6.4.8
(a) For any set S, one can see that M(f, S)−m(f, S) = sups,t∈S |f(s)−f(t)|.
Let f be a function defined on a set S. Show that M(|f |, S) −m(|f |, S) ≤
M(f, S)−m(f, S).
(b) Suppose that f : [a, b]→ R is Riemann integrable. Show that |f | is also
Riemann integrable.

Exercise 6.4.9
Let f : [a, b]→ R be defined by

f(x) =

{
1 if x ∈ Q
−1 if x 6∈ Q.

(a) Compute
∫ b
a
f(x)dx and

∫ b
a
f(x)dx.

(b) Is f Riemann integrable?
(c) Show that |f | is Riemann integrable.

Exercise 6.4.10
Let f : [a, b]→ R be Riemann integrable with |f(x)| ≤M for all x ∈ [a, b].
(a) Prove that |f 2(x) − f 2(y)| ≤ 2M |f(x) − f(y)| for all x, y ∈ [a, b] where
f 2(x) = (f(x))2.
(b) Let ε > 0. Show that there is a partition P of [a, b] such that

U(f, P )− L(f, P ) <
ε

2M
.

(c) Prove that U(f 2, P )− L(f 2, P ) < ε. That is, f 2 is Riemann integrable.
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Exercise 6.4.11
Let f, g : [a, b]→ R be two Riemann integrable functions.
(a) Show that

f · g =
1

2
[(f + g)2 − f 2 − g2].

(b) Prove that f · g is Riemann integrable.
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6.5 Composition of Riemann Integrable Func-

tions and its Applications

We have seen that the composition of two continuous functions is continuous
and the composition of two differentiable functions is differentiable. This
property does not hold in general for Riemann integrable functions. That is,
the composition of two integrable functions is not necessarily integrable (See
Exercises 6.5.5 - 6.5.7).
So under what conditions the composition of two functions is Riemann inte-
grable?

Exercise 6.5.1
Suppose that f : [a, b]→ [c, d] is a Riemann integrable function on [a, b] and
that g : [c, d]→ R is continuous (and hence integrable by Exercise 6.2.2).
(a) Show that the set {|g(x)| : x ∈ [c, d]} is bounded. Hence, by the Com-
pleteness Axiom of R there exists K > 0 such that K = sup{|g(x)| : x ∈
[c, d]}.
(b) Let ε > 0. Chosse ε′ so that ε′ < ε

b−a+2K
. Show that there is a δ < ε′ such

that if |s− t| < δ, where s, t ∈ [c, d], then |g(s)− g(t)| < ε′.
(c) Show that there is a partition P = {a = x0 < x1 < · · · < xn = b} of [a, b]
such that U(f, P )− L(f, P ) < δ2.
(d) Let A = {1 ≤ i ≤ n : Mi(f) − mi(f) < δ}. Show that if i ∈ A then
Mi(g ◦ f)−mi(g ◦ f)| < ε′.
(e) Let B = {1 ≤ i ≤ n : Mi(f)−mi(f) ≥ δ}. Show that δ

∑
i∈B(xi−xi−1) <

δ2 and hence
∑

i∈B(xi − xi−1) < δ.
(f) Show that for all 1 ≤ i ≤ n we have Mi(g ◦ f) −mi(g ◦ f) < 2K. Hint:
Use Exercise 4.5.8 and the triangle inequality.
(g) Use (d) (e) and (f) to show that U(g ◦ f, P )−L(g ◦ f, P ) < ε. Hence, by
Exercise 6.1.7, g ◦ f : [a, b]→ R is Riemann integrable.

We next discuss few applications of composition.

Exercise 6.5.2
Let f, g : [a, b]→ R be Riemann integrable and bounded such that |f(x)| ≤
M1 and |g(x)| ≤M2 for all x ∈ [a, b].
(a) Find a positive constant M such that |f(x)| ≤M and |g(x)| ≤M. Thus,
f([a, b]) ⊆ [−M,M ] and g([a, b]) ⊆ [−M,M ]
(b) Consider the continuous function h : [−2M, 2M ]→ R given by h(x) = x2.
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Show that (f + g)2 and (f − g)2 are Riemann integrable on [a, b]. Hint: Note
that h ◦ (f + g) = (f + g)2 and h ◦ (f − g) = (f − g)2.
(c) Show that f · g is Riemann integrable on [a, b].

Exercise 6.5.3
Let f : [a, b]→ R be Riemann integrable and bounded such that |f(x)| ≤M
for all x ∈ [a, b].
(a) Consider the continuous function g : [−M,M ]→ R defined by g(x) = |x|.
Show that |f | is Riemann integrable on [a, b].
(b) Using the fact that −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ [a, b], show that

−
∫ b

a

|f(x)|dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

|f(x)|dx.

Hence, show that ∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

Exercise 6.5.4 (Integration by Parts)
Let f, g : [a, b] → R be continuous and f ′, g′ : [a, b] → R be Riemann
integrable.
(a) Show that f and g are Riemann integrable on [a, b].
(b) Show that f ′ · g and f · g′ are Riemann integrable on [a, b].

(c) Show that
∫ b
a
f ′gdx +

∫ b
a
fg′dx = (fg)(b) − (fg)(a). Hint: Use product

rule and Exercise 6.3.8.
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Practice Problems

Exercise 6.5.5
Consider the function f : [0, 1]→ R defined by

f(x) =

{
1 if 0 < x ≤ 1
0 if x = 0.

Show that f is Riemann integrable on [0, 1]. What is the value of
∫ 1

0
f(x)dx?

Exercise 6.5.6
Consider the function g : [0, 1]→ R defined by

g(x) =


1 if x = 0 or x = 1
1
q

if x = p
q

is rational with p and q > 0 in lowest terms

0 if x is irrational.

(a) Let ε > 0 and ε′ = min{0.5, ε}. Thus, 0 < ε′ ≤ 0.5 and 0 < ε′ ≤ ε. Show
that there is a finite number of rationals in [0, 1] such that g(x) ≥ ε′

2
. Denote

the rationals by {r0, r1, · · · , rn} where r0 = 0 and rn = 1.
(b) Define the partition Q = {0 = x0 < x1 < x2 < · · · < x2n < x2n+1 = 1}
where x0 = 0;x1 < r1 with x1 <

ε′

2(n+1)
;x1 < x2 < r1 < x3 with x3 − x2 <

ε′

2(n+1)
; · · · ;x2n−2 < rn−1 < x2n−1 with x2n−1 − x2n−2 < ε′

2(n+1)
;x2n−1 < x2n <

1 with 1 − x2n < ε′

2(n+1)
and x2n+1 = 1. Show that U(g,Q) < ε′. Hint: Note

that the sum involves intervals containing r′is and those that do not.
(c) Show that L(g,Q) = 0. Hint: Exercise 1.2.6.
(d) Using (b) and (c) show that U(g,Q)− L(g,Q) < ε. Thus, g is Riemann
integrable.
(e) What is the value of the integral

∫ 1

0
g(x)dx?

Exercise 6.5.7
Consider the functions f and g introduced in the previous two exercises. Let
h(x) = (f ◦ g)(x).
(a) Write explicitly the formula of h(x) as a piecewise defined function.
(b) Show that h is not Riemann integrable on [0, 1].

Exercise 6.5.8
Let f, g : [a, b]→ R be Riemann integrable.

(a) Show that max{f(x), g(x)} = |f(x)−g(x)|+f(x)+g(x)
2

.
(b) Show that the function max{f(x), g(x)} is Riemann integrable.
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Exercise 6.5.9
Let f, g : [a, b]→ R be Riemann integrable.

(a) Show that min{f(x), g(x)} = f(x)+g(x)−|f(x)−g(x)|
2

.
(b) Show that the function min{f(x), g(x)} is Riemann integrable.
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6.6 The Derivative of an Integral

In this section we introduce functions that are represented by integrals.

Definition 6.6.1
Let f : [a, b] → R be bounded and Riemann integrable on [a, b]. We define
the function F : [a, b]→ R by

F (x) =

∫ x

a

f(t)dt.

We also define ∫ c
c
f(x)dx = 0 and

∫ b
a
f(x)dx = −

∫ a
b
f(x)dx.

Exercise 6.6.1
Let f and F as defined in Definition 6.6.1. Let M be such that |f(x)| ≤ M
for all x ∈ [a, b]. Fix c in [a, b].
(a) Show that for any x ∈ [a, b] we have

−M(x− c) ≤
∫ x

c

f(t)dt ≤M(x− c).

Hence, we can write ∣∣∣∣∫ x

c

f(t)dt

∣∣∣∣ ≤M |x− c|.

Hint: Exercise 6.4.2.
(b) Let ε > 0 and δ = ε

M
. Show that for any x ∈ [a, b] such that |x− c| < δ

we must have |F (x) − F (c)| < ε. Hence, F is continuous at c. Since c was
arbitrary in [a, b], we conclude that F is continuous on [a, b].

Exercise 6.6.2
Let f and F as above. Suppose furthermore that f is continuous at c ∈ [a, b].
(a) Show that

F (c+ h)− F (c)

h
− f(c) =

1

h

∫ c+h

c

[f(t)− f(c)]dt.

(b) Show that F ′(c) exists and is equal to f(c).
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Exercise 6.6.3
Suppose that f : [a, b] → R is differentiable on [a, b] and f ′ continuous on
[a, b].
(a) Show that f ′ is Riemann integrable on [a, b].
(b) Define F : [a, b] → R by F (x) =

∫ x
a
f ′(t)dt. Show that F ′(x) = f ′(x) for

all x ∈ [a, b].
(c) Show that F (x) = f(x)− f(a) for all x ∈ [a, b].
(d) Use (c) to show that ∫ b

a

f ′(x)dx = f(b)− f(a).

