Solutions to Practice Problems

Exercise 16.9

Prove that there exists a number $c \in\left[0, \frac{\pi}{2}\right]$ such that $2 c-1=\sin \left(c^{2}+\frac{\pi}{4}\right)$.

Solution.

Let $f(x)=2 x-1-\sin \left(x^{2}+\frac{\pi}{4}\right)$. Then $f(0)=-1-\frac{1}{\sqrt{2}}<0$ and $f\left(\frac{\pi}{2}\right)=$ $\pi-1-\sin \left(\frac{\pi^{2}}{2}+\frac{\pi}{4}\right)>0$. By the Intermediate Value Theorem, there is a $c \in\left[0, \frac{\pi}{2}\right]$ such that $f(c)=0$ or $2 c-1=\sin \left(c^{2}+\frac{\pi}{4}\right)$

Exercise 16.10

Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Prove that there is $c \in[a, b]$ such that $f(c)=c$. We call c a fixed point of f. Hint: Intermediate Value Theorem applied to a specific function F (to be found) defined on $[a, b]$.

Solution.

Define $F:[a, b] \rightarrow \mathbb{R}$ by $F(x)=x-f(x)$. Then F is continuous on $[a, b]$. Since $a \leq f(a) \leq b$ and $a \leq f(b) \leq b$ we find $F(a)=a-f(a) \leq 0$ and $F(b)=b-f(b) \geq 0$. By the Intermediate Value Theorem, there is a $c \in[a, b]$ such that $F(c)=0$ or $c-f(c)=0$. Thus, $f(c)=c$

Exercise 16.11

Using the Intermediate Value Theorem, show that
(a) the equation $3 \tan x=2+\sin x$ has a solution in the interval $\left[0, \frac{\pi}{4}\right]$.
(b) the polynomial $p(x)=-x^{4}+2 x^{3}+2$ has at least two real roots.

Solution.

(a) Let $f(x)=3 \tan x-\sin x-2$. Then f is continuous on $\left[0, \frac{\pi}{4}\right]$ and $f(0)=$ $-2<0, f\left(\frac{\pi}{4}\right)=1-\frac{1}{\sqrt{2}}>0$. By IVT, there is a $c \in\left[0, \frac{\pi}{4}\right]$ such that $f(c)=0$. This means, the given equation has at least one solution in the interval [$0, \frac{\pi}{4}$]. (b) Since $p(-1)=-1<0, p(0)=2>0$, and $p(3)=-25<0$ there exist at least two numbers $-1 \leq c_{1} \leq 0 \leq c_{2} \leq 3$ such that $f\left(c_{1}\right)=f\left(c_{2}\right)=0$. Since $p(0) \neq 0$, we must have $c_{1} \neq c_{2}$

Exercise 16.12

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions such that $f(a) \leq g(a)$ and $f(b) \geq g(b)$. Show that there is a $c \in[a, b]$ such that $f(c)=g(c)$.

Solution.

Let $h(x)=f(x)-g(x)$. Then h is continuous on $[a, b]$ with $h(a) \leq 0 \leq h(b)$. By the IVT, there is a $c \in[a, b]$ such that $h(c)=0$ or $f(c)=g(c)$

Exercise 16.13

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous such that $f(a) \leq a$ and $f(b) \geq b$. Prove that there is a $c \in[a, b]$ such that $f(c)=c$.

Solution.

Let $g(x)=f(x)-x$. Then g is continuous on $[a, b]$ with $g(a) \leq 0$ and $g(b) \geq 0$. By IVT, there is a $c \in[a, b]$ such that $g(c)=0$. That is, $f(c)=c$

Exercise 16.14

Let $f:[a, b] \rightarrow \mathbb{R} \backslash \mathbb{Q}$ be continuous. Prove that f must be a constant function. Hint: Exercise 3.6(c).

Solution.

