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7.7 Separable Differential Equations

An ordinary differential equation (abbreviated ODE) is an equation
that involves an unknown function (the dependent variable) of a single
variable, its independent variable, and one or more of its derivatives. The
highest order derivative that appears in the equation is known as the order
of the equation.

Example 7.7.1
Determine the order of each equation.
(a) y′ + 2ty = e−x

2

(b) d2y
dt2
− 5dy

dt + 6y(t) = 0
(c) y′′ + 3ty′ + 2y = sin (5t).

Solution.
(a) This is a first order differential equation because the highest derivative
is the first derivative.
(b) and (c) are second order differential equations since the highest deriva-
tive in each equation is the second order derivative

A solution of a differential equation is a function that satisfies the equation:
When you substitute this function and/or its derivatives into the differential
equation, you get a true mathematical statement.

Example 7.7.2
Show that the function y = 100+e−t is a solution to the differential equation

y′ = 100− y.

Solution.
Indeed, finding the first order derivative of y we have y′ = −e−t. Also,
100−y = 100−(100+e−t) = −e−t. Thus, y′ = 100−y so that y = 100+e−t

is a solution to the given DE.

Solving a differential equation means finding all possible solutions of the
equation.

Example 7.7.3
Solve the differential equation:

y′′ = −2t.
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Solution.
Integrating twice, all the solutions have the form

y(t) = − t3

3
+ C1t + C2

Note that the function of the previous example defines all the solutions to
the differential equation. Such a function will be referred to as the general
solution. The constants C1 and C2 are called the parameters. Specific
values of C1 and C2 determine what is called a particular solution. To find
a particular solution additional conditions on the values of the function or
its derivatives must be given. Such conditions are called initial conditions.
A differential equation together with a set of initial conditions is called an
initial value problem (abbreviated IVP).

Example 7.7.4
Consider the differential equation y′′(t)− 1 = 0.
(a) Find the general solution of this equation.
(b) Find the solution that satisfies the initial conditions y(1) = 1 and y′(1) =
4.

Solution.
(a) Integrating twice we find the general solution

y(t) =
t2

2
+ C1t + C2.

(b) Since y′(t) = t + C1 and y′(1) = 4 we find 4 = 1 + C1 so that C1 = 3.

Hence, y(t) = t2

2 + 3t + C2. Now, the initial value y(1) = 1 implies 1 =
1
2 + 3 +C2. Solving for C2 we find C2 = −5

2 . Hence, the solution to the IVP{
y′′(t)− 1 = 0

y′(1) = 4, y(1) = 1

is

y(t) =
t2

2
+ 3t− 5

2

Separable Differential Equations
A first order differential equation is separable if it can be written with one
variable only on the left and the other variable only on the right:

f(y)y′ = g(t).
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To solve this equation, we proceed as follows. Let F (t) be an antiderivative
of f(t) and G(t) be an antiderivative of g(t). Then by the Chain Rule

d

dt
F (y) =

dF

dy

dy

dt
= f(y)y′.

Thus,

f(y)y′ − g(t) =
d

dt
F (y)− d

dt
G(t) =

d

dt
[F (y)−G(t)] = 0.

It follows that
F (y)−G(t) = C

which is equivalent to ∫
f(y)y′dt =

∫
g(t)dt + C.

As you can see, the result is generally an implicit equation involving a func-
tion of y and a function of t. It may or may not be possible to solve this to
get y explicitly as a function of t. For an initial value problem, substitute
the values of t and y by t0 and y0 to get the value of C.

Example 7.7.5
Solve the IVP yy′ = 4 sin (2t), y(0) = 1.

Solution.
This is a separable differential equation. Integrating both sides we find∫ (

y2

2

)′
dt = 4

∫
sin (2t)dt.

Thus,
y2 = −4 cos (2t) + C.

Since y(0) = 1, we find C = 5. Now, solving explicitly for y(t) we find

y(t) = ±
√
−4 cos t + 5.