Exercise 6.6.4
Suppose that f : [a, b] → R is continuous on [a, b] and g : [c, d] → [a, b] is
differentiable on [a, b]. Define F : [c, d]→ R by

F (x) =

∫ g(x)

a

f(t)dt.

(a) Show that f is Riemann integrable on [a, b].
(b) Define G : [a, b]→ R by G(x) =

∫ x
a
f(t)dt. Show that G is differentiable

and G′(x) = f(x) for all x ∈ [a, b].
(c) Write F in terms of G and g. Show that F is differentiable on [c, d] with

F ′(x) = f(g(x)) · g′(x).

Exercise 6.6.5 (Mean Value Theorem for Integrals)
Let f : [a, b]→ R be continuous.
(a) Show that f is Riemann integrable on [a, b].
(b) Define F : [a, b]→ R by

F (x) =

∫ x

a

f(t)dt.

Show that F is differentiable with F ′(x) = f(x).
(c) Show that there is a < c < b such that F (b)− F (a) = F ′(c)(b− a).
(d) Use (c) to show that ∫ b

a

f(x)dx = f(c)(b− a).
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Exercise 6.6.6 (Change of Variables Formula)
Let φ : [a, b] → [c, d] be differentiable with continuous derivative and such
that φ(a) = c, φ(b) = d. Let f : [c, d]→ R be continuous.
(a) Show that the functions f and (f ◦ φ) · φ′ are Riemann integrable.
(b) Define F (x) =

∫ x
c
f(t)dt. Show that F is differentiable with F ′(x) = f(x)

for all x ∈ [c, d].
(c) Define G(x) =

∫ x
a
f(φ(t))φ′(t)dt. Show that G is differentiable with

G′(x) = f(φ(x))φ′(x) for all x ∈ [a, b].
(d) Show that F ◦ φ is differentiable on [a, b] with (F ◦ φ)′(x) = G′(x) for all
x ∈ [a, b]. Hint:Exercise 5.3.1.
(e) Use (d) and Exercise 5.3.9 to show that (F ◦φ)(x) = G(x) for all x ∈ [a, b].
(f) Use (e) to show that∫ b

a

f(φ(x))φ′(x)dx =

∫ d

c

f(x)dx.
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Practice Problems

Exercise 6.6.7
Find the derivative of

F (x) =

∫ √x
1

cos (t2)dt.

Exercise 6.6.8 (Mean Value Theorem for Monotone Functions)
Let f : [a, b]→ R be increasing on [a, b].
(a) Show that f is Riemann integrable on [a, b].
(b) Define g : [a, b]→ R by g(x) = f(a)(x− a) + f(b)(b− x). Show that g is
continuous on [a, b].

(c) Show that g(b) ≤
∫ b
a
f(x)dx ≤ g(a).

(d) Show that there is c ∈ [a, b] such that∫ b

a

f(x)dx = f(a)(c− a) + f(b)(c− b).

Exercise 6.6.9
Use change of variables to evaluate

∫ 3

1
(3x+ 1)100dx.

Exercise 6.6.10
Find the smallest positive critical point of

F (x) =

∫ x

0

cos (t
3
2 )dt.

Exercise 6.6.11
Suppose f : R→ R is continuous at a ∈ R. Find

lim
x→a

1

x− a

∫ x

a

f(t)dt.

Exercise 6.6.12
Let f : R → R be continuous and A,B : R → R be differentiable functions.
Define g : R→ R by

g(x) =

∫ B(x)

A(x)

f(t)dt.

Prove that g is differentiable and find a formula for g′(x).
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Exercise 6.6.13
Suppose f : R→ R is continuous at 2 and f(2) = 4. Find

lim
x→2

1

x− 2

∫ x

2

xf(t)dt.

Exercise 6.6.14
Use a definite integral to define a function F (x) having derivative cos 2x3√

1+x4
for

all x and satisfying F ( 3
√

2) = 0.
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Chapter 7

Series

7.1 Series and Convergence

In this section we introduce the general definition of a series and study its
convergence.

Definition 7.1.1
Let {an}∞n=1 be a given sequence. The sum of the term of the sequence is
called a series, denoted by

Σ∞n=1an = a1 + a2 + · · ·+ an + · · ·

To determine whether this series converges or not we consider the sequence
of partial sums defined as follows:

S1 = a1

S2 = a1 + a2
...

Sn = a1 + a2 + · · ·+ an
...

We say that a series Σ∞n=1an converges to a number L if and only if the
sequence {Sn}∞n=1 converges to L and we write

Σ∞n=1an = lim
n→∞

Sn = L.

A series which is not convergent is said to diverge.

117
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Exercise 7.1.1
Show that the series

∑∞
n=1

1
n(n+1)

converges to 1. Hint: Show that for each

n ≥ 1 we have Sn = 1− 1
n+1

.

Exercise 7.1.2
Is the series Σ∞n=1(−1)n convergent or divergent?

The following result provides a procedure for testing the divergence of a
series. This is known as the the nth term test for convergence.

Exercise 7.1.3
Suppose that

∑∞
i=1 an = L. Show that limn→∞ an = 0. Hint: Note that

Sn+1 − Sn = an.

The test states that if we know the series is convergent then limn→∞ an = 0.
The converse is not true in general. That is, the condition limn→∞ an = 0
does not necessarily imply that the series

∑∞
n=1 an is convergent.

Exercise 7.1.4
Consider the series

∑n
i=1 log

(
n+1
n

)
.

(a) Show that limn→∞ an = 0.
(b) Show that limn→∞ Sn =∞. Hence, the series is divergent.

Exercise 7.1.5
Consider the sequence {rn}∞n=1.
(a) Show that if r = −1 the sequence is divergent.
(b) Show that if |r| > 1, i.e. r < −1 or r > 1, the sequence is divergent.
(c) Show that if |r| < 1, the sequence is convergent.

Exercise 7.1.6
The series

∑∞
n=1 ar

n−1 is called a geometric series with ratio r.
(a) Show that

Sn = a1−rn+1

1−r for r 6= 1.

Hint: Calculate Sn − rSn.
(b) Show that the series converges to a

1−r for |r| < 1 and diverges for |r| ≥ 1.
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Exercise 7.1.7 (Harmonic Series)
Consider the Harmonic series

∑∞
n=1

1
n
.

(a) Let n = 2m where m is a positive integer. Then

Sn =1 +
1

2
+

1

3
+ · · ·+ 1

2m

=1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2m−1 + 1
+ · · ·+ 1

2m

)
.

Show that Sn ≥ 1 + m
2
.

(b) Use (a) to show that limn→∞ Sn = ∞. Thus, the Harmonic series is
divergent.

Exercise 7.1.8
Show that if

∑∞
n=1 an = L1 and

∑∞
n=1 bn = L2 then

∑∞
n=1(αan + βbn) =

αL1 + βL2 for all α, β ∈ R.
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Practice Problems

Exercise 7.1.9
Find the value of the infinite sum

∑∞
n=1

(
3
4n

+ 5
n(n+1)

)
.

Exercise 7.1.10
Show that the sequence {

√
n2 − 1− n}∞n=1 is convergent and find its limit.

Exercise 7.1.11
Let

∑∞
n=1 an be a conditionally convergent series1. Define bn = 1

2
(an +

|an|) and cn = 1
2
(an − |an|). Prove that the two series

∑∞
n=1 bn and

∑∞
n=1 cn

are divergent.

Exercise 7.1.12
Let Sn be the n-th partial sum of the series

∑∞
n=1

n−2
n(n+1)(n+2)

.

(a) Show that Sn = 3
n+1
− 2

n+1
− 2

n+2
. Hint: Partial fractions.

(b) Find the value of the series
∑∞

n=1
n−2

n(n+1)(n+2)
.

Exercise 7.1.13
Let {an}∞n=1 be a decreasing sequence such that

∑∞
n=1 an is convergent.

(a) Show that an ≥ 0 for all n ∈ N.
(b) Let ε > 0. Show that there is a positive integer N such that if n > m ≥ N
we have

|am+1 + am+2 + · · ·+ an| < ε.

(c) Show that (n−N)an < ε.
(d) Let n > 2N. Show that n

2
< n−N.

(e) Show that nan
2
< ε.

(f) Show that limn→∞ nan = 0.

Exercise 7.1.14
Let N be a positive integer. Suppose that an = bn for all n ≥ N. Then
the series

∑∞
n=1 an and

∑∞
n=1 bn either both converge or both diverge. Thus,

adding or deleting a finite number of terms in a series does not change whether
or not it converges, although it may change the value of its sum if it does
converge.

1
∑∞

n=1 an is convergent but
∑∞

n=1 |an| is divergent.
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7.2 Series with Non-negative Terms

In this section we consider the question of convergence of series with non-
negative terms.

Exercise 7.2.1 (Comparison test)
Let {an}∞n=1 and {bn}∞n=1 be two series such that 0 ≤ an ≤ bn for all n ≥ 1.
Let {Sn}∞n=1 be the sequence of partial sums of {an}∞n=1 and {Tn}∞n=1 that of
{bn}∞n=1.
(a) Show that the sequences {Sn}∞n=1 and {Tn}∞n=1 are increasing.
(b) Show that Sn ≤ Tn for all n ≥ 1.
(c) Show that if {bn}∞n=1 is convergent then {Sn}∞n=1 and {Tn}∞n=1 are bounded.
(d) Show that if {bn}∞n=1 is convergent then {an}∞n=1 is also convergent.
(e) Show that if {an}∞n=1 is divergent then {bn}∞n=1 is also divergent.

Exercise 7.2.2
(a) Show that for n ≥ 1 we have 1

(n+1)2
≤ 1

n(n+1)
.

(b) Show that the series
∑∞

n=1
1

(n+1)2
is convergent.

Exercise 7.2.3
Show that the series

∑∞
n=1

1√
n2−n+1

is divergent.

