Solutions to Practice Problems

Exercise 19.7
Let $f : [a, b] \to \mathbb{R}$ be continuous for $a \leq x \leq b$ and differentiable for $a < x < b$. We say that f is a constant function on $[a, b]$ if and only if there is a constant C such that $f(x) = C$ for all $a \leq x \leq b$. Suppose that $f'(x) = 0$ for all $a < x < b$.

Let x_1 and x_2 be any two numbers in the interval $[a, b]$ with $x_1 < x_2$. Suppose that $f(x_1) \neq f(x_2)$. Show that by applying the Mean Value Theorem on the interval $[x_1, x_2]$ we obtain the contradiction $f(x_1) = f(x_2)$.

Solution.
Applying the MVT on the interval $x_1 \leq x \leq x_2$, we can find a number c such that $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$. Since $f'(c) = 0$ we obtain $f(x_1) = f(x_2)$, a contradiction. Since x_1 and x_2 were arbitrary, we have $f(x) = C$ for all $x \in [a, b]$.

Exercise 19.8
Let $f : [a, b] \to \mathbb{R}$ be continuous for $a \leq x \leq b$ and differentiable for $a < x < b$. Suppose that $f'(x) = g'(x)$ for all $a < x < b$. Show that $f(x) = g(x) + C$ for all $a \leq x \leq b$, where C is a constant. Hint: Exercise 19.7

Solution.
Let $h(x) = f(x) - g(x)$. Then $h(x)$ is continuous in $[a, b]$ being the difference of two continuous functions and $h'(x) = 0$ for all $a < x < b$. By Exercise 19.7, there is C such that $h(x) = C$ for all $a \leq x \leq b$ or equivalently $f(x) = g(x) + C$ for all $a \leq x \leq b$.

Exercise 19.9
Let $f : [a, b] \to \mathbb{R}$ be continuous for $a \leq x \leq b$ and differentiable for $a < x < b$. We say that f is decreasing in $[a, b]$ if and only if for every x_1 and x_2 in $[a, b]$, if $x_1 \leq x_2$ then $f(x_1) \geq f(x_2)$. Show that if $f'(x) \leq 0$ for all $a < x < b$ then $f(x)$ is decreasing in $[a, b]$. Hint: Use the MVT restricted to the interval $[x_1, x_2]$.

Solution.
Let $x_1, x_2 \in [a, b]$. Clearly, if $x_1 = x_2$ then $f(x_1) = f(x_2)$. So assume that
\(x_1 < x_2 \). By the MVT there is a \(x_1 < c < x_2 \) such that \(f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \leq 0 \) which implies that \(f(x_1) \geq f(x_2) \). Thus, we have shown that \(x_1 \leq x_2 \) implies \(f(x_1) \geq f(x_2) \). That is, \(f \) is decreasing in \([a, b]\) \(\blacksquare \)

Exercise 19.10

Consider the function \(f(x) = (1 + x)^p \) where \(0 < p < 1 \). Let \(h > 0 \).

(a) Apply the MVT to the interval \([0, h]\) to show that \(f(h) = p(1 + t)^{p-1}h + 1 \) for some \(0 < t < h \).

(b) Use (a) to show that \((1 + h)^p < 1 + ph\).

In annuity theory, \((1 + h)^p\) may represent compound interest and \(1 + ph\) represent simple interest. A result in annuity theory says that for time \(p \) less than a year, the compound interest formula can be estimated by the simple interest formula.

Solution.

(a) Applying the mean value theorem to the interval \([0, h]\), we can find a \(0 < t < h \) such that \(f(h) - f(0) = f'(t)h \) or \(f(h) - 1 = p(1 + t)^{p-1}h \). Hence, \(f(h) = (1 + h)^p = p(1 + t)^{p-1}h + 1 \).

(b) Since \(t > 0 \), we have \(1 + t > 1 \rightarrow (1 + t)^{1-p} > 1 \rightarrow (1 + t)^{p-1} < 1 \rightarrow p(1 + t)^{p-1}h < ph \rightarrow 1 + p(1 + t)^{p-1}h < 1 + ph \). Hence, \((1 + h)^p < 1 + ph\) \(\blacksquare \)

Exercise 19.11

Suppose that \(f : [a, b] \rightarrow \mathbb{R} \) is differentiable in \([a, b]\). Let \(\lambda \) be a real number such that either \(f'(a) < \lambda < f'(b) \) or \(f'(b) < \lambda < f'(a) \).