Since y(0) = 1, we find y(t) =
√
−4 cos t + 5. The interval of existence of the

solution is the interval −∞ < t <∞

The Logistic Population Model of Verhulst
In this model, the population growth is limited to a maximum size of M,
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called the carrying capacity. For this model, it is assumed that the rate
of change of the population y(t) is proportional to the product of the pop-
ulation and the amount by which y falls short of the maximal size M − y.
That is,

dy

dt
= ky(M − y) (7.7.1)

for some positive constant k. Equation (7.7.1) is a separable differential
equation.

Example 7.7.6
Suppose a student carrying a flu virus returns to an isolated college campus
of 1000 students. If it is determined that the rate at which the virus spreads
is proportional not only to the number y(t) of students infected but also
to the number of students not infected. Determine the number of infected
students after 6 days given that the number of infected students after 4 days
is 50.

Solution.
We first must find a formula for y(t) which is the solution to the IVP

dy

dt
= k(1000− y)y, y(0) = 1.

Separating the variable, we find

dy

y(1000− y)
=kdt∫

dy

y(1000− y)
=

∫
kdt

1

1000

∫ (
1

y
+

1

1000− y

)
dy =

∫
kdt

ln

∣∣∣∣ y

1000− y

∣∣∣∣ =1000kt + C ′∣∣∣∣ y

1000− y

∣∣∣∣ =e1000kt+C′

y

1000− y
=Ce1000kt.

Using the initial condition y(0) = 1, we find C = 1
999 . Solving for y, we find

y(t) =
1000e1000kt

999 + e1000kt
.
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But y(4) = 50 so that

50 =
1000

1 + 999e−4000k
.

Solving this equation for k, we find k ≈ 0.0009906. Thus,

y(t) =
1000

1 + 999e−0.9906t
.

Finally,

y(6) =
1000

1 + 999e−0.9906(6)
≈ 276 students

Mixing Models
All mixing problems we consider here will involve a “tank into which a
certain mixture will be added at a certain input rate and the mixture will
leave the system at a certain output rate. We shall always reserve y = y(t)
to denote the amount of substance in the tank at any given time t.
The differential equation involved here arises from the following natural
relationship:

dy

dt
= rate in− rate out.

The main assumption that we will be using here is that the concentration
of the substance in the liquid is uniform throughout the tank.
Consider a tank initially containing a volume V0 of mixture (substance and
liquid) of concentration c0. Then the initial amount of the substance is given
by y0 = c0V0.
Suppose a mixture of concentration ci(t) flows into the tank at the volume
rate ri(t). Then the substance is entering the tank at the rate ci(t)ri. Suppose
that the well-mixed solution is pumped out of the tank at the volume rate
ro(t). The concentration of this outflow is y(t)

V (t) where V (t) is the current
volume of solution in the tank. Then clearly

dy

dt
= ci(t)ri(t)−

y(t)

V (t)
ro(t), y(0) = y0

and
dV

dt
= ri(t)− ro(t).

Solving the last equation we find

V (t) = V0 +

∫ t

0
(ri(s)− ro(s))ds.
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Example 7.7.7
Consider a tank with volume 5000 liters containing 20 kg of salt. Suppose
a solution with 0.03 kg/liter of salt flows into the tank at a rate of 25
liters/min. The solution in the tank is well-mixed. Solution flows out of the
tank at a rate of 25 liters/min. How much salt will be in the tank at time
t?

Solution.
Since ri = ro, we have V (t) = V0 = 5000. If y(t) is the amount of salt in the
tank at any time t then

y′ = 0.03× 25− y

5000
× 25, y(0) = 20

or

y′ =
150− y(t)

200
, y(0) = 20.

This is a separable differential equation. Solving this equation, we find

dy

150− y
=

dt

200∫
dy

150− y
=

∫
dt

200

− ln |150− y| = t

200
+ C.

Since y(0) = 20, we find − ln 130 = C. Thus,

− ln |150− y| = t

200
− ln 130 =⇒ ±(150− y) = 130e−

t
200 .

But y(0) = 20 so that 150− y(t) = 130e
t

200 or y(t) = 150− 130e−
t

200
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