The difficulty with the comparison test is that when the nth term of a series∑∞
n=1 an is complicated then it might be difficult to figure out the series∑∞
n=1 bn that need to be compared with. The following comparison test is

often easier to apply, because after deciding on
∑∞

n=1 bn we need only take a
limit of the quotient an

bn
as n→∞.

Exercise 7.2.4 (Limit Comparison Test)
Let

∑∞
n=1 an and

∑∞
n=1 bn be two series with positive terms. Suppose that

lim
n→∞

an
bn

= L > 0.

(a) Let ε = L
2
. Show that there exists a positive integer N such that∣∣∣anbn − L∣∣∣ < L

2
for all n ≥ N.

(b) Use (a) to establish
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L
2
bn < an <

3
2
Lbn for all n ≥ N.

(c) Show that
∑∞

n=1 an is divergent if and only if
∑∞

n=1 bn is divergent.

Exercise 7.2.5
Determine whether the series

∑∞
n=1

3n+1
4n3+n2−2 converges or diverges.
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Practice Problems

Exercise 7.2.6
Let {an}∞n=1 be a bounded sequence of nonnegative terms. Show that if the
series

∑∞
n=1 an is divergent so does the series

∑∞
n=1

an
1+an

. Hint: Comparison
test.

Exercise 7.2.7
Use the limit comparison test to show that the series

∑∞
i=1

1
2n+lnn

is divergent.

Exercise 7.2.8
Suppose that an ≥ 0 for all n ∈ N and that the series

∑∞
n=1 an diverges. Sup-

pose that {an}∞n=1 is unbounded. Show that limn→∞
an

1+an
6= 0. Hint: assume

the contrary and get a contradction. Conclude that the series
∑∞

n=1
an

1+an
is

divergent.

Exercise 7.2.9
Suppose that an ≥ 0 for all n ∈ N and that the series

∑∞
n=1 an converges.

(a) Show that there is a positive integer N such that an < 1 for all n ≥ N.
(b) Show that the series

∑∞
n=1 a

2
n converges.

Exercise 7.2.10
Use the comparison test to show that the series

∑∞
n=1(
√
n2 + 1−n) is diver-

gent.
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7.3 Alternating Series

By an alternating series we mean a series of the form
∑∞

n=1(−1)n−1an

where an > 0. For instance, the series
∑∞

n=1
(−1)n−1

n
. Here an = 1

n
. The

following result provides a way for testing alternating series for convergence.

Exercise 7.3.1 (Alternating Series Test)
Let {an}∞n=1 be a sequence of positive numbers such that
(i) an ≥ an+1, that is the sequence {an}∞n=1 is decreasing.
(ii) limn→∞ an = 0.
Let {Sn}∞n=1 be the sequence of partial sums of the series

∑∞
n=1(−1)n−1an.

That is, Sn =
∑n

k=1(−1)k−1ak.
(a) Show that for each n ≥ 1 we have S2n ≤ S2n+2. That is, the sequence
{S2n}∞n=1 is increasing. Hint: Show that S2n+2 − S2n ≥ 0.
(b) Show that the sequence {S2n+1}∞n=1 is decreasing.
(c) Show that for all n ≥ 1, we have S2n ≤ a1. Hence, the sequence {S2n}∞n=1

is bounded from above. Conclude that the sequence {S2n}∞n=1 is convergent,
say to L1.
(d) Show that for all n ≥ 1, we have S2n+1 ≥ (a1 − a2). Hence, the sequence
{S2n+1}∞n=1 is bounded from below. Conclude that the sequence {S2n+1}∞n=1

is convergent, say to L2.
(e) Show that L1 = L2. Hint: S2n+1 = S2n + a2n+1.
(f) Let L = L1 = L2. Show that limn→∞ Sn = L. We conclude that the
series

∑∞
n=1(−1)n−1an is convergent. Hint: Look at the sequence {cn}∞n=1 in

Exercise 3.3.4.

Exercise 7.3.2
Show that the series

∑∞
n=1

(−1)n−1

n
is convergent.

Exercise 7.3.3
Show that the series

∑∞
n=1

(−1)n−1

n(n+1)
is convergent.

It is imporatant to keep in mind that the tests used so far are basically used
to test for convergence. However, when a series is convergent these tests do
not provide a value for the sum.
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Practice Problems

Exercise 7.3.4
Determine whether the series

∑∞
n=1(−1)n−1 n

n+1
converges or diverges.

Exercise 7.3.5
Determine whether the series

∑∞
n=1(−1)n−1 ln (4n)

n
converges or diverges.

Exercise 7.3.6
(a) Show that nn

n!
≥ 1 for all n ≥ 1.

(b) Show that ther series
∑∞

n=1(−1)n−1 n
n

n!
is divergent.

Exercise 7.3.7
Show that the series

∑∞
n=1(−1)n−1 3

n+1+2n+1

3n−n diverges.
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7.4 Absolute and Conditional Convergence

In this section we consider types of convergence for series with positive and
negative terms.

Definition 7.4.1
Consider a series

∑∞
n=1 an which has both positive and negative terms. We

say that this series is absolutely convergent if and only if the series of
absolute values

∑∞
n=1 |an| is convergent.

Exercise 7.4.1
Show that the series

∑∞
n=1

(−1)n−1

n(n+1)
is absolutely convergent.

The following result provides a test of convergence for series of the above
type.

Exercise 7.4.2
Let

∑∞
n=1 an be an absolutely convergent series. Define the sequence

∑∞
n=1 bn

by bn = |an| and note that an ≤ bn. Show that the sequence
∑∞

n=1 an is
convergent. That is, absolute convergence implies convergence.

The converse of the above result is not true in general. That is, it is possible
to have a series that is convergent but not absolutely convergent.

Exercise 7.4.3
Give an example of a series that is convergent but not absolutely convergent.

Definition 7.4.2
Consider a series

∑∞
n=1 an which has both positive and negative terms. We

say that this series is conditionally convergent if and only if the series of
absolute values

∑∞
n=1 |an| is divergent whereas the series

∑∞
n=1 an is conver-

gent.

Exercise 7.4.4
Give an example of a series that is conditionally convergent.
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Practice Problems

Exercise 7.4.5
Suppose that

∑∞
n=1 an is absolutely convergent.

(a) Show that 0 ≤ |an|+an
2
≤ |an| and 0 ≤ |an|−an

2
≤ |an|

(b) Show that the series
∑∞

n=1

(
|an|+an

2

)
and

∑∞
n=1

(
|an|−an

2

)
are convergent.

Exercise 7.4.6
(a) Show that if

∑∞
n=1 an is absolutely convergent then the series

∑∞
n=1 a

2
n is

also absolutely convergent.
(b) Give an example of a convergent series

∑∞
n=1 an for which

∑∞
n=1 a

2
n is

divergent.

Exercise 7.4.7
Suppose that

∑∞
n=1 an is absolutely convergent and {bn}∞n=1 is bounded.

Show that
∑∞

n=1 anbn is absolutely convergent (and thus convergent).

Exercise 7.4.8
Test the following series for absolute convergence, conditional convergence,
or divergence.
(a)
∑∞

n=1
sinn
n2n

.
(b)

∑∞
n=1(−1)n 5n

n2+2n
.

(c)
∑∞

n=1(−1)n 2n−2−n

2n+2−n .

Exercise 7.4.9
Show that the series

∑∞
n=1(−1)n−1 ln 4n

n
is absolutely convergent.

Exercise 7.4.10
Suppose that the sequence {an}∞n=1 is monotone decreasing with limn→∞ an =
0. Let {bn}∞n=1 be a sequence such that |bn| ≤ an − an+1 for all n ∈ N. Show
that

∑∞
n=1 bn is absolutely convergent.
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7.5 The Integral Test for Convergence

The integral test for convergence is a method used to test infinite series of
positive terms for convergence.

Exercise 7.5.1 (Integral Test)
Let

∑∞
n=1 an be a series of positive terms and suppose that there is a function

f : [1,∞)→ R such that f is decreasing and positive with f(n) = an for all
n ≥ 1.
(a) Show that {Sn}∞n=1 is increasing.
(b) Define F : [1,∞)→ R by F (x) =

∫ x
1
f(t)dt. Show that F is increasing.

(c) For n ≥ 2 and x ∈ [n − 1, n], show that an ≤ f(x) ≤ an−1 and an ≤∫ n
n−1 f(x)dx ≤ an−1.

(d) Show that Sn − a1 ≤ F (n) ≤ Sn−1.
(e) Suppose that

∫∞
1
f(x)dx = L. Since F is increasing we can write F (n) ≤ L

for all n ≥ 1. Show that {Sn}∞n=1 is bounded. Hint: Use (d).
(f) Show that {Sn}∞n=1 is convergent. Hence,

∑∞
n=1 an is convergent.

(g) Conversely, suppose that the series
∑∞

n=1 an converges to a number S.
Show that for any positive integer n ≥ 2 we have

F (n) ≤ S.

(h) Show that for all R ≥ 1 we have F (R) ≤ S. Thus,
∫∞
1
f(x)dx =

limR→∞
∫ R
1
f(x)dx is convergent. Hint: For any R ≥ 1 we have R ≤ [R] + 1

with [R] + 1 ≥ 2.

Exercise 7.5.2 (p-series)
(a) Show that the series

∑∞
n=1

1
np is convergent for p > 1.

(b) Show that the series
∑∞

n=1
1
np is divergent for p ≤ 1.



7.5. THE INTEGRAL TEST FOR CONVERGENCE 129

Practice Problems

Exercise 7.5.3
Show that the series

∑∞
n=1

n
(n2+1)(ln (n2+1))a

is convergent for all a > 1. Hint:
The integral test.