(a) Define \(g(x) = f(x) - \lambda x \). Show that if \(f'(a) < \lambda < f'(b) \) then \(g'(x) \) changes sign between \(a \) and \(b \).

(b) Establish the same result for \(f'(b) < \lambda < f'(a) \).

(c) Show that the condition \(g'(c) \neq 0 \) for all \(c \in [a, b] \) leads to a contradiction. Hint: Exercise 19.6. Conclude that there must be a \(a < c < b \) such that \(f'(c) = \lambda \).

Solution.

(a) Note that \(g \) is continuous in \([a, b]\) and differentiable there with derivative \(g'(x) = f'(x) - \lambda \). Since \(f'(a) < \lambda < f'(b) \), we find \(g'(a) = f'(a) - \lambda < 0 < g'(b) = f'(b) - \lambda \). So \(g' \) changes sign from negative to positive.

(b) Since \(f'(b) < \lambda < f'(a) \), we find \(g'(b) = f'(b) - \lambda < 0 < g'(a) = f'(a) - \lambda \). So \(g' \) changes sign from positive to negative.

(c) If \(g'(c) \neq 0 \) for all \(c \in [a, b] \) then by Exercise 19.6 either \(g' \) is always
nonnegative in \([a, b]\) or always nonpositive which contradict (a) and (b). We conclude that there must be a \(a < c < b\) such that \(g'(c) = 0\) which is the same as \(f'(c) = \lambda\) □

Exercise 19.12

Let \(f, g : [a, b] \to \mathbb{R}\) be two differentiable functions on \([a, b]\) such that \(f(a) = g(a)\). Show that if \(f'(x) = g'(x)\) for all \(x \in (a, b)\) then \(f(x) = f(x)\) for all \(x \in [a, b]\). Hint: Exercise 19.7.

Solution.

Let \(F : [a, b] \to \mathbb{R}\) be given by \(F(x) = f(x) - g(x)\). Then \(F'\) is differentiable on \([a, b]\) and \(F'(x) = 0\) for all \(x \in (a, b)\). By Exercise 19.7, there is a constant \(C\) such that \(F(x) = C\) for all \(x \in [a, b]\). But \(F(a) = 0\) so that \(C = 0\). Thus, \(F(x) = 0\) for all \(x \in [a, b]\). This is equivalent to \(f(x) = g(x)\) for all \(x \in [a, b]\) □

Exercise 19.13

Let \(f : \mathbb{R} \to \mathbb{R}\) be differentiable such that \(|f'(x)| < 1\) for all \(x \in \mathbb{R}\). Show that \(f\) can have at most one fixed point. That is, There is at most one \(c \in \mathbb{R}\) such that \(f(c) = c\). Hint: Mean Value Theorem.

Solution.

Suppose the contrary. Let \(a, b \in \mathbb{R}\) such that \(a < b\), \(f(a) = a\), and \(f(b) = b\). We have that \(f\) is continuous in \([a, b]\) and differentiable in \((a, b)\). By the MVT, there is a \(c \in (a, b)\) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{b - a}{b - a} = 1.
\]

This is impossible since \(|f'(x)| < 1\) for all \(x \in \mathbb{R}\). We conclude that \(f\) has at most one fixed point □

Exercise 19.14

Let \(f : \mathbb{R} \to \mathbb{R}\) be differentiable everywhere and that \(f'(a) < 0\) and \(f'(b) > 0\) for some \(a < b\). Prove that there is a \(c \in (a, b)\) such that \(f'(c) = 0\).

Solution.