Suppose for a contradiction that f is not constant. Then, we can find $x, y \in[a, b]$ with $x<y$ and such that $f(x) \neq f(y)$. Choose a rational number m lying between $f(x)$ and $f(y)$. Then, by the Intermediate Value Theorem, there exists $z \in[x, y]$ with $f(z)=m$. Hence, f takes a rational value, contradicting the hypotheses

Exercise 16.15

Prove that a polynomial of odd degree considered as a function from the reals to the reals has at least one real root.

Solution.

Let $f(x)$ be a polynomial of odd degree. Then $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty\left(\right.$ or $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$ depending on whether the leading coefficient is positive or negative, respectively). Hence, there exist two real numbers a and b such that $a<b$ with $f(a)<0$ and $f(b)>0$. Now the Intermediate Value Theorem applies to give an $x \in[a, b]$ such that $f(x)=0$

Exercise 16.16

Suppose $f(x)$ is continuous on the interval $[0,2]$ and $f(0)=f(2)$. Show that there is a number c between 0 and 1 so that $f(c+1)=f(c)$. Hint: Consider the function $g(x)=f(x+1)-f(x)$ on $[0,1]$.

Solution.

We let $g(x)=f(x+1)-f(x)$. Then $g(x)$ is continuous on $[0,1]$. Furthermore,

$$
g(0)=f(1)-f(0)
$$

and

$$
g(1)=f(2)-f(1)=f(0)-f(1)=-(f(1)-f(0)) .
$$

If $f(1)=f(0)$ we have obtained the desired conclusion upon taking $c=0$. We therefore assume $f(0) \neq f(1)$. But then $g(0)$ and $g(1)$ have opposite signs. The Intermediate Value Theorem therefore guarantees the existence of a number c in the interval $[0,1]$ satisfying $g(c)=0$. But by definition of $g(x)$, this means $f(c+1)=f(c)$

Exercise 16.17

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and one-to-one. We want to show that f is monotone,i.e. either f is always increasing on $[a, b]$ or always decreasing. Let's assume the contrary, then one of the following cases applies:
(i) There are $x, y, z \in[a, b]$ such that $x<y<z$ and $f(x)<f(y), f(z)<f(y)$. That is, the graph of f is increasing on $[x, y]$ and decreasing on $[y, z]$.
(ii) There are $x, y, z \in[a, b]$ such that $x<y<z$ and $f(x)>f(y), f(y)<$ $f(z)$. That is, the graph of f is decreasing on $[x, y]$ and increasing on $[y, z]$. Consider Case (i). We have either $f(y)<f(x)<f(z)$ or $f(z)<f(x)<f(y)$.
(a) Suppose that $f(z)<f(x)<f(y)$. Use the Intermediate Value theorem restricted to $[y, z]$ to show that such a double inequality can not occur.
(b) Suppose that $f(x)<f(z)<f(y)$. Use the Intermediate Value theorem restricted to $[x, y]$ to show that such a double inequality can not occur.
We conclude that Case (i) does not hold.
(c) Answer (a) and (b) for case (ii). Hence, we conclude that f must be monotone.

Solution.

(a) If $f(z)<f(x)<f(y)$, we can apply the Intermediate Value Theorem to $[y, z]$ to find $y<w<z$ such that $f(w)=f(x)$. Since f is one-to-one we must have $w=x<y$ which contradicts the inequality $y<w$.
(b) If $f(x)<f(z)<f(y)$, we can apply the Intermediate Value Theorem to $[x, y]$ to find $x<w<y$ such that $f(w)=f(z)$. Since f is one-to-one we must have $w=z<y$ which contradicts the inequality $y<z$.
(c) If $f(y)<f(x)<f(z)$, we can apply the Intermediate Value Theorem
to $[y, z]$ to find $y<w<z$ such that $f(w)=f(x)$. Since f is one-to-one we must have $w=x<y$ which contradicts the inequality $y<w$.
If $f(y)<f(z)<f(x)$, we can apply the Intermediate Value Theorem to $[x, y]$ to find $x<w<y$ such that $f(w)=f(z)$. Since f is one-to-one we must have $w=z<y$ which contradicts the inequality $y<z$