Exercise 7.5.4
Use the integral test to test the convergence of the series

∑∞
n=4

1
n lnn ln (lnn)

.

Exercise 7.5.5
Use the Integral Test to show that

∑∞
n=1 n

2e−n
3

is convergent.

Exercise 7.5.6
Use the integral test to show that the series

∑∞
n=1 e

−n2
is convergent.

Exercise 7.5.7
Use the integral test to show that the series

∑∞
n=1

(lnn)2

n
is divergent.
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7.6 The Ratio Test and the nth Root Test

The integral test is hard to apply when the integrand involves factorials or
complicated expressions. In this section we introduce two tests that can be
used to help determine convergence or divergence of series when the previ-
ously discussed tests are not applicable.

Exercise 7.6.1 (Ratio Test)

Let
∑∞

n=1 an be a series of non-zero terms and suppose that limn→∞

∣∣∣an+1

an

∣∣∣ =

L ≥ 0.
(a) Suppose 0 ≤ L < 1. Let ε = 1−L

2
. Show that there is a positive integer N

such that ∣∣∣an+1

an

∣∣∣ < 1+L
2

for all n ≥ N.

Hint: Use definition of convergence and Exercise 1.1.18.
(b) Let r = 1+L

2
. Show that 0 < r < 1 and |aN+k| < rk|aN | for all k =

1, 2, · · · .
(c) Find the value of the sum

∞∑
n=1

rn|aN |.

(d) Let bn =
∑n

k=1 |ak|. Show that the sequence {bn}∞n=1 is increasing.

(e) Let M = bN + r|aN |
1−r . Show that |bn| ≤M for all n ≥ 1.

(f) Show that the sequence {bn}∞n=1 is convergent. Conclude that the series
{an}∞n=1 is absolutely convergent and hence convergent.

Exercise 7.6.2 (Ratio Test)

Let
∑∞

n=1 an be a series of non-zero terms and suppose that limn→∞

∣∣∣an+1

an

∣∣∣ =

L ≥ 0.
(a) Suppose L > 1. Let ε = L − 1. Show that there is a positive integer N
such that

L−
∣∣∣an+1

an

∣∣∣ < ε for all n ≥ N.

(b) Show that |an+1| > |aN | > 0 for all n ≥ N.
(c) Show that the series

∑∞
n=1 an is divergent. Hint: The nth term test.
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What about the case L = 1? Unfortunately, the test is inconclusive for this
case. That is, for L = 1 it is possible to have a convergent sequence as well
as a divergent sequence. We will illustrate this in the next two examples.

Exercise 7.6.3
Consider the harmoninc series

∑∞
n=1

1
n

which we know it is divergent. Find
limn→∞

an+1

an
.

Exercise 7.6.4
Consider the series

∑∞
n=1

1
n2 .

(a) Show that this series is convergent.
(b) Find limn→∞

an+1

an
.

Exercise 7.6.5
Use the ratio test to determine the convergence of the series

∑∞
n=1(−1)n 100n

n!
.

Exercise 7.6.6
Use the ratio test to determine the convergence of the series

∑∞
n=1

2nn!
nn . Hint:

limn→∞
(
1 + 1

n

)n
= e.

Remark 7.6.1
When testing a series for convergence, normally concentrate on the nth term
test and the ratio test. Use the comparison test, the limit comparison test
or the integral test only when both tests fail.
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Practice Problems

Exercise 7.6.7
Find limn→∞

n!
n2 .

Exercise 7.6.8 (nth root test)

Consider a series
∑∞

n=1 an. Define L = limn→∞ |an|
1
n .

(a) Suppose first that 0 ≥ L < 1. Let ε = 1−L
2
. Show that there is a positive

integer N such that

|an|
1
n < 1+L

2
for all n ≥ N.

(b) Let r = 1+L
2
. Show that 0 < r < 1 and |an| < rn for all n ≥ N.

(c) Use (b) to conclude that
∑∞

n=1 an is absolutely convergent and hence
convergent.

Exercise 7.6.9
Suppose that L > 1 in the previous exercise. Prove that the series

∑∞
n=1 an

is divergent. Hint: nth term test.

Exercise 7.6.10
The nth root test is inconclusive if L = 1.
(a) We know that the series

∑∞
n=1

1
n2 is absolutely convergent. Show that

L = 1.
(b) We know that the series

∑∞
n=1(−1)n−1 1

n
is conditionally convergent. Show

that L = 1.
(c) We know that the series

∑∞
n=1

1
n

is divergent. Show that L = 1.

Exercise 7.6.11
Use the nth root test to show that the series

∑∞
n=1

nn

31+2n is divergent.

Exercise 7.6.12
Use the nth root test to show that the series

∑∞
n=1

(
5n−3n3

7n3+2

)n
is absolutely

convergent.



Chapter 8

Series of Functions

8.1 Sequences of Functions: Pointwise and

Uniform Convergence

Earlier in the course, we have studied sequences of real numbers. Now we
discuss the topic of sequences of real valued functions.
A sequence of functions {fn}∞n=1 is a list of functions {f1, f2, · · · } such that
each fn maps a given subset D of R into R.
For sequences of functions one considers two types of convergenve: Pointwise
convergence and uniform convergence.

Definition 8.1.1
Let D be a subset of R and let {fn} be a sequence of functions defined on D.
We say that {fn}∞n=1 converges pointwise on D to a function f : D → R
if and only if for all ε > 0 there is a positive integer N = N(x, ε) such that
if n ≥ N then |fn(x)− f(x)| < ε.

Exercise 8.1.1
Define fn : [0,∞) → R by fn(x) = nx

1+n2x2
. Show that the sequence {fn}∞n=1

converges pointwise to the function f(x) = 0 for all x ≥ 0.

Exercise 8.1.2
For each positive integer n let fn : (0,∞) → ∞ be given by fn(x) = nx.
Show that {fn}∞n=1 does not converge pointwise on D.

133
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For pointwise convergence, the positive integer N depends on both the given
x and ε. A stronger convergence concept can be defined where N depends
only on ε.

Definition 8.1.2
Let D be a subset of R and let {fn}∞n=1 be a sequence of functions defined on
D. We say that {fn}∞n=1 converges uniformly on D to a function f : D → R
if and only if for all ε > 0 there is a positive integer N = N(ε) such that if
n ≥ N then |fn(x)− f(x)| < ε for all x ∈ D.

Exercise 8.1.3
For each positive integer n let fn : [0, 1] → ∞ be given by fn(x) = x

n
. Show

that {fn}∞n=1 converges uniformly to the zero function. Hint: For a given ε,
choose N such that N > 1

ε
.

Clearly, uniform convergence implies pointwise convergence. However, the
converse is not true in general.

Exercise 8.1.4
Define fn : [0,∞) → R by fn(x) = nx

1+n2x2
. By Exercise 8.1.1, this sequence

converges pointwise to f(x) = 0. Let ε = 1
3
. Show that there is no positive

integer N with the property n ≥ N implies |fn(x)− f(x)| < ε for all x ≥ 0.
Hence, the given sequence does not converge uniformly to f(x).

We showed earlier in the course that a function that is continuous on a closed
interval is automatically uniformly continuous. Is that true also for pointwise
and uniform convergence, i.e. is a sequence that converges pointwise on a
closed interval automatically uniformly convergent?

Exercise 8.1.5
Define fn : [0, 1]→ R by fn(x) = xn. Define f : [0, 1]→ R by

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1.

(a) Show that the sequence {fn}∞n=1 converges pointwise to f.
(b) Show that the sequence {fn}∞n=1 does not converge uniformly to f. Hint:
Suppose otherwise. Let ε = 0.5 and get a contradiction by using a point
(0.5)

1
N < x < 1.
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Exercise 8.1.6
Give an example of a sequence of continuous functions {fn}∞n=1 that converges
pointwise to a discontinuous function f.

It follows from the previous exercise that pointwise convergence does not
preserve the property of continuity. One of the interesting features of uniform
convergence is that it preserves continuity as shown in the next exercise.

Exercise 8.1.7
Suppose that for each n ≥ 1 the function fn : D → R is continuous in D.
Suppose that {fn}∞n=1 converges uniformly to f. Let a ∈ D.
(a) Let ε > 0 be given. Show that there is a positive integer N such that if
n ≥ N then |fn(x)− f(x)| < ε

3
for all x ∈ D.

(b) Show that there is a δ > 0 such that for all |x− a| < δ we have |fN(x)−
fN(a)| < ε

3

(c) Using (a) and (b) show that for |x − a| < δ we have |f(x) − f(a)| < ε.
Hence, f is continuous in D since a was arbitrary. Symbolically we write

lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x).

We have seen above that pointwise convergence does not preserve continu-
ity. What about integrability? That is, if a sequence of Riemann integrable
functions {fn}∞n=1 converges pointwise to a function f , does it follow auto-
matically that f is also Riemann integrable? The answer is no as seen in the
next exercise.

Exercise 8.1.8
Consider the interval [0, 1] and let the rationals in this interval be labeled
r1, r2, · · · arranged in increasing order. For each positive integer n we define
the function fn : [0, 1]→ R by

fn(x) =

{
1 if x ∈ {r1, r2, · · · , rn}
0 otherwise.

(a) Show that fn is Riemann integrable on [0, 1]. Hint: Remark 3.
(b) Show that {fn}∞n=1 converges pointwise to the function

f(x) =

{
1 if x is rational
0 if x is irrational.

(c) Show that f is not Riemann integrable.
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It is possible that a sequence of Riemann integrable functions converges point-
wise to a Riemann integrable function. Does it automatically follow that

lim
n→∞

∫
D

fn(x)dx =

∫
D

lim
n→∞

fn(x)dx =

∫
D

f(x)dx? (8.1.1)

That is, can we interchange limit and integration? The answer is no as seen
in the next exercise.