This is just Exercise 19.11 with \(\lambda = 0\) □
Exercise 19.15
Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable and $|f'(x)| \leq K < 1$ for all $x \in \mathbb{R}$. Let $a_0 \in \mathbb{R}$. Define the numbers $a_n = f(a_{n-1})$.
(a) Show that $|a_{n+1} - a_n| \leq K^n |a_1 - a_0|$ for all $n \in \mathbb{N}$.
(b) Show that for all $m, n \in \mathbb{N}$ such that $m > n$ we have

$$|a_m - a_n| \leq \frac{K^n}{1 - K}.$$

Solution.
(a) By the MVT there is a $c_1 \in (a_1, a_0)$ such that $f(a_1) - f(a_0) = f'(c_1)(a_1 - a_0)$. Thus, $|a_2 - a_1| \leq K|a_1 - a_0|$ since $|f'(c_1)| \leq K$. Likewise, we can write $|a_3 - a_2| \leq K|a_2 - a_1| \leq K^2|a_1 - a_0|$. Now, suppose that $|a_n - a_{n-1}| \leq K^n|a_1 - a_0|$. Then $|a_{n+1} - a_n| \leq K|a_n - a_{n-1}| \leq K^{n+1}|a_1 - a_0|$.

(b) Let $m, n \in \mathbb{N}$ such that $m > n$. Then we have $|a_m - a_n| \leq |a_m - a_{m-1}| + \cdots + |a_m - a_{m-1}| \leq |a_1 - a_0| \sum_{i=n}^{m} K^i = \frac{K^n}{1 - K} |a_1 - a_0|$.

Exercise 19.16
Show that if $0 < a < b$ then $1 - \frac{a}{b} < \ln \left(\frac{b}{a} \right) < \frac{b}{a} - 1$. Hint: Apply the MVT for the function $f(x) = \ln x$.

Solution.
The function $f(x) = \ln x$ is continuous on $[a, b]$ and differentiable in (a, b). By the Mean value theorem there is a $c \in (a, b)$ such that $f'(c) = \frac{\ln b - \ln a}{b-a}$. Thus,

$$\frac{1}{b} < \frac{1}{c} = \frac{\ln b - \ln a}{b-a} < \frac{1}{a}$$

or

$$1 - \frac{a}{b} < \ln \left(\frac{b}{a} \right) < \frac{b}{a} - 1 \quad \blacksquare$$

Exercise 19.17
Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable with continuous derivative. Suppose there are four distinct points w, x, y, z such that $f(w) = f(x), f(y) = y$ and $f(z) = z$. Prove that there is a point u where $f'(u) = \frac{1}{2}$.

Solution.
Since $f(w) = f(x)$, we can apply Rolle’s theorem to find a point c between w and x where $f'(c) = 0$. Similarly, since $f(y) = y$, we can apply Rolle’s theorem to find a point d between y and z where $f'(d) = 0$. Since $f(w) = f(x)$ and $f(y) = y$, we have $f'(c) = 0$ and $f'(d) = 0$. Therefore, $f'(u) = \frac{f'(c) + f'(d)}{2} = \frac{0 + 0}{2} = 0$. Thus, there is a point u where $f'(u) = \frac{1}{2} \quad \blacksquare$
and \(c \) such that \(f'(c) = 0 \). Now, if we apply the Mean Value Theorem to the interval \([y, z]\) (or \([z, y]\) we can find a point \(d \) between \(y \) and \(z \) such that
\[
f'(d) = \frac{f(y) - f(z)}{y - z} = \frac{y - z}{y - z} = 1.
\]
Since \(0 \leq 1 \leq 1 \) we can apply IVT to find a point \(u \) between \(c \) and \(d \) such that \(f'(u) = \frac{1}{2} \).

Exercise 19.18
Suppose \(f : [a, b] \to \mathbb{R} \) is differentiable and \(f'(x) \geq M \) for all \(x \in [a, b] \). Prove that \(f(b) \geq f(a) + M(b - a) \).

Solution.
By the Mean Value Theorem, there is a \(a < c < b \) such that
\[
f'(c) = \frac{f(b) - f(a)}{b - a}.
\]
But \(f'(x) \geq M \) so that \(\frac{f(b) - f(a)}{b - a} \geq M \) which implies \(f(b) \geq f(a) + M(b - a) \).

Exercise 19.19
Suppose \(f \) is differentiable everywhere on \((a, b)\), and that there is a number \(M \) with \(|f'(x)| \leq M\) for all \(x \in (a, b) \). Prove that \(f \) is uniformly continuous on \((a, b)\) using the Mean Value Theorem.

