
Solutions to Practice Problems

Exercise 16.9
Prove that there exists a number c ∈

[
0, π

2

]
such that 2c− 1 = sin

(
c2 + π

4

)
.

Solution.
Let f(x) = 2x − 1 − sin

(
x2 + π

4

)
. Then f(0) = −1 − 1√

2
< 0 and f

(
π
2

)
=

π − 1 − sin
(
π2

2
+ π

4

)
> 0. By the Intermediate Value Theorem, there is a

c ∈
[
0, π

2

]
such that f(c) = 0 or 2c− 1 = sin

(
c2 + π

4

)
Exercise 16.10
Let f : [a, b] → [a, b] be a continuous function. Prove that there is c ∈ [a, b]
such that f(c) = c. We call c a fixed point of f. Hint: Intermediate Value
Theorem applied to a specific function F (to be found) defined on [a, b].

Solution.
Define F : [a, b] → R by F (x) = x − f(x). Then F is continuous on [a, b].
Since a ≤ f(a) ≤ b and a ≤ f(b) ≤ b we find F (a) = a − f(a) ≤ 0 and
F (b) = b−f(b) ≥ 0. By the Intermediate Value Theorem, there is a c ∈ [a, b]
such that F (c) = 0 or c− f(c) = 0. Thus, f(c) = c

Exercise 16.11
Using the Intermediate Value Theorem, show that
(a) the equation 3 tan x = 2 + sinx has a solution in the interval [0, π

4
].

(b) the polynomial p(x) = −x4 + 2x3 + 2 has at least two real roots.

Solution.
(a) Let f(x) = 3 tanx− sinx− 2. Then f is continuous on [0, π

4
] and f(0) =

−2 < 0, f
(
π
4

)
= 1− 1√

2
> 0. By IVT, there is a c ∈ [0, π

4
] such that f(c) = 0.

This means, the given equation has at least one solution in the interval [0, π
4
].

(b) Since p(−1) = −1 < 0, p(0) = 2 > 0, and p(3) = −25 < 0 there exist at
least two numbers −1 ≤ c1 ≤ 0 ≤ c2 ≤ 3 such that f(c1) = f(c2) = 0. Since
p(0) 6= 0, we must have c1 6= c2

Exercise 16.12
Let f, g : [a, b] → R be continuous functions such that f(a) ≤ g(a) and
f(b) ≥ g(b). Show that there is a c ∈ [a, b] such that f(c) = g(c).
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Solution.
Let h(x) = f(x)− g(x). Then h is continuous on [a, b] with h(a) ≤ 0 ≤ h(b).
By the IVT, there is a c ∈ [a, b] such that h(c) = 0 or f(c) = g(c)

Exercise 16.13
Let f : [a, b]→ R be continuous such that f(a) ≤ a and f(b) ≥ b. Prove that
there is a c ∈ [a, b] such that f(c) = c.

Solution.
Let g(x) = f(x)−x. Then g is continuous on [a, b] with g(a) ≤ 0 and g(b) ≥ 0.
By IVT, there is a c ∈ [a, b] such that g(c) = 0. That is, f(c) = c

Exercise 16.14
Let f : [a, b] → R\Q be continuous. Prove that f must be a constant
function. Hint: Exercise 3.6(c).

Solution.
Suppose for a contradiction that f is not constant. Then, we can find
x, y ∈ [a, b] with x < y and such that f(x) 6= f(y). Choose a rational
number m lying between f(x) and f(y). Then, by the Intermediate Value
Theorem, there exists z ∈ [x, y] with f(z) = m. Hence, f takes a rational
value, contradicting the hypotheses

Exercise 16.15
Prove that a polynomial of odd degree considered as a function from the reals
to the reals has at least one real root.

Solution.
Let f(x) be a polynomial of odd degree. Then limx→−∞ f(x) = −∞ and
limx→∞ f(x) = ∞ (or limx→−∞ f(x) = ∞ and limx→∞ f(x) = −∞ depend-
ing on whether the leading coefficient is positive or negative, respectively).
Hence, there exist two real numbers a and b such that a < b with f(a) < 0 and
f(b) > 0. Now the Intermediate Value Theorem applies to give an x ∈ [a, b]
such that f(x) = 0

Exercise 16.16
Suppose f(x) is continuous on the interval [0, 2] and f(0) = f(2). Show that
there is a number c between 0 and 1 so that f(c+ 1) = f(c). Hint: Consider
the function g(x) = f(x+ 1)− f(x) on [0, 1].
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Solution.
We let g(x) = f(x+1)−f(x). Then g(x) is continuous on [0, 1]. Furthermore,

g(0) = f(1)− f(0)

and
g(1) = f(2)− f(1) = f(0)− f(1) = −(f(1)− f(0)).

If f(1) = f(0) we have obtained the desired conclusion upon taking c = 0.
We therefore assume f(0) 6= f(1). But then g(0) and g(1) have opposite
signs. The Intermediate Value Theorem therefore guarantees the existence
of a number c in the interval [0, 1] satisfying g(c) = 0. But by definition of
g(x), this means f(c+ 1) = f(c)

Exercise 16.17
Let f : [a, b] → R be continuous and one-to-one. We want to show that f
is monotone,i.e. either f is always increasing on [a, b] or always decreasing.
Let’s assume the contrary, then one of the following cases applies:
(i) There are x, y, z ∈ [a, b] such that x < y < z and f(x) < f(y), f(z) < f(y).
That is, the graph of f is increasing on [x, y] and decreasing on [y, z].
(ii) There are x, y, z ∈ [a, b] such that x < y < z and f(x) > f(y), f(y) <
f(z). That is, the graph of f is decreasing on [x, y] and increasing on [y, z].
Consider Case (i). We have either f(y) < f(x) < f(z) or f(z) < f(x) < f(y).
(a) Suppose that f(z) < f(x) < f(y). Use the Intermediate Value theorem
restricted to [y, z] to show that such a double inequality can not occur.
(b) Suppose that f(x) < f(z) < f(y). Use the Intermediate Value theorem
restricted to [x, y] to show that such a double inequality can not occur.
We conclude that Case (i) does not hold.
(c) Answer (a) and (b) for case (ii). Hence, we conclude that f must be
monotone.

Solution.
(a) If f(z) < f(x) < f(y), we can apply the Intermediate Value Theorem
to [y, z] to find y < w < z such that f(w) = f(x). Since f is one-to-one we
must have w = x < y which contradicts the inequality y < w.
(b) If f(x) < f(z) < f(y), we can apply the Intermediate Value Theorem
to [x, y] to find x < w < y such that f(w) = f(z). Since f is one-to-one we
must have w = z < y which contradicts the inequality y < z.
(c) If f(y) < f(x) < f(z), we can apply the Intermediate Value Theorem
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to [y, z] to find y < w < z such that f(w) = f(x). Since f is one-to-one we
must have w = x < y which contradicts the inequality y < w.
If f(y) < f(z) < f(x), we can apply the Intermediate Value Theorem to
[x, y] to find x < w < y such that f(w) = f(z). Since f is one-to-one we
must have w = z < y which contradicts the inequality y < z
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