Exercise 8.1.9
Consider the functions fn : [0, 1]→∞ defined by fn(x) = n2xe−nx.
(a) Show that {fn}∞n=1 converges pointwise to f(x) = 0. Hint: L’Hôpital’s
rule.
(b) Find limn→∞

∫ 1

0
fn(x)dx. Hint: Integration by parts.

(c) Show that limn→∞
∫ 1

0
fn(x)dx 6=

∫ 1

0
limn→∞ fn(x)dx.

Contrary to pointwise convergence, uniform convergence preserves integra-
tion as seen in the next exercise. Moreover, limits and integration can be
interchanged as given in (8.1.1).

Exercise 8.1.10
Let {fn}∞n=1 be a sequence of Riemann integrable functions on [a, b] that
converges uniformly to a f defined on [a, b].
(a) Let ε > 0 be given. Show that there is a positive integer N such that for
all n ≥ N we have

|fn(x)− f(x)| < ε
4(b−a) for all x ∈ [a, b].

(b) Let n ≥ N. Show that there is a partition P of [a, b] such that

U(fn, P )− L(fn, P ) <
ε

2
.

(c) Suppose n ≥ N and P as in (b). Show that

U(f, P ) ≤ U(fn, P ) +
ε

4

and therefore
L(f, P ) ≥ L(fn, P )− ε

4
.

Hint: |f(x)| ≤ |fn(x)|+ ε
4(b−a) and |fn(x)| ≤ |f(x)|+ ε

4(b−a)
(d) Conclude that U(f, P ) − L(f, P ) < ε and therefore f is Riemann inte-
grable on [a, b].
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Exercise 8.1.11
Let {fn}∞n=1 and f be as in the previous exercise.
(a) Let ε > 0 be given. Show that there is a positive integer N such that if
n ≥ N then

|fn(x)− f(x)| ≤ ε
b−a for all x ∈ [a, b].

(b) Show that for every n ≥ N we have∣∣∣∣∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ < ε.

Thus, (8.1.1) holds. Hint: Exercise 6.4.1 and Exercise 6.5.3

Exercise 8.1.12
Give an example of a sequence of differentiable functions {fn}∞n=1 that con-
verges pointwise to a non-differentiable function f.

It follows from the previous exercise that pointwise convergence does not
preserve the property of differentiablity. What about uniform convergence?
The answer is still no as seen in the next exercise.

Exercise 8.1.13

Consider the family of functions fn : [−1, 1] given by fn(x) =
√
x2 + 1

n
.

(a) Show that fn is differentiable for each n ≥ 1.
(b) Show that for all x ∈ [−1, 1] we have

|fn(x)− f(x)| ≤ 1√
n

where f(x) = |x|. Hint: Note that
√
x2 + 1

n
+
√
x2 ≥ 1√

n
.

(c) Let ε > 0 be given. Show that there is a positive integer N such that for
n ≥ N we have

|fn(x)− f(x)| < ε for all x ∈ [−1, 1].

Thus, {fn}∞n=1 converges uniformly to the non-differentiable function f(x) =
|x|.
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Exercise 8.1.14
Give an example of a sequence of differentiable functions {fn}∞n=1 that con-
verges uniformly to a a differentiable function f such that limn→∞ f

′
n(x) 6=

f ′(x) = [limn→∞ fn(x)]′ . That is, one cannot, in general, interchange limits
and derivatives. Hint: Exercise 8.1.3

Pointwise convergence was not enough to preserve differentiability, and nei-
ther was uniform convergence by itself. Even with uniform convergence the
process of interchanging limits with derivatives is not true in general. How-
ever, if we combine pointwise convergence with uniform convergence we can
indeed preserve differentiability and also switch the limit process with the
process of differentiation. In order to prove such a result we need the follow-
ing

Definition 8.1.3
A sequence of functions {fn}∞n=1 defined on a set D is said to be uniformly
Cauchy if and only if for every ε > 0 there is a positive integer N = N(ε)
such that for all m,n ≥ N we have

|fm(x)− fn(x)| < ε for all x ∈ D.

Note that this is the version of Cauchy sequences for functions. Recall that
every Cauchy sequence of numbers is convergent. The following results shows
that every uniform Cauchy sequence is uniformly convergent.

Exercise 8.1.15
Let {fn}∞n=1 defined on a set D be uniformly Cauchy.
(a) Show that for each x ∈ D, the sequence of numbers {fn(x)}∞n=1 is con-
vergent. Call the limit f(x). Thus, we can define a function f : D → R such
that f(x) = limn→∞ fn(x). Hint: Exercise 2.5.7
(b) Show that {fn}∞n=1 converges pointwise to f.
(c) Let ε > 0 be given. Show that there is a positive integer N such that for
all m,n ≥ N we have

|fm(x)− fn(x)| < ε
2

for all x ∈ D.

(d) Fix x ∈ D. Show that there is a positive integer m ≥ N such that
|fm(x)− f(x)| < ε

2
.

(e) For the fixed x in (d), let n ≥ N. Show that |fn(x)− f(x)| < ε.
(f) Conclude that {fn}∞n=1 converges uniformly to f.
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Exercise 8.1.16
Let {fn}∞n=1 be a sequence of differentiable functions on [a, b] such that
{fn(c)}∞n=1 converges for some c ∈ [a, b]. Assume also that {f ′n}∞n=1 converges
uniformly to g in [a, b].
(a) Let ε > 0 be given. Show that there is a positive integer N1 such that for
all m,n ≥ N1 we have

|f ′m(x)− f ′n(x)| < ε
2(b−a) for all x ∈ [a, b].

(b) Show that there is a positive integer N2 such that for all m,n ≥ N2 we
have

|fm(c)− fn(c)| < ε

2
.

Hint: Exercise 2.5.3
(c) Show that for all x ∈ [a, b] there is a d between c and x such that

fm(x)− fn(x) = fm(c)− fn(c) + (x− c)[f ′m(d)− fn(d)].

Hint: Apply the Mean Value theorem to the function fm − fn restricted to
the interval [c, x].
(d) Let N = N1 +N2. Use (a) - (c) to show that for n ≥ N we have

|fm(x)− fn(x)| < ε for all x ∈ [a, b].

That is, the sequence {fn}∞n=1 is uniformly Cauchy.
(e) Show that the sequence {fn}∞n=1 converges uniformly to a a function f.

Exercise 8.1.17
In this exercise we want to show that f of the previous exercise is differen-
tiable in [a, b] and f ′ = g.
(a) Show that there is a positive integer N1 such that for all n ≥ N1 we have

|f ′m(x)− f ′n(x)| < ε
3

for all x ∈ [a, b].

(b) Let x0 ∈ [a, b]. Use the MVT to the function fm−fn to show the existence
of a point d between x0 and x such that

fm(x)− fn(x) = fm(x)− fn(x0) + (x− x0)[f ′m(d)− f ′n(d)].

(c) Use (a) and (b) to show that∣∣∣∣fm(x)− fn(x0)

x− x0
− fn(x)− fn(x0)

x− x0

∣∣∣∣ < ε

3
.
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(d) Show that ∣∣∣∣f(x)− f(x0)

x− x0
− fn(x)− fn(x0)

x− x0

∣∣∣∣ ≤ ε

3
.

(e) Show that there is a positive integer N2 such that for all n ≥ N2 we have

|f ′n(x0)− g(x0)| <
ε

3
.

(f) Let N = N1 +N2. Show that there is a δ > 0 such that

If 0 < |x− x0| < δ then
∣∣∣fN (x)−fN (x0)

x−x0 − f ′N(x0)
∣∣∣ < ε

3
.

(g) Use (d) - (f) to conclude that

If 0 < |x− x0| < δ then
∣∣∣f(x)−f(x0)x−x0 − g(x0)

∣∣∣ < ε.

That is, f is differentiable at x0 with f ′(x0) = g(x0).
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Practice Problems

Exercise 8.1.18
Consider the sequence of functions fn(x) = x− xn

n
defined on [0, 1).

(a) Does {fn}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.
(b) Does {f ′n}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

Exercise 8.1.19
Suppose that each fn is uniformly continuous on D and that fn → f uni-
formly on D. Prove that f is uniformly continuous on D.

Exercise 8.1.20
Let fn(x) = xn

1+xn
for x ∈ [0, 2].

(a) Find the pointwise limit f(x) = limn→∞ fn(x) on [0, 2].
(b) Does fn → f uniformly on [0, 2]?

Exercise 8.1.21
Prove that if fn → f and gn → g uniformly on a set D then fn + gn → f + g
uniformly on D.

Exercise 8.1.22
Prove that if fn → f uniformly on a set D then {fn}∞n=1 uniformly Cauchy
on D.

Exercise 8.1.23
Suppose that {fn}∞n=1 is uniformly convergent on a set D where each fn is
bounded on D, that is |fn(x)| ≤ Mn for all x ∈ D. Show that there is a
positive constant M such that |fn(x)| ≤M for all n ∈ N and all x ∈ D.

Exercise 8.1.24
Suppose that fn → f and gn → g uniformly on D. Moreover, suppose that
|fn(x)| ≤ Mn and |gn(x)| ≤ Mn for all n ∈ N and all x ∈ D. Prove that
fngn → fg uniformly on D.

Exercise 8.1.25
Let fn(x) = x+ 1

n
for all x ∈ R and gn(x) =

(
x+ 1

n

)2
.

(a) Show that fn → f uniformly where f(x) = x.
(b) Show that gn does not converge uniformly to the function g(x) = x2.
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Exercise 8.1.26
Give an example of a sequence {fn}∞n=1 and a function f such that fn → f
uniformly but f 2

n does not converge uniformly to f 2.