Solution.
Let \(x \) and \(y \) be two numbers in \((a, b)\). By the MVT there is a \(z \) between \(x \) and \(y \) such that
\[
f(x) - f(y) = f'(z)(x - y).
\]
Thus,
\[
|f(x) - f(y)| = |f'(z)||x - y| \leq M|x - y|.
\]
Let \(\epsilon > 0 \) be given. Let \(\delta < \frac{\epsilon}{M} \). For all \(x, y \in (a, b) \) such that \(|x - y| < \delta \) we have \(|f(x) - f(y)| < M \cdot \frac{\epsilon}{M} = \epsilon \). This shows that \(f \) is uniformly continuous on \((a, b)\).

Exercise 19.20
Let \(f : \mathbb{R} \to \mathbb{R} \) be differentiable such that \(|f(x) - f(y)| \leq |x - y|^2\) for all \(x, y \in \mathbb{R} \). Show that \(f'(x) = 0 \) for all \(x \in \mathbb{R} \) and therefore \(f \) is a constant function.
Solution.
Let \(x \in \mathbb{R} \). Then \(|f(x + h) - f(x)| \leq |h|^2 \). Thus, \(0 \leq \left| \frac{f(x+h)-f(x)}{h} \right| \leq |h| \).
Letting \(h \to 0 \) and using the squeeze rule we find \(|f'(x)| = 0 \) which implies that \(f'(x) = 0 \). Since \(x \) was arbitrary, we conclude that \(f'(x) = 0 \) for all \(x \in \mathbb{R} \) and hence \(f \) is a constant function.

Exercise 19.21
Use the Mean Value Theorem to show that for all \(x > 1 \) we have
\[
\frac{x - 1}{x} < \ln x.
\]
Solution.
Let \(f(x) = \ln x \) on \([1, x]\). This function satisfies the condition of the Mean Value Theorem. Thus, we can find a \(c \in (1, x) \) such that \(f(x) - f(1) = f'(c)(x-1) \) or \(\ln x = \frac{x-1}{c} \). But \(1 < c < x \) implies \(\frac{1}{x} < \frac{1}{c} < 1 \). Hence, \(\frac{x-1}{x} < \frac{x-1}{c} = \ln x \).

Exercise 19.22
Prove that \(1 + x \leq e^x \) for all \(x \in \mathbb{R} \).
Solution.
The equality is true for \(x = 0 \). Let \(x > 0 \) and define \(f : [0, x] \to \mathbb{R} \) by \(f(t) = e^t - 1 - t \). \(f \) satisfies the conditions of the MVT so that there is a \(0 < c < x \) such that \(f(x) - f(0) = f'(c)(x-0) \) which implies that \(e^x - 1 - x = (e^c - 1)x \). But \((e^c - 1)x > 0 \) so that \(e^x > 1 + x \). If \(x < 0 \) we apply the above argument on \([x, 0]\) to obtain \(e^x > 1 + x \).

Exercise 19.23
Let \(f : [a, b] \to \mathbb{R} \) be a function with continuous derivative on \([a, b]\). Moreover, suppose that \(|f'(x)| < 1 \) for all \(x \in [a, b] \).
(a) Show that there exits two numbers \(c, d \in [a, b] \) such that \(f'(c) \leq f'(x) \leq f'(d) \) for all \(x \in [a, b] \).
(b) How that \(|f'(x)| \leq \max\{|f'(c)|, |f'(d)|\} = s \leq 1 \) for all \(x \in [a, b] \).
(c) Show that \(|f(x_1) - f(x_2)| \leq s|x_1 - x_2| \) for all \(x_1, x_2 \in [a, b] \).
Solution.
(a) Since \(f' \) is continuous on the closed interval \([a, b]\), Exercise 16.8 asserts the existence of two numbers \(c, d \in [a, b] \) such that \(f'(c) \leq f'(x) \leq f'(d) \).
(b) Let \(s = \max\{|f'(c)|, |f'(d)|\} < 1 \) since \(|f'(x)| < 1 \) for all \(x \in [a, b] \). We have \(-s \leq -|f'(c)| \leq f'(c) \leq f'(x) \leq f'(d) \leq |f'(d)| \leq s\).

(c) Let \(x_1, x_2 \in [a, b] \). By the MVT, there exists an \(x_3 \) between \(x_1 \) and \(x_2 \) such that \(f(x_1) - f(x_2) = f'(x_3)(x_1 - x_2) \). Hence, \(|f(x_1) - f(x_2)| = |f'(x_3)||x_1 - x_2| \leq s|x_1 - x_2| \).