Exercise 8.1.27
Give an example of two sequences {fn}∞n=1 and {gn}∞n=1 such that fn → f
and gn → g uniformly but fngn does not converge uniformly to fg. Thus,
the condition of boundedness in Exercise 8.1.24 is crucial.
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8.2 Power Series and their Convergence

Power series are example of series of functions where the terms of the series
are power funtions.
Let {an}∞n=0 be a sequence of numbers. Then a power series about x = a
is a series of the form

∞∑
n=0

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + · · ·

Example
1. A polynomial of degree m is a power series about x = 0 since

p(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m.

Note that an = 0 for n ≥ m+ 1.
2. The geometric series 1 + x + x2 + · · · is a power series about x = 0 with
an = 1 for all n.
3. The series 1

x
+ 1

x2
+ 1

x3
+ · · · is not a power series since it has negative

powers of x.
4. The series 1 + x+ (x− 1)2 + (x− 2)3 + (x− 3)4 + · · · is not a power series
since each term is a power of a different quantity.

To study the convergence of a power series about x = a one starts by fixing
x and then constructing the partial sums

S0(x) =a0,

S1(x) =a0 + a1(x− a),

S2(x) =a0 + a1(x− a) + a2(x− a)2,

...

Sn(x) =a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n.

...

Thus obtaining the sequence {Sn(x)}∞n=0. If this sequence converges (point-
wise) to a number L, i.e. limn→∞ Sn(x) = L, then we say that the power
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series converges to L for the specific value of x. Otherwise, we say that the
power series diverges.
Power series may converge for some values of x and diverge for other values.
We next discuss results that provide a tool for determining the values of x
for which a power series converges and those for which it diverges. Note that
a power series about x = a always converges at x = a with sum equals to a0.

Exercise 8.2.1
Suppose that

∑∞
n=0 an(x − a)n is a power series that converges for x = c.

Note that the series converges to a0 if c = a. So we will assume that c 6= a.
(a) What is the value of the limit limn→∞ an(c− a)n?
(b) Show that there is a positive integer N such that |an(c− a)n| < 1 for all
n ≥ N.
(c) Let M =

∑N−1
n=0 |an(c−a)n|+1. Show that |an(c−a)n| ≤M for all n ≥ 0.

(d) Let x be such that |x− a| < |c− a|. Show that for any n ≥ 0 we have

|an(x− a)n| ≤M

∣∣∣∣x− ac− a

∣∣∣∣n .
(e) Show that the series

∑∞
n=0M

∣∣x−a
c

∣∣n is convergent.
(f) Show that the series

∑∞
n=0 an(x− a)n is absolutely convergent and hence

convergent.
We conclude that if a power series

∑∞
n=0 an(x− a)n converges for x = c it is

convergent for any x satisfying |x− a| < |c− a|.

Exercise 8.2.2
Suppose that

∑∞
n=0 an(x − a)n is a power series that diverges for x = d.

Let x be a number satisfying |x − a| > |d − a|. Show that the assumption∑∞
n=0 an(x − a)n converges at x leads to a contradiction. Hence, the series∑∞
n=0 an(x− a)n must be divergent. Hint: Use Exercise 8.2.1.

Exercise 8.2.3
Consider a power series

∑∞
n=0 an(x− a)n. Let C be the collection of all real

numbers at which the series
∑∞

n=0 an(x− a)n converges. That is,

C = {x ∈ R :
∞∑
n=0

an(x− a)n converges}.

(a) Show that C 6= ∅.
(b) Explain in words the meaning that C = {a}.



8.2. POWER SERIES AND THEIR CONVERGENCE 145

(c) Explain in words the meaning that C = (−∞,∞) = R.
(d) Suppose that C 6= {a} and C 6= R. That is, there is a real number d 6= a
such that

∑∞
n=0 an(d−a)n diverges. Show that if x ∈ C then |x−a| ≤ |d−a|.

Conclude that {|x−a| : x ∈ C} is bounded from above with an upper bound
M. What is the value of M?
(e) Show that there is a finite number R such that R is the least upper bound
of {|x− a| : x ∈ C}. Thus, |x− a| ≤ R for all x ∈ C. Show that R > 0.
(f) Show that for any real number x such that |x − a| > R, the series∑∞

n=0 an(x− a)n is divergent.
(g) Show that for any real number x such that |x − a| < R, the series∑∞

n=0 an(x − a)n is convergent. Hint: Let ε = R − |x − a| and use the def-
inition of supremum to show that there exist an x0 ∈ C such that R − ε <
|x0 − a| ≤ R.

The above results states the following: For any given power series
∑∞

n=0 an(x−
a)n, one and only one of the following holds:
(i) The series converges only at x = a;
(ii) the series converges for all x;
(iii) There is some positive number R such that the series converges abso-
lutely for |x − a| < R and diverges for |x − a| > R. The series may or may
not converge for |x−a| = R. That is for the values x = a−R and x = a+R.

Definition 8.2.1
The number R is called the radius of convergence of the power series. In
(i), R = 0 and in (ii) R =∞. The interval (−R,R) along with neither, one,
or both endpoints is called the interval of convergence of a power series.

Exercise 8.2.4
Find the radius of convergence of each of the following series:
(a)
∑∞

n=0
xn

n!
.

(b)
∑∞

n=0 n!xn.
(c)
∑∞

n=0 x
n.

The next result gives a method for computing the radius of convergence of
many power series.

Exercise 8.2.5 (Absolute Ratio Test)
Suppose that

∑∞
n=0 an(x − a)n is a power series with an 6= 0 for all n ≥ 0.
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Suppose that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L ≥ 0.

(a) Find limn→∞

∣∣∣an+1(x−a)n+1

an(x−a)n

∣∣∣ .
(b) Suppose that L = 0. Show that R =∞. That is, a power series converges
for all x ∈ R.
(c) Suppose that L > 0. Show that R = 1

L
.

(d) Suppose that L = ∞. Show that R = 0, that is, the series diverges for
all x 6= a.

It follows from the previous result that the redius of convergence satisfies

1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Exercise 8.2.6
Find the interval of convergence of the power series

∑∞
n=1(−1)n (x−1)n

n
.
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Practice Problems

Exercise 8.2.7
Find the interval of convergence of the power series

∑∞
n=1

n
n2+2

xn.

Exercise 8.2.8
Find the interval of convergence of the power series

∑∞
n=1

(−1)n−1xn

n2+1
.

Exercise 8.2.9
Find the interval of convergence of the power series

∑∞
n=1(−1)n−1

(
e
2

)n (x−1)n
n

.

Exercise 8.2.10
Suppose that the power series

∑∞
n=0 anx

n converges if x = −3 and diverges
if x = 7. Indicate which of the following statements must be true, cannot be
true, or may be true.
(a) The power series converges if x = −10.
(b) The power series diverges if x = 3.
(c) The power series converges if x = 6.
(d) The power series diverges if x = 2.
(e) The power series diverges if x = −7.
(f) The power series converges if x = −4.

Exercise 8.2.11
Give an example of a power series that converges on the interval [−11,−3).

Exercise 8.2.12
Determine all the values of the real number x for which the series

∞∑
n=1

xn

3nn(log (3n))3

converges.
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8.3 Taylor Series Approximations

In this section we study a special family of power series known as Taylor
series. Taylor series is a representation of a function as an infinite sum of
terms calculated from the values of its derivatives at a single point.
Let f(x) be a function with derivatives of any order at x = a, that is, f is
an infinitely differentiable function. Fix a value of x near a and consider
the sequence of Taylor polynomials {Pn(x)}∞n=0 where

Pn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

If limn→∞ Pn(x) exists and is equal to f(x) then we write

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n. (8.3.1)

Definition 8.3.1
The right-hand series is called the Taylor series expansion of f(x) about

x = a. We call f (n)(a)
n!

(x−a)n the general term of the series. It is a formula
that gives any term in the series. If a = 0 the Taylor series in known as the
MacLaurin series.

Exercise 8.3.1
Find the Taylor series of f(x) = 1

1−x , where −1 < x < 1.

For a given function f at a given x, it is possible that the Taylor series
converges to a value different from f(x). However, the Taylor series of most
of the functions discussed in this section do converge to the original function.

Exercise 8.3.2
Consider the function

f(x) =

{
0 if x = 0

e−
2
x2 if x 6= 0.

(a) Find the Taylor polynomial of order n of f at x = 0.
(b) Show that f(x) 6= limn→∞ Pn(x) for all x near 0. That is, the Taylor
series of f about x = 0 does not converge to f(x) for number very close to 0.
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When does a Taylor series converge to its generating function? To answer
this question we need the following result known as Taylor’s Theorem:
Let f : [a, a+h]→ R be a function such that all derivatives of f up to order
n+ 1 exist and are continuous on [a, a+h]. For any x ∈ [a, a+h] there exists
a point c ∈ [a, x] such that

f(x) = f(a) +
f ′(a)

1!
(x−a) +

f ′′(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n +Rn+1(x)

where

Rn+1(x) =
1

n!

∫ x

a

f (n+1)(t)(x− t)ndt.

We prove the above result by induction on n.

Exercise 8.3.3
(a) Show that the above result holds for n = 0. Hint: Apply the Fundamental
Theorem of Caculus on the interval [a, x].
(b) Suppose that the result holds for up to n. That is, for any x ∈ [a, a+ h]
we can estimate f(x) by Pn(x) for x near a :

f(x) = f(a) +
f ′(a)

1!
(x−a) +

f ′′(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n +Rn+1(x)

Suppose that f has continuous derivatives up to order n+ 2. Use integration
by parts to show that

Rn+1(x) =
f (n+1)(a)

(n+ 1)!
(x− a)n+1 +Rn+2(x).

Hence,

f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+· · ·+f (n+1)(a)

(n+ 1)!
(x−a)n+1+Rn+2(x).

Exercise 8.3.4 (Lagrange’s Form of Remainder)
(a) Show that there exist x1, x2 ∈ [a, x] such that f (n+1)(x1) ≤ f (n+1)(t) ≤
f (n+1)(x2) for all t ∈ [a, x].
(b) Use (a) to show that

f (n+1)(x1)

(n+ 1)!
(x− a)n+1 ≤ Rn+1(x) ≤ f (n+1)(x2)

(n+ 1)!
(x− a)n+1
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where

Rn+1(x) =
1

n!

∫ x

a

f (n+1)(t)(x− t)ndt.

(c) Show that

f (n+1)(x1) ≤ Rn+1(x)
(n+ 1)!

(x− a)n+1
≤ f (n+1)(x2).

(d) Show that there is a c ∈ [a, x] such that

f (n+1)(c) = Rn+1(x)
(n+ 1)!

(x− a)n+1

and therefore

Rn+1(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

Thus, we can write
f(x) = Pn(x) +Rn+1(x).

Exercise 8.3.5 (Estimating Rn+1(x))
Suppose that there is M > 0 such that |f (n+1)(x)| ≤M for all x ∈ [a, a+ h].
(a) Show that for all x ∈ [a, a+ h] we have

|Rn+1(x)| ≤ M

(n+ 1)!|
|x− a|n+1.

(b) Show that
lim
n→∞

Rn+1(x) = 0.

Hint: Exercise 1.1.14 and Squeeze rulw.

Suppose that f : [a, a + h] → R is infinitely differentiable on [a, a + h]. By
Exercise 8.2.3 there is R > 0 such that limn→∞ Pn(x) converges (absolutely)
for |x−a| < R and diverges for |x−a| > R. Thus, if limn→∞Rn+1(x) = 0 for
all x ∈ [a, a + h] such that |x − a| < R then the Taylor series will converge
to the generating function.
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Practice Problems

Exercise 8.3.6
Let f : R → R be a function such that f, f ′, f ′′ exist and are continuous.
Furthermore, f ≥ 0 and f ′′ ≤ 0. Show that f is a constant function.

Exercise 8.3.7
Find the Taylor polynomial of order n about 0 for f(x) = ex, and write down
the corresponding remainder term.

Exercise 8.3.8
Find the Taylor Polynomial of order 3 for the function f(x) = cos x centered
at x = π

6
.

Exercise 8.3.9
Find the Lagrange form of the remainder Rn(x) for the function f(x) = 1

1+x
.

Exercise 8.3.10
Let g(x) be a function such that g(5) = 3, g′(5) = −1, g′′(5) = 1 and g′′′(5) =
−3.
(a) What is the Taylor polynomial of degree 3 for g(x) near 5?
(b) Use (a) to approximate g(4.9).

Exercise 8.3.11
Suppose that the function f(x) is approximated near x = 0 by a sixth degree
Taylor polynomial

P6(x) = 3x− 4x3 + 5x6.

Find the value of the following:
(a) f(0) (b) f ′(0) (c) f ′′′(0) (d) f (5)(0) (e) f (6)(0)

Exercise 8.3.12
Find the third degree Taylor polynomial approximating

f(x) = arctan x,

near a = 0.

Exercise 8.3.13
Find the fifth degree Taylor polynomial approximating

f(x) = ln (1 + x),

near a = 0.
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8.4 Taylor Series of Some Special Functions

In this section we introduce the Taylor series of some special functions that
are encountered very frequently in analysis. The first one is the function
f(x) = 1

1−x whose Taylor series was discussed in Exercise 8.3.1 and is given
by

1

1− x
= 1 + x+ x2 + · · · =

∞∑
n=0

xn

which is valid only for −1 < x < 1.

Exercise 8.4.1
Let f(x) = cos x.
(a) Using successive differentiation find a formula for f (n)(0).
(b) Show that

P2n(x) = P2n+1(x) = 1− 1

2!
x2 +

1

4!
x4 − · · ·+ (−1)n

x2n

(2n)!
=

n∑
k=0

(−1)k
x2k

(2k)!
.

(c) Find the radius of convergence of the series

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− · · ·

(d) Show that

|Rn+1(x)| ≤ |x|n+1

(n+ 1)!
.

(e) Show that limn→∞Rn+1(x) = 0. Hence, conclude that

cosx = 1− x2

2!
+
x4

4!
− · · ·+ (−1)n

x2n

(2n)!
+ · · ·

Exercise 8.4.2
Let f(x) = ex.
(a) Find f (n)(0) for all n ≥ 0.
(b) Find an expression for Pn(x).
(c) Consider the series

∞∑
n=0

xn

n!
= 1 +

x

1!
+
x2

2!
+ · · · .
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Find the radius of convergence.
(d) Find an expression for Rn+1(x) and show that

lim
n→∞

Rn+1(x) = 0.

Hence, conclude that

ex = 1 +
x

1!
+
x2

2!
+ · · · =

∞∑
n=0

xn

n!
.

Exercise 8.4.3
Let f(x) = ln (1 + x).
(a) Find f (n)(0) for all n ≥ 0.
(b) Find an expression for Pn(x).
(c) Consider the series

∞∑
n=0

(−1)n−1
xn

n
= 1 +

x

1!
+
x2

2!
+ · · · .

Find the radius of convergence.
(d) Show that

|Rn+1(x)| ≤ 1

|1 + c|n+1
· |x|

n+1

(n+ 1)!
.

(e) Show that
lim
n→∞

Rn+1(x) = 0.

Hence, conclude that

ln (1 + x) =
∞∑
n=1

(−1)n−1
xn

n
, − 1 < x ≤ 1.

New series can be found using prviously known series.

Exercise 8.4.4
Find the Taylor series of x

ex
about x = 0.

Exercise 8.4.5
Find the Taylor series of f(x) = 1

1+x2
about x = 0.
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Practice Problems

Exercise 8.4.6
Let f(x) = sinx.
(a) Using successive differentiation find a formula for f (n)(0).
(b) Show that

P2n(x) = P2n+1(x) = x− x
3

3!
+
x5

5!
−· · ·+ (−1)n

(2n+ 1)!
x2n+1 =

n∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

(c) Find the radius of convergence of the series

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
+ · · · .

(d) Show that

|Rn+1(x)| ≤ |x|n+1

(n+ 1)!
.

(e) Show that limn→∞Rn+1(x) = 0. Hence, conclude that

sinx =
n∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Exercise 8.4.7
Find the MacLaurin series of x

1−2x .

Exercise 8.4.8
Find the coefficient of (x − 2)2 in the Taylor series expansion of f(x) = 1

x

about x = 2.

Exercise 8.4.9
Find the Maclaurin series for the function f(x) = x6e−x

2
. Give your answer

in sigma notation.

Exercise 8.4.10
Compute each of the following sums in terms of known functions:

(a)
∑∞

n=0
(−1)nx4n+1

n!

(b)
∑∞

n=1
(−1)nx4n+1

(2n+1)!

(c)
∑∞

n=0
(−1)nx6n
(2n+2)!
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Exercise 8.4.11
The hyperbolic cosine of x is defined to be the function coshx = ex+e−x

2
. Find

the MacLaurin series of coshx.

Exercise 8.4.12
The hyperbolic sine of x is defined to be the function sinhx = ex−e−x

2
. Find

the MacLaurin series of sinh x.

Exercise 8.4.13 (Binomial Series)
Consider the function f(x) = (1 + x)n where n ∈ R.
(a) Using successive differentiation show that f (k)(0) = k(k−1) · · · (k−n+1).

Thus, f (k)(0)
k!

= C(n, k) where

C(n, k) = n!
k!(n−k)! and C(n, 0) = 1.

(b) Find the interval of convergence of the binomial series (1+x)n =
∑∞

k=0C(n, k)xk.

Exercise 8.4.14
Find the MacLaurin series of f(x) = 1√

x+1
.
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8.5 Uniform Convergence of Series of Func-

tions: Weierstrass M Test

The Weierstrass M Test is a test used to show uniform convergence of series
of functions. It has many applications that will be discussed in next section.

Definition 8.5.1
For each positive integer n ≥ 1 we let fn : D → R. We say that the series∑∞

n=1 fn(x) converges uniformly in D if and only if the sequence of partial
sums

Sn(x) =
n∑
k=1

fn(x)

converges uniformly in D.

Exercise 8.5.1
Suppose that

∑∞
n=1 fn(x) converges uniformly on D. For each x ∈ D let

f(x) =
∑∞

n=1 fn(x). That is, {Sn}∞n=1 converges uniformly to f.
(a) Let ε > 0 be given. Show that there is a positive integer N such that if
n ≥ N we have ∣∣∣∣∣

n∑
k=1

fk(x)− f(x)

∣∣∣∣∣ < ε

2

for all x ∈ D.
(b) Show that for n > m ≥ N we have∣∣∣∣∣

n∑
k=m+1

fk(x)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

fk(x)−
m∑
k=1

fk(x)

∣∣∣∣∣ < ε

for all x ∈ D.

Exercise 8.5.2 (Weierstrass)
For each positive integer n ≥ 1, let fn : D → R be a continuous function
that is bounded on D with |fn(x)| ≤ Mn for all x ∈ D. Suppose that the
series of numbers

∑∞
n=1Mn is convergent. For each positive integer n define

the partial sum

Sn(x) =
n∑
k=1

fk(x).
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(a) Let ε > 0 be given. Show that there is a positive integer N such that for
all m,n ≥ N we have ∣∣∣∣∣

n∑
k=1

Mk −
m∑
k=1

Mk

∣∣∣∣∣ < ε.

Hint: The sequence {
∑n

k=1Mk}∞n=1 is Cauchy.
(b) Suppose that n > m ≥ N. By (a) we have |

∑n
k=m+1Mk| < ε. Show that

for all x ∈ D we have
|Sn(x)− Sm(x)| < ε

Hence, the sequence {Sn}∞n=1 is uniformly Cauchy.
(c) Conclude that the series

∑∞
n=1 fn is uniformly convergent. Hint: Exercise

8.1.15

Exercise 8.5.3
Use Weierstrass M test to show that the series

∑∞
n=0

xn

3n
converges uniformly

on [−2, 2].

An important application of the Weierstrass M test is the following result.

Exercise 8.5.4
Let

∑∞
n=0 anx

n be a power series with radius of convergence R. Let 0 < c < R
and D = [−c, c].
(a) Define fn(x) = anx

n and Mn = |ancn|. Clearly, fn is continuous in D and
Mn > 0 for all integer n ≥ 0. Show that

∑∞
n=0Mn converges. Hint: Exercise

8.2.1(f)
(b) Let x ∈ D. Show that if x ∈ [0, c] then |gn(x)| ≤ Mn. Hint: xn is
increasing for x ≥ 0.
(c) Answer the same question if x ∈ [−c, 0]. (d) Conclude that the series is
uniformly convergent on D.

Remark 8.5.1
(1) For a series about x = a, D = [a− c, a+ c].
(2) The previous result says that the series converges uniformly on any closed
interval centered at a and contained in (a−R, a+R).
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Practice Problems

Exercise 8.5.5
Show that the following series converges uniformly.

∞∑
n=0

x2

3n(x2 + 1)
.

Exercise 8.5.6
Let {an}∞n=1 be a bounded sequence with |an| ≤M for all n ∈ N. Show that
ther series

∑∞
n=1

an
nx converges uniformly for all x ≥ c > 1.

Exercise 8.5.7
Show that the series

∑∞
n=1

sinnx
n2 converges uniformly for all x ∈ R.

Exercise 8.5.8
Suppose that {fn}∞n=1 is a sequence of functions defined on a set D such that
|fn+1(x) − fn(x)| ≤ Mn for all x ∈ D and n ∈ N. Assume that

∑∞
n=1Mn is

convergent. Show that the series
∑∞

n=1 fn(x) is uniformly convergent on D.

Exercise 8.5.9
Show that the series

∑∞
n=1

x
(1+x)n

converges uniformly on [1, 2].

Exercise 8.5.10
Prove that

∑∞
n=1 sin

(
x
n2

)
converges uniformly on any bounded interval [a, b].

Exercise 8.5.11
Show that the series

∑∞
n=1

1
3n

cos
(
x
3n

)
converges uniformly on R.
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8.6 Continuity, Integration and Differentia-

tion of Power Series

Since a power series is a function, it is natural to ask if the function is contin-
uous, differentiable or integrable. In this section we answer these questions.
Let R be the radius of convergence of a power series

∑∞
n=0 an(x− a)n. Thus,

for each x in D = {x ∈ R : |x − a| < R} there is a unique number
f(x) =

∑∞
n=0 an(x− a)n. Hence, we can define a function f : D → R.

The next result shows that this function f is a continuous function.

Exercise 8.6.1
Let c ∈ D. Let R0 > 0 be a number such that |c− a| < R0 < R. By Exercise
8.5.4, the power series

∑∞
n=0 an(x − a)n converges uniformly on the interval

[a−R0, a+R0].
(a) Let ε > 0 be given. Show that there is a positive integer N such that for
all n > m ≥ N we have∣∣∑n

k=0 ak(x− a)k −
∑n

k=0 ak(x− a)k
∣∣ =

∣∣∑n
k=m+1 ak(x− a)k

∣∣ < ε
3

for all
x ∈ [a−R0, a+R0].

Hint: Exercise 8.5.1
(b) Show that there is a δ1 > 0 such that if |x− a| < δ1 then∣∣∣∣∣

N∑
k=0

ak(x− a)k −
N∑
k=0

ak(c− a)k

∣∣∣∣∣ < ε

3
.

(c) Let δ = min{δ1, R0 − |c− a|}. Show that for |x− a| < δ we have

|f(x)− f(c)| < ε.

Hence, the function f(x) =
∑∞

n=0 an(x− a)n is continuous on D.

Our next result concerns integrating term-by-term a given power series to
yield a new power series with the same radius of convergence.

Exercise 8.6.2
Let f(x) =

∑∞
n=0 an(x−a)n where the power series converges for |x−a| < R

and diverges for |x − a| > R. Let F (x) =
∫ x
a
f(t)dt. Suppose that a − R <

x ≤ a. A similar result holds for a ≤ x < a + R. (a) Show that {Sn}∞n=1
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converges uniformly to f on [x, a].
(b) Evaluate

∫ a
x
Sn(t)dt.

(c) Show that the power series
∑∞

n=0
an(x−a)n+1

n+1
has radius of convergence R.

(d) Show that F (x) =
∑∞

n=0
an(x−a)n+1

n+1
. Hint: Exercise 8.1.11

We conclude this section by showing that integration term-by-term of a power
series yields a new power series with the same radius of convergence.

Exercise 8.6.3
Let f(x) =

∑∞
n=0 an(x−a)n where the power series converges for |x−a| < R

and diverges for |x− a| > R.
(a) Show that the power series g(x) =

∑∞
n=1 nan(x − a)n−1 has radius of

convergence R.
(b) Let G(x) =

∫ x
a
g(t)dt. Show that G(x) = f(x)− a0 for |x− a| < R. Hint:

Exercise 8.6.2.
(c) Show that g(x) = f ′(x) for all |x− a| < R. Hint: Exercise 6.6.2
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Practice Problems

Exercise 8.6.4
Show that

∑∞
n=1

xn

n22n
has radius of convergence 2 and show that the series

converges uniformly to a continuous function on [−2, 2].

Exercise 8.6.5
Let g(x) =

∑∞
n=1

sin (3x)
3n

. Prove that the series converges for all x ∈ R and
that g(x) is continuous everywhere.

Exercise 8.6.6
Show that

∑∞
n=1

1
n2+x2

converges to a continuous function for all x ∈ R.

Exercise 8.6.7
Find the Taylor series about x = 0 of cos x from the series of sin x.

Exercise 8.6.8
Find the Taylor’s series about x = 0 for arctan x from the series for 1

1+x2
.

Exercise 8.6.9
Use the first 500 terms of series of arctanx and a calculator to estimate the
numerical value of π.

Exercise 8.6.10
Estimate the value of

∫ 1

0
sin (x2)dx.
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nth root test, 132
nth term test, 118
p−series, 128

Absolute Ratio Test, 145
Absolute value, 9
Absolutely convergent, 126
Alternating series, 124
Alternating series test, 124
Antiderivative, 102
Archimedean Property, 14
Average value, 105
Axiom, 3

Biconditional proposition, 6
Binomial formula, 22
Binomial series, 155
Bounded, 13
Bounded from above, 13
Bounded from above sequence, 29
Bounded from below, 13
Bounded from below sequence, 29
Bounded sequence, 21
Bounded set, 65

Cauchy sequence, 35
Change of variables formula, 113
Circular proof, 6
Comparison test, 121
Completeness axiom, 14
Compound propositions, 5

Conclusion, 5
Conditional proposition, 5
Conditionally convergent, 120, 126
Conjunction, 5
Continuous function, 51
Contrapositive, 5
Convergence of series, 117
Convergent sequence, 19
Converse, 5
Critical point, 75

Decreasing sequence, 29
Dense set, 24
Derivative, 69
Differentiable, 69
Differentiation, 69
Discontinuous, 51
Disjunction, 5
Divergent sequence, 20
Divergent series, 117

Equivalent propositions, 5

Fixed point, 68
floor function, 15
Fundamental Theorem of Calculus, 102

General term of a series, 148
Geometric series, 118
Greatest Lower bound, 14
Greatest lower bound, 30
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Harmonic series, 119
Hypothesis, 5

Increasing sequence, 29
Infimum, 14, 30
Infinitely differentiable, 148
Integral test, 128
Integration by parts, 108
Intermediate value theorem, 66
Interval of convergence, 145
Inverse, 5
Inverse function, 84
Inverse function theorem, 84
Invertible function, 83

L’Hôpital’s Rule, 83
Lagrange’s Form of Remainder, 149
Least upper bound, 13, 30
Left Riemann sum, 98
Left-side limit, 42
Lemma, 4
Limit Comparison Test, 121
Limit of a function, 39
Lipschitz function, 61
Local Extrema, 74
Local maximum, 74
Local minimum, 74
Lower bound, 13, 29
lower Riemann integral, 88

MacLaurin series, 148
Mathematical system, 3
Maximum, 14
Mean Value Theorem, 78
Mean Value Theorem for integrals, 112
Mean Value Theorem for monotone

functions, 114
Minimum, 14
Monotone, 29

Non-diffferentiable, 69
Norm of a partition, 98

One-to-one function, 84

Partial sums, 117
Partition, 87
Pointwise convergence, 133
Power series, 143
Proof, 4
Proof by contradiction, 6
Proof by contrapositive, 5
Proof by induction, 6
Proposition, 5
Propositional functions, 5

Radius of convergence, 145
Ratio test, 130
Refinement, 87
Relative maximum, 74
Relative minimum, 74
Riemann criterion, 90
Riemann integrable, 88
Riemann integral, 89
Riemann lower sum, 87
Riemann sum, 98
Riemann upper sum, 87
Right Riemann sum, 98
Right-side limit, 42
Rolle’s Theorem, 75

Sequence, 19
Series, 117
Square root, 10
Squeeze rule, 21
Subsequence, 32
Supremum, 13, 30
Symbolic connectives, 5

Taylor polynomials, 148
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Taylor series expansion, 148
Taylor’s Theorem, 149

Uniform convergence, 134, 156
Uniformly Cauchy, 138
Uniformly continuous, 58
Upper bound, 13, 29
Upper Riemann integral, 88

Vacuously true, 5

Weierstrass M test, 156
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